1
|
Warshaw EM, Peterson MY, DeKoven JG, Adler BL, Pratt MD, Belsito DV, Atwater AR, Houle MC, Dunnick CA, Yu J, Taylor JS, Silverberg JI, Reeder MJ, DeLeo VA, Mowad C, Botto NC. Patch Testing to Mentha piperita (Peppermint) Oil: The North American Contact Dermatitis Group Experience (2009-2020). Dermatitis 2025; 36:46-52. [PMID: 39172635 DOI: 10.1089/derm.2024.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Background: Mentha piperita (MP; peppermint) oil has many commercial uses. Objective: To characterize the epidemiology of contact allergy to MP oil 2% petrolatum. Methods: Retrospective analysis of North American Contact Dermatitis Group data (2009-2020). Results: Of 28,128 patients tested to MP, 161 (0.6%) had an allergic reaction. Most allergic patients were female (77.0%) and/or over 40 years of age (71.4%). The most common anatomical sites of dermatitis included face (31.7%; of these, one-third specified lips), hands (17.4%), and scattered/generalized (18.6%). Nearly one-third (30.4%) of reactions were strong (++)/extreme (+++), and 80.1% were considered currently relevant. Common sources included oral hygiene preparations, foods, and lip products. Co-reaction with at least 1 of the other 19 fragrance/plant-related screening test preparations occurred in 82.6% (133/161) of MP-allergic patients, most commonly Cananga odorata oil (42.9%), fragrance mix I (41.0%), hydroperoxides of linalool (35.7%), Compositae mix (35.4%), Jasminum officinale oil (31.9%), Myroxylon pereirae (31.7%), and propolis (28.1%). Co-reaction with at least 1 of the 3 most commonly used fragrance screening allergens (fragrance mix I, fragrance mix II, and/or Myroxylon pereirae) was 59.6%. Conclusions: Twelve-year prevalence of MP allergy was 0.6%. Approximately 40% of cases would have been missed if only fragrance screening allergens were tested.
Collapse
Affiliation(s)
- Erin M Warshaw
- From the Department of Dermatology, Park Nicollet/Health Partners Health Services, Minneapolis, Minnesota, USA
- Department of Dermatology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Dermatology, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota, USA
| | - Malina Yamashita Peterson
- From the Department of Dermatology, Park Nicollet/Health Partners Health Services, Minneapolis, Minnesota, USA
- Department of Dermatology, University of Wisconsin Hospitals and Clinics, Madison, WI, USA
| | - Joel G DeKoven
- Division of Dermatology, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Brandon L Adler
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Melanie D Pratt
- Division of Dermatology, University of Ottawa, Ontario, Canada
| | - Donald V Belsito
- Department of Dermatology, Columbia University Irving Medical School, New York, New York, USA
| | - Amber R Atwater
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marie-Claude Houle
- Division of Dermatology, Centre Hospitalier Universitaire de Québec, Laval University, Québec, Canada
| | - Cory A Dunnick
- Department of Dermatology, Rocky Mountain Regional VAMC, Aurora, Colorado, USA
| | - Jiade Yu
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James S Taylor
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jonathan I Silverberg
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Margo J Reeder
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Vincent A DeLeo
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christen Mowad
- Department of Dermatology, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Nina C Botto
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Aleksic M, Meng X. Protein Haptenation and Its Role in Allergy. Chem Res Toxicol 2024; 37:850-872. [PMID: 38834188 PMCID: PMC11187640 DOI: 10.1021/acs.chemrestox.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Humans are exposed to numerous electrophilic chemicals either as medicines, in the workplace, in nature, or through use of many common cosmetic and household products. Covalent modification of human proteins by such chemicals, or protein haptenation, is a common occurrence in cells and may result in generation of antigenic species, leading to development of hypersensitivity reactions. Ranging in severity of symptoms from local cutaneous reactions and rhinitis to potentially life-threatening anaphylaxis and severe hypersensitivity reactions such as Stephen-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), all these reactions have the same Molecular Initiating Event (MIE), i.e. haptenation. However, not all individuals who are exposed to electrophilic chemicals develop symptoms of hypersensitivity. In the present review, we examine common chemistry behind the haptenation reactions leading to formation of neoantigens. We explore simple reactions involving single molecule additions to a nucleophilic side chain of proteins and complex reactions involving multiple electrophilic centers on a single molecule or involving more than one electrophilic molecule as well as the generation of reactive molecules from the interaction with cellular detoxification mechanisms. Besides generation of antigenic species and enabling activation of the immune system, we explore additional events which result directly from the presence of electrophilic chemicals in cells, including activation of key defense mechanisms and immediate consequences of those reactions, and explore their potential effects. We discuss the factors that work in concert with haptenation leading to the development of hypersensitivity reactions and those that may act to prevent it from developing. We also review the potential harnessing of the specificity of haptenation in the design of potent covalent therapeutic inhibitors.
