1
|
Yazer MH, Ngamsuntikul S, Gandhi M, Apelseth T, Taylor A, Seheult JN. An in silico simulation of the frequency of administering HLA-incompatible low titer group O whole blood units when the donor pool includes unscreened female donors. Transfusion 2025; 65 Suppl 1:S227-S236. [PMID: 39908301 PMCID: PMC12035995 DOI: 10.1111/trf.18141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND As low titer group O whole blood (LTOWB) increases in popularity, blood centers are finding innovative ways of maintaining the supply. One potential way is collecting LTOWB from parous female donors without testing for HLA antibodies. This in silico simulation predicted the risk of an LTOWB unit containing an HLA antibody and the subsequent risk for an HLA-incompatible transfusion. METHODS An LTOWB blood bank with 1 million units was simulated consisting of male, nulliparous, and parous female donors. The proportion of each donor type was modeled after the sex distribution at US blood centers. The parity of female donors was calculated based on the average number of live births per female depending on her age. HLA-alloimmunization risk was determined by her parity status. The HLA haplotypes of the simulated recipients were derived from the 100 most common HLA haplotypes in the US National Marrow Registry Program database. The proportion of different race/ethnic groups in the US was used to simulate 100,000 LTOWB recipients to whom between 1 and 10 units were administered. RESULTS Overall, the risk of an LTOWB unit containing at least one HLA antibody was 12.2% and the rate of receiving an HLA-incompatible unit was 21.3%. The risk of receiving an HLA-incompatible unit rose from 4.8% after receipt of one unit to 36.5% after 10 units. CONCLUSION Blood collectors and hospitals should evaluate the potential TRALI risk against the benefit of a potentially expanded inventory of LTOWB before collecting plasma-containing products from non-HLA-tested parous female donors.
Collapse
Affiliation(s)
- Mark H. Yazer
- Department of PathologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Manish Gandhi
- Division of Transfusion MedicineMayo ClinicRochesterMinnesotaUSA
| | - Torunn Apelseth
- Norwegian Center for Blood Preparedness, Department of Immunology and Transfusion MedicineHaukeland University HospitalBergenNorway
- Institute of Clinical Science, Faculty of MedicineUniversity of BergenBergenNorway
| | | | | |
Collapse
|
2
|
Fang X, Mo C, Zheng L, Gao F, Xue F, Zheng X. Transfusion-Related Acute Lung Injury: from Mechanistic Insights to Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413364. [PMID: 39836498 PMCID: PMC11923913 DOI: 10.1002/advs.202413364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Transfusion-related acute lung injury (TRALI) is a potentially lethal complication of blood transfusions, characterized by the rapid onset of pulmonary edema and hypoxemia within six hours post-transfusion. As one of the primary causes of transfusion-related mortality, TRALI carries a significant mortality rate of 6-12%. However, effective treatment strategies for TRALI are currently lacking, underscoring the urgent need for a comprehensive and in-depth understanding of its pathogenesis. This comprehensive review provides an updated and detailed analysis of the current landscape of TRALI, including its clinical presentation, pathogenetic hypotheses, animal models, cellular mechanisms, signaling pathways, and potential therapeutic targets. By highlighting the critical roles of these pathways and therapies, this review offers valuable insights to inform the development of preventative and therapeutic strategies and to guide future research efforts aimed at addressing this life-threatening condition.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fei Gao
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fu‐Shan Xue
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Xiaochun Zheng
- Department of AnesthesiologyFujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical CenterFujian Provincial Key Laboratory of Emergency MedicineFujian Provincial Key Laboratory of Critical MedicineFujian Provincial Co‐constructed Laboratory of “Belt and Road,”FuzhouFujianChina
| |
Collapse
|
3
|
Mantadakis E, Vittoraki A, Siorenta A, Kontekaki E. Transfusion-related acute lung injury/transfusion-associated circulatory overload in a child with non-transfusion dependent thalassemia and aplastic crisis due to acute parvovirus B19 infection. BMJ Case Rep 2024; 17:e261488. [PMID: 39461839 DOI: 10.1136/bcr-2024-261488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
We present a never-transfused girl with thalassemia intermedia who was admitted for febrile aplastic crisis due to human parvovirus B19. After a first transfusion of packed red blood cells, she developed pulmonary oedema. She improved with supportive care including the use of intravenous diuretics. Due to severe anaemia, she received a second blood transfusion, antibiotics for febrile neutropenia and intravenous γ globulin for control of the parvovirus infection. She had an uneventful recovery. The first of her male blood donors had an antibody against a patient's human leukocyte antigens type II antigen with a high mean fluorescent intensity. Our patient had clinical features and supportive laboratory evidence for mild transfusion-related acute lung injury (TRALI). However, she also met the criteria for transfusion-associated circulatory overload (TACO). We conclude that our patient likely suffered from TRALI/TACO, a consensus term proposed in 2019 for patients in whom TRALI cannot be distinguished from TACO or in whom both conditions occur simultaneously.
Collapse
Affiliation(s)
- Elpis Mantadakis
- Department of Pediatrics, Democritus University of Thrace, Faculty of Medicine, Alexandroupolis, Thrace, Greece
| | - Angeliki Vittoraki
- Department of Immunology and National Tissue Typing Center, G. Gennimatas General Hospital of Athens, Athens, Attika, Greece
| | - Alexandra Siorenta
- Department of Immunology and National Tissue Typing Center, G. Gennimatas General Hospital of Athens, Athens, Attika, Greece
| | - Eftychia Kontekaki
- Blood Transfusion Center, University General Hospital of Alexandroupolis, Alexandroupolis, Thrace, Greece
| |
Collapse
|
4
|
Abstract
The term transfusion-related acute lung injury (TRALI) was coined in 1985 to describe acute respiratory distress syndrome (ARDS) after transfusion, when another ARDS risk factor was absent; TRALI cases were mostly associated with donor leukocyte antibody. In 2001, plasma from multiparous donors was implicated in TRALI in a randomized controlled trial in Sweden. In 2003 and in many years thereafter, the FDA reported that TRALI was the leading cause of death from transfusion in the United States. In 2003, the United Kingdom was the first among many countries to successfully reduce TRALI using male-predominant plasma. These successes are to be celebrated. Nevertheless, questions remain about the mechanisms of non-antibody TRALI, the role of blood products in the development of ARDS in massive transfusion patients, the causes of unusual TRALI cases, and how to reduce inaccurate clinical diagnoses of TRALI in clinical practice. Regarding the latter, a study in 2013-2015 at 169 US hospitals found that many TRALI diagnoses did not meet clinical definitions. In 2019, a consensus panel established a more precise terminology for clinical diagnosis: TRALI type I and TRALI type II are cases where transfusion is the likely cause, and ARDS are cases where transfusion is not the likely cause. For accurate diagnosis using these clinical definitions, critical care expertise is needed to distinguish between permeability versus hydrostatic pulmonary edema, to determine whether an ARDS risk factor is present and, if so, whether respiratory function was stable within the 12 hours before transfusion.
Collapse
|
5
|
Tung JP, Chiaretti S, Dean MM, Sultana AJ, Reade MC, Fung YL. Transfusion-related acute lung injury (TRALI): Potential pathways of development, strategies for prevention and treatment, and future research directions. Blood Rev 2022; 53:100926. [DOI: 10.1016/j.blre.2021.100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
|
6
|
Koepsell S. Complications of Transfusion. Transfus Med 2021. [DOI: 10.1002/9781119599586.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Abstract
Abstract
Transfusion-related acute lung injury is a leading cause of death associated with the use of blood products. Transfusion-related acute lung injury is a diagnosis of exclusion which can be difficult to identify during surgery amid the various physiologic and pathophysiologic changes associated with the perioperative period. As anesthesiologists supervise delivery of a large portion of inpatient prescribed blood products, and since the incidence of transfusion-related acute lung injury in the perioperative patient is higher than in nonsurgical patients, anesthesiologists need to consider transfusion-related acute lung injury in the perioperative setting, identify at-risk patients, recognize early signs of transfusion-related acute lung injury, and have established strategies for its prevention and treatment.
Collapse
|
8
|
Peters AL, van de Weerdt EK, Prinsze F, de Korte D, Juffermans NP, Vlaar APJ. Donor characteristics do not influence transfusion-related acute lung injury incidence in a secondary analysis of two case-control studies. Transfus Clin Biol 2019; 26:10-17. [PMID: 30686333 DOI: 10.1016/j.tracli.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/25/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To investigate the relation between donor characteristics and TRALI incidence. BACKGROUND Transfusion-related acute lung injury (TRALI) is a potentially fatal complication of transfusion. In pre-clinical studies and several clinical studies, TRALI has been related to loss of product quality during red blood cell (RBC) storage, called the "storage lesion". Donor characteristics, as for example age, genetics and life style choices influence this "storage lesion". We hypothesized that donor sex, age and blood type is related to TRALI incidence. METHODS/MATERIALS We performed a secondary analysis of two cohort studies, designed to identify TRALI risk factors by matching TRALI patients to transfused controls. We obtained donor sex, age and blood type from the Dutch Blood Bank Sanquin and investigated TRALI incidence in patients who were exposed to a certain donor characteristic. We used Kruskal-Wallis testing to compare the number of transfused products and Chi2 testing to compare proportions of TRALI patients and transfused control. RESULTS After implementation of the male-donor only plasma strategy, patients received more transfusion products from male donors. However, we did not detect a relation between TRALI incidence and donor sex. Both TRALI patients and transfused controls received mainly products from donors over 41 years old, but donor age did not influence TRALI risk. Donor blood type, the transfusion of blood type-compatible and blood type-matched products also had no influence on TRALI incidence. CONCLUSION We conclude that in two cohorts of TRALI patients, donor age, donor sex and donor blood type are unrelated to TRALI.
Collapse
Affiliation(s)
- A L Peters
- Laboratory of Experimental Intensive Care and Anesthesia, Academic Medical Center, Amsterdam, The Netherlands; Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands; Department Product and Process Development, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - E K van de Weerdt
- Laboratory of Experimental Intensive Care and Anesthesia, Academic Medical Center, Amsterdam, The Netherlands; Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands; Department Product and Process Development, Sanquin Blood Supply, Amsterdam, The Netherlands.
| | - F Prinsze
- Department of Donor Studies, Sanquin Research, Amsterdam, The Netherlands
| | - D de Korte
- Department of Blood Cell Research, Sanquin Research, Amsterdam, The Netherlands; Department Product and Process Development, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - N P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesia, Academic Medical Center, Amsterdam, The Netherlands; Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands; Department Product and Process Development, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - A P J Vlaar
- Laboratory of Experimental Intensive Care and Anesthesia, Academic Medical Center, Amsterdam, The Netherlands; Department of Intensive Care, Academic Medical Center, Amsterdam, The Netherlands; Department Product and Process Development, Sanquin Blood Supply, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Kopko PM, Bux J, Toy P. Antibodies associated with TRALI: differences in clinical relevance. Transfusion 2018; 59:1147-1151. [PMID: 30548883 DOI: 10.1111/trf.15094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Patricia M Kopko
- Department of Pathology, University of California, San Diego, San Diego, California
| | | | - Pearl Toy
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
10
|
Roubinian N. TACO and TRALI: biology, risk factors, and prevention strategies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:585-594. [PMID: 30570487 PMCID: PMC6324877 DOI: 10.1182/asheducation-2018.1.585] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transfusion-related acute lung injury (TRALI) and transfusion-associated circulatory overload (TACO) are the leading causes of transfusion-related morbidity and mortality. These adverse events are characterized by acute pulmonary edema within 6 hours of a blood transfusion and have historically been difficult to study due to underrecognition and nonspecific diagnostic criteria. However, in the past decade, in vivo models and clinical studies utilizing active surveillance have advanced our understanding of their epidemiology and pathogenesis. With the adoption of mitigation strategies and patient blood management, the incidence of TRALI and TACO has decreased. Continued research to prevent and treat these severe cardiopulmonary events is focused on both the blood component and the transfusion recipient.
Collapse
Affiliation(s)
- Nareg Roubinian
- Blood Systems Research Institute, San Francisco, CA; Kaiser Permanente Northern California Medical Center and Division of Research, Oakland, CA; and Department of Laboratory Medicine, University of California, San Francisco, CA
| |
Collapse
|
11
|
Slit2/Robo4 signaling pathway modulates endothelial hyper-permeability in a two-event in vitro model of transfusion-related acute lung injury. Blood Cells Mol Dis 2018; 76:7-12. [PMID: 30846360 DOI: 10.1016/j.bcmd.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 11/20/2022]
Abstract
Transfusion-related acute lung injury (TRALI) remains the leading cause of transfusion-related mortality. Endothelium semipermeable barrier function plays a critical role in the pathophysiology of transfusion-related acute lung injury (TRALI). Recently, Roundabout protein 4 (Robo4), interaction with its ligand Slit 2, was appreciated as a modulator of endothelial permeability and integrity. However, not much is known about the role of Slit2/Robo4 signaling pathway in the pathophysiology of TRALI. In this study, the TRALI model was performed by the "two-event" model of polymorphonuclear neutrophils (PMN)-mediated pulmonary microvascular endothelial cells (PMVECs) damage. We investigated the expression of Slit2/Robo4 and VE-cadherin and examined the pulmonary endothelial hyper-permeability in TRALI model. We found that the expression of Slit2/Robo4 and VE-cadherin were significantly decreased in a time-dependent manner, whereas the PMVECs permeability was gradually increased over time in TRALI model. Moreover, the treatment with Slit2-N, an active fragment of Slit2, increased the expression of Slit2/Robo4 and VE-cadherin to protect PMVECs from PMN-mediated pulmonary endothelial hyper-permeability. These results indicate that targeting Slit2/Robo4 signaling pathway may modulate the permeability as well as protect the integrity of endothelial barrier. In addition, Slit2-N appears to be a promising candidate for developing novel therapies against TRALI.
Collapse
|
12
|
Thalji L, Thum D, Weister TJ, Weber WV, Stubbs JR, Kor DJ, Nemergut ME. Incidence and Epidemiology of Perioperative Transfusion-Related Pulmonary Complications in Pediatric Noncardiac Surgical Patients. Anesth Analg 2018; 127:1180-1188. [DOI: 10.1213/ane.0000000000003574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Platelet and TRALI: From blood component to organism. Transfus Clin Biol 2018; 25:204-209. [PMID: 29631963 DOI: 10.1016/j.tracli.2018.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/07/2018] [Indexed: 12/20/2022]
Abstract
Even though used systematically with leukocyte reduction, platelet transfusions still cause adverse reactions in recipients. They include Transfusion-Related Acute Lung Injury (TRALI), respiratory distress that occurs within six hours of the transfusion. The pathophysiology of this transfusion complication brings complex cellular communication into play. The role, particularly inflammatory, played by blood platelets in TRALI pathophysiology has been demonstrated, but is still under debate. Blood platelets play a role in inflammation, particularly via the CD40/CD40L (sCD40L) immunomodulator complex. In this study, we examine in particular the specific involvement of the CD40/CD40L (sCD40L) complex in the inflammatory pathogenesis of TRALI. This molecular complex could be a major target in a TRALI prevention strategy. Improving the conditions in which the platelet concentrates (PC) are prepared and stored would contribute to controlling partly the risks of non-immune TRALI.