Collapse
Affiliation(s)
- Maja Aleksic
- Safety
and Environmental Assurance Centre, Unilever,
Colworth Science Park, Sharnbrook, Bedford MK44
1LQ, U.K.
| | - Xiaoli Meng
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, U.K.
| |
Collapse
|
3
|
Nakhleh-Francis Y, Awad-Igbaria Y, Sakas R, Bang S, Abu-Ata S, Palzur E, Lowenstein L, Bornstein J. Exploring Localized Provoked Vulvodynia: Insights from Animal Model Research. Int J Mol Sci 2024; 25:4261. [PMID: 38673846 PMCID: PMC11050705 DOI: 10.3390/ijms25084261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Provoked vulvodynia represents a challenging chronic pain condition, characterized by its multifactorial origins. The inherent complexities of human-based studies have necessitated the use of animal models to enrich our understanding of vulvodynia's pathophysiology. This review aims to provide an exhaustive examination of the various animal models employed in this research domain. A comprehensive search was conducted on PubMed, utilizing keywords such as "vulvodynia", "chronic vulvar pain", "vulvodynia induction", and "animal models of vulvodynia" to identify pertinent studies. The search yielded three primary animal models for vulvodynia: inflammation-induced, allergy-induced, and hormone-induced. Additionally, six agents capable of triggering the condition through diverse pathways were identified, including factors contributing to hyperinnervation, mast cell proliferation, involvement of other immune cells, inflammatory cytokines, and neurotransmitters. This review systematically outlines the various animal models developed to study the pathogenesis of provoked vulvodynia. Understanding these models is crucial for the exploration of preventative measures, the development of novel treatments, and the overall advancement of research within the field.
Collapse
Affiliation(s)
- Yara Nakhleh-Francis
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Yaseen Awad-Igbaria
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Reem Sakas
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Sarina Bang
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Saher Abu-Ata
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Eilam Palzur
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Lior Lowenstein
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Jacob Bornstein
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya 2210001, Israel; (S.B.); (L.L.); (J.B.)
- Research Institute of Galilee Medical Center, Nahariya 2210001, Israel; (Y.A.-I.); (R.S.); (S.A.-A.); (E.P.)
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
4
|
de Ávila RI, Aleksic M, Zhu B, Li J, Pendlington R, Valadares MC. Non-animal approaches for photoallergenicity safety assessment: Needs and perspectives for the toxicology for the 21st century. Regul Toxicol Pharmacol 2023; 145:105499. [PMID: 37805107 DOI: 10.1016/j.yrtph.2023.105499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Certain chemicals and/or their byproducts are photoactivated by UV/VIS and trigger a dermal allergenic response, clinically recognized as photoallergic contact dermatitis (PACD). It is important to identify the chemicals which are potentially photoallergenic, not only for establishing the correct differential diagnosis between PACD and other photodermatoses, but also as causative agents which should be avoided as a preventative measure. Moreover, materials with photoallergenic properties need to be correctly identified to allow thorough safety assessments for their use in finished products (e.g. cosmetics). Development of methods for predicting photoallergenicity potential of chemicals has advanced at slow pace in recent years. To date, there are no validated methods for photosensitisation potential of chemicals for regulatory purposes, although it remains a required endpoint in some regions. The purpose of this review is to explore the mechanisms potentially involved in the photosensitisation process and discuss the methods available in the literature for identification of photosensitisers. The review also explores the possibilities of further research investment required to develop human-relevant new approach methodologies (NAMs) and next generation risk assessment (NGRA) approaches, considering the current perspectives and needs of the Toxicology for the 21st Century.