Collapse
|
14
|
McVey MJ, Kim M, Tabuchi A, Srbely V, Japtok L, Arenz C, Rotstein O, Kleuser B, Semple JW, Kuebler WM. Acid sphingomyelinase mediates murine acute lung injury following transfusion of aged platelets. Am J Physiol Lung Cell Mol Physiol 2017; 312:L625-L637. [DOI: 10.1152/ajplung.00317.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 11/22/2022] Open
Abstract
Pulmonary complications from stored blood products are the leading cause of mortality related to transfusion. Transfusion-related acute lung injury is mediated by antibodies or bioactive mediators, yet underlying mechanisms are incompletely understood. Sphingolipids such as ceramide regulate lung injury, and their composition changes as a function of time in stored blood. Here, we tested the hypothesis that aged platelets may induce lung injury via a sphingolipid-mediated mechanism. To assess this hypothesis, a two-hit mouse model was devised. Recipient mice were treated with 2 mg/kg intraperitoneal lipopolysaccharide (priming) 2 h before transfusion of 10 ml/kg stored (1–5 days) platelets treated with or without addition of acid sphingomyelinase inhibitor ARC39 or platelets from acid sphingomyelinase-deficient mice, which both reduce ceramide formation. Transfused mice were examined for signs of pulmonary neutrophil accumulation, endothelial barrier dysfunction, and histological evidence of lung injury. Sphingolipid profiles in stored platelets were analyzed by mass spectrophotometry. Transfusion of aged platelets into primed mice induced characteristic features of lung injury, which increased in severity as a function of storage time. Ceramide accumulated in platelets during storage, but this was attenuated by ARC39 or in acid sphingomyelinase-deficient platelets. Compared with wild-type platelets, transfusion of ARC39-treated or acid sphingomyelinase-deficient aged platelets alleviated lung injury. Aged platelets elicit lung injury in primed recipient mice, which can be alleviated by pharmacological inhibition or genetic deletion of acid sphingomyelinase. Interventions targeting sphingolipid formation represent a promising strategy to increase the safety and longevity of stored blood products.
Collapse
Affiliation(s)
- Mark J. McVey
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Departments of Anesthesia and Physiology, University of Toronto, and Department of Anesthesia and Pain Medicine Sickkids Hospital, Toronto, Ontario, Canada
| | - Michael Kim
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Arata Tabuchi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Victoria Srbely
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Lukasz Japtok
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Christoph Arenz
- Institute for Chemistry, Humboldt University, Berlin, Germany
| | - Ori Rotstein
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Surgery University of Toronto, Toronto, Ontario, Canada
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - John W. Semple
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Departments of Pharmacology, Medicine, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Surgery University of Toronto, Toronto, Ontario, Canada
- Department of Physiology University of Toronto, Toronto, Ontario, Canada
- Institute of Physiology, Charité-Univcersitätsmedizin Berlin, Germany; and
- German Heart Institute, Berlin, Germany
| |
Collapse
|
15
|
T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10. Blood 2017; 129:2557-2569. [PMID: 28202460 DOI: 10.1182/blood-2016-12-758185] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/09/2017] [Indexed: 12/30/2022] Open
Abstract
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related fatalities and is characterized by acute respiratory distress following blood transfusion. Donor antibodies are frequently involved; however, the pathogenesis and protective mechanisms in the recipient are poorly understood, and specific therapies are lacking. Using newly developed murine TRALI models based on injection of anti-major histocompatibility complex class I antibodies, we found CD4+CD25+FoxP3+ T regulatory cells (Tregs) and CD11c+ dendritic cells (DCs) to be critical effectors that protect against TRALI. Treg or DC depletion in vivo resulted in aggravated antibody-mediated acute lung injury within 90 minutes with 60% mortality upon DC depletion. In addition, resistance to antibody-mediated TRALI was associated with increased interleukin-10 (IL-10) levels, and IL-10 levels were found to be decreased in mice suffering from TRALI. Importantly, IL-10 injection completely prevented and rescued the development of TRALI in mice and may prove to be a promising new therapeutic approach for alleviating lung injury in this serious complication of transfusion.
Collapse
|
16
|
Juffermans NP, Vlaar AP. Transfusion and Acute Respiratory Distress Syndrome: Pathogenesis and Potential Mechanisms. Respir Med 2017. [DOI: 10.1007/978-3-319-41912-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Affiliation(s)
- A. L. Peters
- Laboratory of Experimental Intensive Care and Anesthesiology/Department of Intensive Care; Academic Medical Centre; Amsterdam The Netherlands
| | - A. P. J. Vlaar
- Laboratory of Experimental Intensive Care and Anesthesiology/Department of Intensive Care; Academic Medical Centre; Amsterdam The Netherlands
| |
Collapse
|
18
|
Complications of Transfusion. Transfus Med 2016. [DOI: 10.1002/9781119236504.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
The Epidemiology of Transfusion-related Acute Lung Injury Varies According to the Applied Definition of Lung Injury Onset Time. Ann Am Thorac Soc 2016; 12:1328-35. [PMID: 26102516 DOI: 10.1513/annalsats.201504-246oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RATIONALE Research that applies an unreliable definition for transfusion-related acute lung injury (TRALI) may draw false conclusions about its risk factors and biology. The effectiveness of preventive strategies may decrease as a consequence. However, the reliability of the consensus TRALI definition is unknown. OBJECTIVES To prospectively study the effect of applying two plausible definitions of acute respiratory distress syndrome onset time on TRALI epidemiology. METHODS We studied 316 adults admitted to the intensive care unit and transfused red blood cells within 24 hours of blunt trauma. We identified patients with acute respiratory distress syndrome, and defined acute respiratory distress syndrome onset time two ways: (1) the time at which the first radiographic or oxygenation criterion was met, and (2) the time both criteria were met. We categorized two corresponding groups of TRALI cases transfused in the 6 hours before acute respiratory distress syndrome onset. We used Cohen's kappa to measure agreement between the TRALI cases and implicated blood components identified by the two acute respiratory distress syndrome onset time definitions. In a nested case-control study, we examined potential risk factors for each group of TRALI cases, including demographics, injury severity, and characteristics of blood components transfused in the 6 hours before acute respiratory distress syndrome onset. MEASUREMENTS AND MAIN RESULTS Forty-two of 113 patients with acute respiratory distress syndrome were TRALI cases per the first acute respiratory distress syndrome onset time definition and 63 per the second definition. There was slight agreement between the two groups of TRALI cases (κ = 0.16; 95% confidence interval, -0.01 to 0.33) and between the implicated blood components (κ = 0.15, 95% confidence interval, 0.11-0.20). Age, Injury Severity Score, high plasma-volume components, and transfused plasma volume were risk factors for TRALI when applying the second acute respiratory distress syndrome onset time definition but not when applying the first definition. CONCLUSIONS The epidemiology of TRALI varies when applying two plausible definitions of acute respiratory distress syndrome onset time to severely injured trauma patients. A TRALI definition that standardizes acute respiratory distress syndrome onset time might improve reliability and align efforts to understand epidemiology, biology, and prevention.
Collapse
|
20
|
Transfusion of 35-Day Stored RBCs in the Presence of Endotoxemia Does Not Result in Lung Injury in Humans*. Crit Care Med 2016; 44:e412-9. [DOI: 10.1097/ccm.0000000000001614] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Tariket S, Sut C, Hamzeh-Cognasse H, Laradi S, Pozzetto B, Garraud O, Cognasse F. Transfusion-related acute lung injury: transfusion, platelets and biological response modifiers. Expert Rev Hematol 2016; 9:497-508. [PMID: 26855042 DOI: 10.1586/17474086.2016.1152177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/05/2016] [Indexed: 01/13/2025]
Abstract
Transfusion-related acute lung injury (TRALI) may be induced by plasma, platelet concentrates and red blood cell concentrates. The mechanism leading to TRALI is thought to involve two steps. The priming step consists of previous inflammatory pathological conditions or external factors attracting leukocytes to lung vessels and creating conditions favorable for the second step, in which anti-HLA or anti-HNA antibodies or biologically active lipids, usually in transfused blood products, stress leukocytes and inflame lung epithelia. Platelets may be involved in the pathogenesis of TRALI because of their secretory potential and capacity to interact with other immune cells. There is no drug based-prophylaxis, but transfusion strategies are used to mitigate the risk of TRALI.
Collapse
Affiliation(s)
| | | | | | - Sandrine Laradi
- a Université de Lyon , Saint Etienne , France
- b Etablissement Français du Sang - Rhônes-Alpes-Auvergne , Saint-Etienne , France
| | | | - Olivier Garraud
- a Université de Lyon , Saint Etienne , France
- c INTS - Institut National de la Transfusion Sanguine , Paris , France
| | - Fabrice Cognasse
- a Université de Lyon , Saint Etienne , France
- b Etablissement Français du Sang - Rhônes-Alpes-Auvergne , Saint-Etienne , France
| |
Collapse
|
22
|
van Stein D, Beckers EAM, Peters AL, Porcelijn L, Middelburg RA, Lardy NM, van Rhenen DJ, Vlaar APJ. Underdiagnosing of antibody-mediated transfusion-related acute lung injury: evaluation of cellular-based versus bead-based techniques. Vox Sang 2016; 111:71-8. [DOI: 10.1111/vox.12383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 11/29/2022]
Affiliation(s)
- D. van Stein
- Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - E. A. M. Beckers
- Department of Internal Medicine-Hematology; Maastricht University Medical Center; Maastricht The Netherlands
| | - A. L. Peters
- Department of Intensive Care Medicine; Academic Medical Center; Amsterdam The Netherlands
| | - L. Porcelijn
- Sanquin Diagnostics; Sanquin Blood Bank; Amsterdam The Netherlands
| | - R. A. Middelburg
- Center for clinical transfusion research; Sanquin Research; Leiden The Netherlands
- Department of Clinical Epidemiology; Leiden University Medical Center; Leiden The Netherlands
| | - N. M. Lardy
- Sanquin Diagnostics; Sanquin Blood Bank; Amsterdam The Netherlands
| | - D. J. van Rhenen
- South West Region; Sanquin Blood Bank; Rotterdam The Netherlands
| | - A. P. J. Vlaar
- Department of Intensive Care Medicine; Academic Medical Center; Amsterdam The Netherlands
| |
Collapse
|
23
|
Peters AL, Van Stein D, Vlaar APJ. Antibody-mediated transfusion-related acute lung injury; from discovery to prevention. Br J Haematol 2015; 170:597-614. [PMID: 25921271 DOI: 10.1111/bjh.13459] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transfusion-related acute lung injury (TRALI), a syndrome of respiratory distress caused by blood transfusion, is the leading cause of transfusion-related mortality. The majority of TRALI cases have been related to passive infusion of human leucocyte antigen (HLA) and human neutrophil antigen (HNA) antibodies in donor blood. In vitro, ex vivo and in vivo animal models have provided insight in TRALI pathogenesis. The various classes of antibodies implicated in TRALI appear to have different pathophysiological mechanisms for the induction of TRALI involving endothelial cells, neutrophils, monocytes and, as very recently has been discovered, lymphocytes. The HLA and HNA-antibodies are found mainly in blood from multiparous women as they have become sensitized during pregnancy. The incidence of TRALI has decreased rapidly following the introduction of a male-only strategy for plasma donation. This review focuses on pre-clinical and clinical studies investigating the pathophysiology of antibody-mediated TRALI.
Collapse
Affiliation(s)
- Anna L Peters
- Laboratory of Experimental Intensive Care and Anaesthesia/Intensive Care, Academic Medical Centre, Amsterdam, The Netherlands
| | - Danielle Van Stein
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alexander P J Vlaar
- Laboratory of Experimental Intensive Care and Anaesthesia/Intensive Care, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Warkentin TE, Greinacher A, Bux J. The transfusion-related acute lung injury controversy: lessons from heparin-induced thrombocytopenia. Transfusion 2015; 55:1128-34. [PMID: 25647304 DOI: 10.1111/trf.12994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/12/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Theodore E Warkentin
- Department of Pathology and Molecular Medicine and the Department of Medicine, McMaster University, and Transfusion Medicine, Hamilton Regional Laboratory Medicine Program, Service of Clinical Hematology, Hamilton Health Sciences (General Site), Hamilton, Ontario, Canada
| | - Andreas Greinacher
- Institut Für Immunologie Und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | | |
Collapse
|
25
|
Pathogenesis of non-antibody mediated transfusion-related acute lung injury from bench to bedside. Blood Rev 2015; 29:51-61. [DOI: 10.1016/j.blre.2014.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/02/2014] [Indexed: 12/11/2022]
|
26
|
Banerjee D, Hussain R, Mazer J, Carino G. A prophylactic fresh frozen plasma transfusion leads to a possible case of transfusion-related acute lung injury. BMJ Case Rep 2014; 2014:bcr-2014-204101. [PMID: 25053669 DOI: 10.1136/bcr-2014-204101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 39-year-old man with cholangiocarcinoma presented with fever and abdominal pain. He was hypotensive, jaundiced and had right upper quadrant tenderness. Laboratory testing showed a leucocytosis, elevated liver function tests, total bilirubin and International Normalised Ratio (INR). Given the concern for cholangitis, the patient was given antibiotics and three units of fresh frozen plasma (FFP) before biliary drain placement. After drain placement, and within 3 h of receiving blood products, the patient became tachypnoeic and hypoxic with a chest X-ray revealing new bilateral airspace disease. The rapid development of respiratory distress was determined to most likely be transfusion-related acute lung injury (TRALI). He rapidly progressed to intubation and required 100% FiO2, high positive-end expiratory pressure (PEEP) and intermittent-prone ventilation for 48 h but eventually recovered and was extubated. TRALI is an under-recognised aetiology for respiratory distress in the critically ill. Adopting a conservative transfusion strategy may prevent TRALI.
Collapse
Affiliation(s)
- Debasree Banerjee
- Division of Pulmonary, Critical Care and Sleep Medicine, Warren Alpert School of Medicine at Brown University, Providence, Rhode Island, USA
| | - Rashid Hussain
- Division of Pulmonary, Critical Care and Sleep Medicine, Warren Alpert School of Medicine at Brown University, Providence, Rhode Island, USA
| | - Jeffrey Mazer
- Division of Pulmonary, Critical Care and Sleep Medicine, Warren Alpert School of Medicine at Brown University, Providence, Rhode Island, USA
| | - Gerardo Carino
- Division of Pulmonary, Critical Care and Sleep Medicine, Warren Alpert School of Medicine at Brown University, Providence, Rhode Island, USA
| |
Collapse
|
27
|
Tanaka S, Hayashi T, Tani Y, Hirayama F. Removal of biological response modifiers associated with platelet transfusion reactions by columns containing adsorption beads. Transfusion 2014; 54:1790-7. [PMID: 24417744 DOI: 10.1111/trf.12542] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/06/2013] [Accepted: 11/15/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Biological response modifiers (BRMs), such as soluble CD40 ligand (sCD40L); regulated upon activation, normal T-cell expressed, and secreted (RANTES); and transforming growth factor-β1 (TGF-β1), are released from platelets (PLTs) during storage and may trigger adverse effects after PLT transfusion. Although washing PLTs is effective at reducing the level of BRMs and the incidence of transfusion reactions, the washing procedure is time-consuming and may induce PLT activation. Furthermore, some BRMs continue to accumulate during the storage of washed PLTs. A method to remove BRMs using adsorbent columns has not yet been developed. STUDY DESIGN AND METHODS We evaluated the ability of columns packed with Selesorb and Liposorber beads, which are both clinically used, to remove BRMs from PLT concentrates (PCs) stored for 5 days. The levels of these BRMs were determined before and after adsorption. RESULTS The adsorption columns significantly reduced the levels of RANTES and sCD40L and partially reduced TGF-β1. There were no significant effects on PLT activation, aggregation, morphology, and plasma lactate dehydrogenase (an indicator of PLT lysis) levels, or hypotonic shock response. Adsorption, however, reduced the PLT recovery to approximately 60% of the untreated value. CONCLUSIONS This study showed that the levels of BRMs were substantially reduced using columns of clinically available adsorption beads. PLT functions and the quality of PCs were maintained after adsorption. The use of adsorption columns may be useful in reducing the incidence of nonhemolytic transfusion reactions.
Collapse
|
28
|
Silliman CC, Bercovitz RS, Khan SY, Kelher MR, LaSarre M, Land KJ, Sowemimo-Coker S. Antibodies to the HLA-A2 antigen prime neutrophils and serve as the second event in anin vitromodel of transfusion-related acute lung injury. Vox Sang 2013; 107:76-82. [DOI: 10.1111/vox.12129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 12/20/2022]
Affiliation(s)
- C. C. Silliman
- The Research Laboratory; Bonfils Blood Center; Denver CO USA
- Department of Pediatrics; School of Medicine; University of Colorado Denver; Aurora CO USA
- Department of Surgery; School of Medicine; University of Colorado Denver; Aurora CO USA
| | - R. S. Bercovitz
- The Research Laboratory; Bonfils Blood Center; Denver CO USA
- Department of Pediatrics; School of Medicine; University of Colorado Denver; Aurora CO USA
| | - S. Y. Khan
- The Research Laboratory; Bonfils Blood Center; Denver CO USA
- Department of Pediatrics; School of Medicine; University of Colorado Denver; Aurora CO USA
| | - M. R. Kelher
- Department of Surgery; School of Medicine; University of Colorado Denver; Aurora CO USA
| | - M. LaSarre
- Reference Laboratories; Bonfils Blood Center; Denver CO USA
| | - K. J. Land
- The Texas Region; Blood Systems, Inc.; Phoenix AZ USA
| | | |
Collapse
|
29
|
West FB, Silliman CC. Transfusion-related acute lung injury: advances in understanding the role of proinflammatory mediators in its genesis. Expert Rev Hematol 2013; 6:265-76. [PMID: 23782081 DOI: 10.1586/ehm.13.31] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transfusion-related acute lung injury (TRALI) is the most common cause of serious morbidity and mortality due to hemotherapy. The pathogenesis is the result of two events: the first related to the recipient's clinical condition, predisposing to acute lung injury (ALI) through neutrophil or polymorphonuclear leukocyte sequestration, and the second being the infusion of antibodies or mediators that activate these adherent polymorphonuclear neutrophils, resulting in endothelial damage, capillary leak and ALI. TRALI is most prevalent in the critically ill, although many of these cases are termed ALI. Although mitigation strategies, such as the use of male-only plasma, have decreased the number of TRALI cases and deaths, TRALI still occurs. This review will detail the pathophysiology of TRALI, provide insight into newer areas of research and critically assess current practices to mitigate TRALI and improve transfusion safety.
Collapse
|
30
|
Abstract
Transfusion-related acute lung injury (TRALI) developed into the leading cause of transfusion-related morbidity and mortality after the first description by Popovsky et al. approximately three decades ago. It was the most frequent reason for transfusion-related fatalities worldwide before implementation of risk minimization strategies by donor selection. Plasma-rich blood products, such as fresh frozen plasma and apheresis platelets seem to be the leading triggers of TRALI. Hypoxemia and development of pulmonary edema within 6 h of transfusion are the diagnostic criteria for TRALI. The differentiation between cardiac failure and other transfusion-related lung injuries, such astransfusion-associated circulatory overload ( TACO) is difficult and causal treatment is not available. Therapy is based on supportive measures, such as oxygen insufflationor mechanical ventilation. The exactly pathogenesis is still unknown but the most propagated hypothesis is the two-event-model. Neutrophils are primed by the underlying condition, e.g. sepsis or trauma during the first event and these primed neutrophils are activated by transfused leukoagglutinating antibodies (immunogen) or bioreactive mediators (non-immunogen) during the second-event. Transfusion of leukoagglutinating antibodies from female donors with one or more previous pregnancies is the most frequent reason. No more TRALI fatalities were reported after implementation of the donor selection in Germany in 2009.
Collapse
Affiliation(s)
- S Tank
- Klinik und Poliklinik für Anästhesiologie, Zentrum für Anästhesiologie und Intensivmedizin, Cardiovascular Research Center, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20251, Hamburg, Deutschland
| | | | | |
Collapse
|
31
|
Abstract
Three decades ago, transfusion-related acute lung injury (TRALI) was considered a rare complication of transfusion medicine. Nowadays, the US Food and Drug Administration acknowledge the syndrome as the leading cause of transfusion-related mortality. Understanding of the pathogenesis of TRALI has resulted in the design of preventive strategies from a blood-bank perspective. A major breakthrough in efforts to reduce the incidence of TRALI has been to exclude female donors of products with high plasma volume, resulting in a decrease of roughly two-thirds in incidence. However, this strategy has not completely eradicated the complication. In the past few years, research has identified patient-related risk factors for the onset of TRALI, which have empowered physicians to take an individualised approach to patients who need transfusion.
Collapse
Affiliation(s)
- Alexander P J Vlaar
- Department of Intensive Care Medicine, Academic Medical Centre, Amsterdam, Netherlands
| | | |
Collapse
|
32
|
Vande Vusse LK, Madtes DK, Guthrie KA, Gernsheimer TB, Curtis JR, Watkins TR. The association between red blood cell and platelet transfusion and subsequently developing idiopathic pneumonia syndrome after hematopoietic stem cell transplantation. Transfusion 2013; 54:1071-80. [PMID: 24033082 DOI: 10.1111/trf.12396] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Blood transfusions are common during hematopoietic stem cell transplantation (HSCT) and may contribute to lung injury. STUDY DESIGN AND METHODS This study examined the associations between red blood cell (RBC) and platelet (PLT) transfusions and idiopathic pneumonia syndrome (IPS) among 914 individuals who underwent myeloablative allogeneic HSCT between 1997 and 2001. Patients received allogeneic blood transfusions at their physicians' discretion. RBCs, PLTs, and a composite of "other" transfusions were quantified as the sum of units received each 7-day period from 6 days before transplant until IPS onset, death, or Posttransplant Day 120. RBC and PLT transfusions were modeled as separate time-varying exposures in proportional hazards models adjusted for IPS risk factors (age, baseline disease, irradiation dose) and other transfusions. Timing of PLT transfusion relative to myeloid engraftment and PLT ABO blood group (match vs. mismatch) were included as potential interaction terms. RESULTS Patients received a median of 9 PLT and 10 RBC units. There were 77 IPS cases (8.4%). Each additional PLT unit transfused in the prior week was associated with 16% higher IPS risk (hazard ratio, 1.16; 95% confidence interval, 1.09-1.23; p < 0.001). Recent RBC and PLT transfusions were each significantly associated with greater risk of IPS when examined without the other; only PLT transfusions retained significance when both exposures were included in the model. The PLT association was not modified by engraftment or ABO mismatch. CONCLUSION PLT transfusions are associated with greater risk of IPS after myeloablative HSCT. RBCs may also contribute; however, these findings need confirmation.
Collapse
Affiliation(s)
- Lisa K Vande Vusse
- Division of Pulmonary and Critical Care Medicine, University of Washington, Washington
| | | | | | | | | | | |
Collapse
|
33
|
Gottschall J, Triulzi D, Kakaiya R, Carrick D, Roback JD, Carey P, Kleinman S. Human neutrophil antibodies in a blood donor population: a lookback study. Vox Sang 2013; 104:166-70. [PMID: 22998453 PMCID: PMC4133116 DOI: 10.1111/j.1423-0410.2012.01651.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Human neutrophil antibodies (HNA) have been associated with severe transfusion-related acute lung injury (TRALI). We identified HNA antibodies in a blood donor population and performed an observational lookback on patients who received products from these donors to determine whether TRALI was associated with these transfusions. MATERIALS AND METHODS Human neutrophil antibodies were determined in 1171 blood donors (388 non-transfused males, 390 human leucocyte antigen (HLA) antibody-negative females and 393 HLA antibody-positive females) for IgG and IgM antibodies using a flow cytometric assay. Selected positive samples had a monoclonal antibody immobilization of granulocyte antigen (MAIGA) and neutrophil genotyping performed to confirm specificity. Lookback was performed on patients receiving blood from donors with positive samples by extracting recipient data from hospital medical records. An expert panel of three pulmonary critical care physicians reviewed the summarized data and assigned a diagnosis of TRALI, possible TRALI, cannot distinguish between TRALI and TACO, TACO and other. RESULTS Eight donors had HNA antibodies of which five contributed to this lookback (3-HNA-specific antibodies, 2-HNA non-specific antibodies). Seventy-six blood products were transfused from these donors into individual patients. One patient developed TRALI that was associated with a donor with a non-specific HNA antibody as well as class-I and class-II HLA antibodies. CONCLUSION The incidence of TRALI in this lookback was low and combined with low frequency of HNA antibodies in the donor population suggests not screening donors for HNA antibodies at this time is acceptable.
Collapse
Affiliation(s)
- J Gottschall
- BloodCenter of Wisconsin, Medical College of Wisconsin, Milwaukee, WI 53233, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Makar RS, Powers A, Stowell CP. Reducing Transfusion-Related Acute Lung Injury Risk: Evidence for and Approaches to Transfusion-Related Acute Lung Injury Mitigation. Transfus Med Rev 2012; 26:305-20. [DOI: 10.1016/j.tmrv.2012.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Schmidt AE, Adamski J. Pathology consultation on transfusion-related acute lung injury (TRALI). Am J Clin Pathol 2012; 138:498-503. [PMID: 23010703 DOI: 10.1309/ajcpff6jkxm7byoi] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Transfusion-related acute lung injury (TRALI) is a serious condition characterized by respiratory distress, hypoxia, and bilateral pulmonary infiltrates, which occur within 6 hours of transfusion. Several theories have been proposed to explain the underlying pathologic mechanisms of TRALI. Immune-mediated TRALI accounts for over 80% of reported cases and is mediated by donor antibodies to HLAs and/or human neutrophil antigens (HNA). Immune-mediated TRALI is most commonly associated with donor plasma transfusion or other blood products from multiparous women, which has led many countries to reduce or exclude women from donating high-volume plasma products. This policy change has resulted in a decrease in the incidence of TRALI and highlighted the importance of nonimmune-mediated TRALI, which is thought to be caused by bioreactive lipids and other biologic response modifiers that accumulate during storage of blood products. When TRALI is suspected, clinical consultation with a transfusion medicine specialist helps differentiate it from other transfusion reactions with similar characteristics.
Collapse
Affiliation(s)
- Amy E. Schmidt
- Department of Pathology, University of Alabama at Birmingham
| | - Jill Adamski
- Department of Pathology, University of Alabama at Birmingham
| | | |
Collapse
|
36
|
Sayah DM, Looney MR, Toy P. Transfusion reactions: newer concepts on the pathophysiology, incidence, treatment, and prevention of transfusion-related acute lung injury. Crit Care Clin 2012; 28:363-72, v. [PMID: 22713611 DOI: 10.1016/j.ccc.2012.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality. TRALI presents as acute lung injury (ALI) within 6 hours after blood product transfusion. Diagnosing TRALI requires a high index of suspicion, and the exclusion of circulatory overload or other causes of ALI. The pathophysiology of TRALI is incompletely understood, but in part involves transfusion of certain anti-neutrophil antibodies, anti-HLA antibodies, or other bioactive substances, into susceptible recipients. Recent studies have identified both recipient and transfusion risk factors for the development of TRALI. This article describes these TRALI risk factors, as well as diagnosis, treatment and prevention strategies.
Collapse
Affiliation(s)
- David M Sayah
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143-0130, USA.
| | | | | |
Collapse
|
37
|
Abstract
Plasma utilization has increased over the past two decades, and there is a growing concern that many plasma transfusions are inappropriate. Plasma transfusion is not without risk, and certain complications are more likely with plasma than other blood components. Clinical and laboratory investigations of the patients suffering reactions after infusion of fresh-frozen plasma (FFP) define the etiology and pathogenesis of the panoply of adverse effects. We review here the pathogenesis, diagnosis, and management of the risks associated with plasma transfusion. Risks commonly associated with FFP include: 1) transfusion-related acute lung injury, 2) transfusion-associated circulatory overload, and 3) allergic and/or anaphylactic reactions. Other less common risks include 1) transmission of infections, 2) febrile nonhemolytic transfusion reactions, 3) red blood cell alloimmunization, and 4) hemolytic transfusion reactions. The effects of pathogen inactivation or reduction methods on these risks are also discussed. Fortunately, a majority of the adverse effects are not lethal and are adequately treated in clinical practice.
Collapse
Affiliation(s)
- Suchitra Pandey
- Department of Laboratory Medicine, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
38
|
Transfusion-related acute lung injury: Current understanding and preventive strategies. Transfus Clin Biol 2012; 19:117-24. [PMID: 22682310 DOI: 10.1016/j.tracli.2012.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 03/24/2012] [Indexed: 12/23/2022]
Abstract
Transfusion-related acute lung injury (TRALI) is the most serious complication of transfusion medicine. TRALI is defined as the onset of acute hypoxia within 6 hours of a blood transfusion in the absence of hydrostatic pulmonary oedema. The past decades have resulted in a better understanding of the pathogenesis of this potentially life-threating syndrome. The present notion is that the onset of TRALI follows a threshold model in which both patient and transfusion factors are essential. The transfusion factors can be divided into immune and non-immune mediated TRALI. Immune-mediated TRALI is caused by the passive transfer of human neutrophil antibodies (HNA) or human leukocyte antibodies (HLA) present in the blood product reacting with a matching antigen in the recipient. Non-immune mediated TRALI is caused by the transfusion of stored cell-containing blood products. Although the mechanisms behind immune-mediated TRALI are reasonably well understood, this is not the case for non-immune mediated TRALI. The increased understanding of pathways involved in the onset of immune-mediated TRALI has led to the design of preventive strategies. Preventive strategies are aimed at reducing the risk to exposure of HLA and HNA to the recipient of the transfusion. These strategies include exclusion of "at risk" donors and pooling of high plasma volume products and have shown to reduce the TRALI incidence effectively. This review discusses the current understanding of TRALI and preventive strategies available.
Collapse
|
39
|
Sachs UJ. A threshold model for the susceptibility to transfusion-related acute lung injury. Transfus Clin Biol 2012; 19:109-16. [PMID: 22677431 DOI: 10.1016/j.tracli.2012.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/24/2012] [Indexed: 12/31/2022]
Abstract
Transfusion-related acute lung injury (TRALI) is a serious, often life-threatening pulmonary transfusion reaction characterized by non-cardiogenic lung oedema, hypoxemia and respiratory distress in temporal association with blood transfusion. The critical mechanism in TRALI is the sudden increase in permeability of the pulmonary endothelium and the subsequent, often extensive shift of fluid into the alveolae. The rapid clinical recovery seen in most patients makes it likely that this is a temporary phenomenon. Reactive oxygen species released by neutrophils or other cells are attractive candidate mediators of this process. There is experimental and clinical evidence that several pathways can induce barrier breakdown in TRALI, a concept known as the threshold model of TRALI. Surprisingly, neutrophils may not always be required. Other cells may play a role as multipliers or attenuators of TRALI, depending on recipient-related and transfusion-related factors involved. This review will summarize recent findings on pathophysiology, with a focus on newly discovered or disenchanted recipient-related and transfusion-related risk factors for TRALI and will present the threshold model of TRALI as a unifying concept on how TRALI develops.
Collapse
Affiliation(s)
- U J Sachs
- Institute for Clinical Immunlogy and Transfusion Medicine, Justus Liebig University, Langhansstr. 7, 35392 Giessen, Germany.
| |
Collapse
|
40
|
Mechanical ventilation and the titer of antibodies as risk factors for the development of transfusion-related lung injury. Crit Care Res Pract 2012; 2012:720950. [PMID: 22701787 PMCID: PMC3372309 DOI: 10.1155/2012/720950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/05/2012] [Indexed: 01/28/2023] Open
Abstract
Purpose. Onset of transfusion-related acute lung injury (TRALI) is suggested to be a threshold-event. Data is lacking on the relation between titer of antibodies infused and onset of TRALI. We determined whether onset of TRALI is dependent on the titer of MHC-I antibodies infused in a combined model of ventilator-induced lung injury and antibody-induced TRALl. Methods. BALB/c mice were ventilated for five hours with low (7.5 ml/kg) or high (15 ml/kg) tidal volume. After three hours of MV, TRALI was induced by infusion of 0.5 mg/kg, 2.0 mg/kg or 4.5 mg/kg MHC-I antibodies. Control animals received vehicle. After five hours of MV, animals were sacrificed. Results. MV with high tidal volumes resulted in increased levels of all markers of lung injury compared to animals ventilated with low tidal MV. In ventilator-induced lung injury, infusion of 4.5 mg/kg of antibodies further increased pulmonary wet-to-dry ratio, pulmonary neutrophil influx and pulmonary KC levels, whereas infusion of lower dose of antibodies did not augment lung injury. In contrast, mice ventilated with low tidal volumes did not develop lung injury, irrespective of the dose of antibody used. Conclusions. In the presence of injurious MV, onset of TRALI depends on the titer of antibodies infused.
Collapse
|
41
|
Tung JP, Fraser JF, Nataatmadja M, Colebourne KI, Barnett AG, Glenister KM, Zhou AY, Wood P, Silliman CC, Fung YL. Age of blood and recipient factors determine the severity of transfusion-related acute lung injury (TRALI). CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R19. [PMID: 22297161 PMCID: PMC3396258 DOI: 10.1186/cc11178] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/11/2012] [Accepted: 02/01/2012] [Indexed: 01/09/2023]
Abstract
Introduction Critical care patients frequently receive blood transfusions. Some reports show an association between aged or stored blood and increased morbidity and mortality, including the development of transfusion-related acute lung injury (TRALI). However, the existence of conflicting data endorses the need for research to either reject this association, or to confirm it and elucidate the underlying mechanisms. Methods Twenty-eight sheep were randomised into two groups, receiving saline or lipopolysaccharide (LPS). Sheep were further randomised to also receive transfusion of pooled and heat-inactivated supernatant from fresh (Day 1) or stored (Day 42) non-leucoreduced human packed red blood cells (PRBC) or an infusion of saline. TRALI was defined by hypoxaemia during or within two hours of transfusion and histological evidence of pulmonary oedema. Regression modelling compared physiology between groups, and to a previous study, using stored platelet concentrates (PLT). Samples of the transfused blood products also underwent cytokine array and biochemical analyses, and their neutrophil priming ability was measured in vitro. Results TRALI did not develop in sheep that first received saline-infusion. In contrast, 80% of sheep that first received LPS-infusion developed TRALI following transfusion with "stored PRBC." The decreased mean arterial pressure and cardiac output as well as increased central venous pressure and body temperature were more severe for TRALI induced by "stored PRBC" than by "stored PLT." Storage-related accumulation of several factors was demonstrated in both "stored PRBC" and "stored PLT", and was associated with increased in vitro neutrophil priming. Concentrations of several factors were higher in the "stored PRBC" than in the "stored PLT," however, there was no difference to neutrophil priming in vitro. Conclusions In this in vivo ovine model, both recipient and blood product factors contributed to the development of TRALI. Sick (LPS infused) sheep rather than healthy (saline infused) sheep predominantly developed TRALI when transfused with supernatant from stored but not fresh PRBC. "Stored PRBC" induced a more severe injury than "stored PLT" and had a different storage lesion profile, suggesting that these outcomes may be associated with storage lesion factors unique to each blood product type. Therefore, the transfusion of fresh rather than stored PRBC may minimise the risk of TRALI.
Collapse
Affiliation(s)
- John-Paul Tung
- Research and Development, Australian Red Cross Blood Service, 44 Musk Avenue, Kelvin Grove, Brisbane, QLD 4059, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lucas G, Win N, Calvert A, Green A, Griffin E, Bendukidze N, Hopkins M, Browne T, Poles A, Chapman C, Massey E. Reducing the incidence of TRALI in the UK: the results of screening for donor leucocyte antibodies and the development of national guidelines. Vox Sang 2011; 103:10-7. [DOI: 10.1111/j.1423-0410.2011.01570.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Complications of Transfusion. Transfus Med 2011. [DOI: 10.1002/9781444398748.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Abstract
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality. To determine TRALI incidence by prospective, active surveillance and to identify risk factors by a case-control study, 2 academic medical centers enrolled 89 cases and 164 transfused controls. Recipient risk factors identified by multivariate analysis were higher IL-8 levels, liver surgery, chronic alcohol abuse, shock, higher peak airway pressure while being mechanically ventilated, current smoking, and positive fluid balance. Transfusion risk factors were receipt of plasma or whole blood from female donors (odds ratio = 4.5, 95% confidence interval [CI], 1.85-11.2, P = .001), volume of HLA class II antibody with normalized background ratio more than 27.5 (OR = 1.92/100 mL, 95% CI, 1.08-3.4, P = .03), and volume of anti-human neutrophil antigen positive by granulocyte immunofluoresence test (OR = 1.71/100 mL, 95% CI, 1.18-2.5, P = .004). Little or no risk was associated with older red blood cell units, noncognate or weak cognate class II antibody, or class I antibody. Reduced transfusion of plasma from female donors was concurrent with reduced TRALI incidence: 2.57 (95% CI, 1.72-3.86) in 2006 versus 0.81 (95% CI, 0.44-1.49) in 2009 per 10 000 transfused units (P = .002). The identified risk factors provide potential targets for reducing residual TRALI.
Collapse
|
45
|
Strait RT, Hicks W, Barasa N, Mahler A, Khodoun M, Köhl J, Stringer K, Witte D, Van Rooijen N, Susskind BM, Finkelman FD. MHC class I-specific antibody binding to nonhematopoietic cells drives complement activation to induce transfusion-related acute lung injury in mice. ACTA ACUST UNITED AC 2011; 208:2525-44. [PMID: 22025304 PMCID: PMC3256958 DOI: 10.1084/jem.20110159] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In a manner partially independent of activating Fcγ receptors, antibody-mediated production of complement component C5a and recruitment of macrophages elicit transfusion-related acute lung injury in mice. Transfusion-related acute lung injury (TRALI), a form of noncardiogenic pulmonary edema that develops during or within 6 h after a blood transfusion, is the most frequent cause of transfusion-associated death in the United States. Because development of TRALI is associated with donor antibodies (Abs) reactive with recipient major histocompatibility complex (MHC), a mouse model has been studied in which TRALI-like disease is caused by injecting mice with anti–MHC class I monoclonal Ab (mAb). Previous publications with this model have concluded that disease is caused by FcR-dependent activation of neutrophils and platelets, with production of reactive oxygen species that damage pulmonary vascular endothelium. In this study, we confirm the role of reactive oxygen species in the pathogenesis of this mouse model of TRALI and show ultrastructural evidence of pulmonary vascular injury within 5 min of anti–MHC class I mAb injection. However, we demonstrate that disease induction in this model involves macrophages rather than neutrophils or platelets, activation of complement and production of C5a rather than activation of FcγRI, FcγRIII, or FcγRIV, and binding of anti–MHC class I mAb to non-BM–derived cells such as pulmonary vascular endothelium. These observations have important implications for the prevention and treatment of TRALI.
Collapse
Affiliation(s)
- Richard T Strait
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kleinman SH, Triulzi DJ, Murphy EL, Carey PM, Gottschall JL, Roback JD, Carrick D, Mathew S, Wright DJ, Cable R, Ness P, Gajic O, Hubmayr RD, Looney MR, Kakaiya RM. The Leukocyte Antibody Prevalence Study-II (LAPS-II): a retrospective cohort study of transfusion-related acute lung injury in recipients of high-plasma-volume human leukocyte antigen antibody-positive or -negative components. Transfusion 2011; 51:2078-91. [PMID: 21446938 PMCID: PMC3606005 DOI: 10.1111/j.1537-2995.2011.03120.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND We used a multicenter retrospective cohort study design to evaluate whether human leukocyte antigen (HLA) antibody donor screening would reduce the risk of transfusion-related acute lung injury (TRALI) or possible TRALI. STUDY DESIGN AND METHODS In the Leukocyte Antibody Prevalence Study-II (LAPS-II), we evaluated pulmonary outcomes in recipients of 2596 plasma-rich blood components (transfusable plasma and plateletpheresis) sent to participating hospitals; half of the components were collected from anti-HLA-positive donors (study arm) and half from anti-HLA-negative donors (control arm) matched by sex, parity, and blood center. A staged medical record review process was used. Final recipient diagnosis was based on case review by a blinded expert panel of pulmonary or critical care physicians. RESULTS TRALI incidence was 0.59% (seven cases) in study arm recipients versus 0.16% (two cases) in control arm recipients for an odds ratio (OR) of 3.6 (95% confidence interval [CI], 0.7-17.4; p = 0.10). For possible TRALI cases (nine study arm, eight control arm), the OR was 1.2 (95% CI, 0.4-3.0; p = 0.81), and for TRALI and possible TRALI aggregated together, it was 1.7 (95% CI, 0.7-3.7; p = 0.24). Transfusion-associated circulatory overload incidence was identical in the two arms (1.17 and 1.22%, respectively; OR, 1.0; p = 1.0). CONCLUSIONS TRALI incidence in recipients of anti-HLA-positive components was relatively low for a lookback study (1 in 170) and was higher than in the control arm, but did not reach significance. Based on this trend, the data are consistent with the likelihood that TRALI risk is decreased by selecting high-volume plasma components for transfusion from donors at low risk of having HLA antibodies.
Collapse
|
47
|
Vlaar APJ, Cornet AD, Hofstra JJ, Porcelijn L, Beishuizen A, Kulik W, Vroom MB, Schultz MJ, Groeneveld ABJ, Juffermans NP. The effect of blood transfusion on pulmonary permeability in cardiac surgery patients: a prospective multicenter cohort study. Transfusion 2011; 52:82-90. [PMID: 21745211 DOI: 10.1111/j.1537-2995.2011.03231.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND There is an association between blood transfusion and pulmonary complications in cardiac surgery. Mediators of increased pulmonary vascular leakage after transfusion are unknown. We hypothesized that factors may include antibodies or bioactive lipids, which have been implicated in transfusion-related acute lung injury. STUDY DESIGN AND METHODS We performed a prospective cohort study in two university hospital intensive care units in the Netherlands. Pulmonary vascular permeability was measured in cardiac surgery patients after receiving no, restrictive (one or two transfusions), or multiple (five or more transfusions) transfusions (n=20 per group). The pulmonary leak index (PLI), using (67) Ga-labeled transferrin, was determined within 3 hours postoperatively. Blood products were screened for bioactive lipid accumulation and the presence of antibodies. RESULTS The PLI was elevated in all groups after cardiac surgery. Transfused patients had a higher PLI compared to nontransfused patients (33×10(-3) ± 20×10(-3) vs. 23×10(-3) ± 11×10(-3)/min, p<0.01). The amount of red blood cell (RBC) products, but not of fresh-frozen plasma or platelets, was associated with an increase in PLI (β, 1.6 [0.2-3.0]). Concerning causative factors in the blood product, neither the level of bioactive lipids nor the presence of antibodies was associated with an increase in PLI. Patient factors such as surgery risk and time on cardiopulmonary bypass did not influence the risk of pulmonary leakage after blood transfusion. CONCLUSIONS Transfusion in cardiothoracic surgery patients is associated with an increase in pulmonary capillary permeability, an effect that was dose dependent for RBC products. The level of bioactive lipids or the presence of HLA or HNA antibodies in the transfused products were not associated with increased pulmonary capillary permeability.
Collapse
Affiliation(s)
- Alexander P J Vlaar
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Transfusion-related acute lung injury (TRALI) is defined clinically as acute lung injury occurring within six hours of the transfusion of any blood product. It is the leading cause of transfusion-related death in the United States, but under-recognition and diagnostic uncertainty have limited clinical research to smaller case control studies. In this review we discuss the contribution of experimental models to the understanding of TRALI pathophysiology and potential therapeutic approaches. Experimental models suggest that TRALI occurs when a host, with a primed immune system, is exposed to an activating agent such as anti-leukocyte antibody or a biologic response modifier such as lysophosphatidylcholines. Recent work has suggested a critical role for platelets in antibody-based experimental models and identified potential therapeutic strategies for TRALI.
Collapse
Affiliation(s)
- Brian M Gilliss
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
49
|
Stafford-Smith M, Lockhart E, Bandarenko N, Welsby I. Many, but not all, outcome studies support exclusion of female plasma from the blood supply. Expert Rev Hematol 2011; 3:551-8. [PMID: 21083472 DOI: 10.1586/ehm.10.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transfusion-related acute lung injury (TRALI) has been identified as the most common cause of transfusion-related death. Although extensive literature supports restrictions on female-donor plasma to reduce antibody-mediated TRALI, only a few outcome studies have assessed for effects of this change, and some, but not all, have endorsed the policy. A recent report even suggests poorer outcomes in cardiac surgery patients with a shift to male-donor-only plasma, raising concerns that TRALI alone, whether catastrophic or more survivable, is insufficient compared with broader measures, such as short-term mortality or long-term survival, as an end point to assess for overall improvements in patient care.
Collapse
|
50
|
Juffermans NP. Transfusion-related acute lung injury: emerging importance of host factors and implications for management. Expert Rev Hematol 2011; 3:459-67. [PMID: 21083036 DOI: 10.1586/ehm.10.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent insights from models of transfusion-related acute lung injury (TRALI), and from clinical reports, reveal that host factors are important in TRALI pathogenesis. Predisposing factors with lung neutrophil-priming capacity, such as sepsis and mechanical ventilation, increase susceptibility for a TRALI reaction, and can aggravate the course of disease. These findings may explain the higher incidence of TRALI in the critically ill compared with general hospital populations. The emerging importance of host factors may have implications for TRALI management. Suspected TRALI cases in which another acute lung injury risk factor is present (termed 'possible TRALI' in the consensus definition) should be reported to the blood bank, including patients suffering from an underlying condition. In reporting of TRALI cases, use of the international TRALI consensus definition should be used, rather then national TRALI scoring systems, to ensure a uniform approach, which may decrease variance in estimations of incidence. In terms of treatment of TRALI patients, there is a rationale to apply therapeutic strategies, which have proven to be beneficial in acute lung injury.
Collapse
Affiliation(s)
- Nicole P Juffermans
- Department of Intensive Care and Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center, Room G3-206, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|