Collapse
Affiliation(s)
- Renato Ivan de Ávila
- Unilever Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire, UK; Laboratory of Education and Research in in Vitro Toxicology (Tox in), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - Maja Aleksic
- Unilever Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Bin Zhu
- Unilever Research and Development Centre, Shanghai, China
| | - Jin Li
- Unilever Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Ruth Pendlington
- Unilever Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Marize Campos Valadares
- Laboratory of Education and Research in in Vitro Toxicology (Tox in), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
5
|
Port-Lougarre Y, Gourlaouen C, Vileno B, Giménez-Arnau E. Antioxidant Activity and Skin Sensitization of Eugenol and Isoeugenol: Two Sides of the Same Coin? Chem Res Toxicol 2023; 36:1804-1813. [PMID: 37922503 DOI: 10.1021/acs.chemrestox.3c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Eugenol and isoeugenol are well acknowledged to possess antioxidant and thus cytoprotective activities. Yet both compounds are also important skin sensitizers, compelling the cosmetics and fragrance industries to notify their presence in manufactured products. While they are structurally very similar, they show significant differences in their sensitization properties. Consequently, eugenol and isoeugenol have been the subject of many mechanistic studies where the final oxidation forms, electrophilic ortho-quinone and quinone methide, are blamed as the reactive species forming an antigenic complex with nucleophilic residues of skin proteins, inducing skin sensitization. However, radical mechanisms could compete with such an electrophilic-nucleophilic pathway. The antioxidant activity results from neutralizing reactive oxygen radicals by the release of the phenolic hydrogen atom. The so-formed phenoxyl radicals can then fully delocalize upon the structure, becoming potentially reactive toward skin proteins at several positions. To obtain in-depth insights into such reactivity, we investigated in situ the formation of radicals from eugenol and isoeugenol using electron paramagnetic resonance combined with spin trapping in reconstructed human epidermis (RHE), mimicking human skin and closer to what may happen in vivo. Two modes of radical initiation were used, exposing RHE to (i) horseradish peroxidase (HRP), complementing RHE metabolic capacities, and mimicking peroxidases present in vivo or (ii) solar light using a AM 1.5 solar simulator. In both experimental approaches, where the antioxidant character of both compounds is revealed, oxygen- and carbon-centered radicals were formed in RHE. Our hypothesis is that such carbon radicals are relevant candidates to form antigenic entities prior to conversion into electrophilic quinones. On this basis, these studies suggest that pro- or prehapten fingerprints could be advanced depending on the radical initiation method. The introduction of HRP suggested that eugenol and isoeugenol behave as prohaptens, while when exposed to light, a prehapten nature could be highlighted.
Collapse
Affiliation(s)
- Yannick Port-Lougarre
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Christophe Gourlaouen
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Elena Giménez-Arnau
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
6
|
Honda T, Kabashima K, Kunisawa J. Exploring the roles of prostanoids, leukotriens, and dietary fatty acids in cutaneous inflammatory diseases: Insights from pharmacological and genetic approaches. Immunol Rev 2023; 317:95-112. [PMID: 36815685 DOI: 10.1111/imr.13193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Prostanoids and leukotrienes (LTs) are representative of ω6 fatty acid-derived metabolites that exert their actions through specific receptors on the cell surface. These lipid mediators, being unstable in vivo, act locally at their production sites; thus, their physiological functions remain unclear. However, recent pharmacological and genetic approaches using experimental murine models have provided significant insights into the roles of these lipid mediators in various pathophysiological conditions, including cutaneous inflammatory diseases. These lipid mediators act not only through signaling by themselves but also by potentiating the signaling of other chemical mediators, such as cytokines and chemokines. For instance, prostaglandin E2 -EP4 and LTB4 -BLT1 signaling on cutaneous dendritic cells substantially facilitate their chemokine-induced migration ability into the skin and play critical roles in the priming and/or activation of antigen-specific effector T cells in the skin. In addition to these ω6 fatty acid-derived metabolites, various ω3 fatty acid-derived metabolites regulate skin immune cell functions, and some exert potent anti-inflammatory functions. Lipid mediators act as modulators of cutaneous immune responses, and manipulating the signaling from lipid mediators has the potential as a novel therapeutic approach for human skin diseases.
Collapse
Affiliation(s)
- Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
- 5. A*Star Skin Research Labs (A*SRL), Agency for Science, Technology, and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, Collaborative Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Graduate School of Dentistry, Graduate School of Pharmaceutical Sciences, Graduate School of Science, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Kobe, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Kim EN, Seo JA, Kim BH, Jeong GS. Defining the reactivity of nanoparticles to peptides through direct peptide reactivity assay (DPRA) using a high pressure liquid chromatography system with a diode array detector. Toxicol Res 2023; 39:485-495. [PMID: 37398568 PMCID: PMC10313635 DOI: 10.1007/s43188-022-00166-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 07/04/2023] Open
Abstract
The possibility of inducing skin sensitization reactions following exposure to various chemicals can lead to skin diseases, and the evaluation of skin sensitivity to such substances is very important. However, as animal tests for skin sensitization are prohibited, the OECD Test Guideline 442 C was designated as part of an alternative testing method. Therefore, in this study, the reactivity of cysteine and lysine peptides to nanoparticle substrates was identified through HPLC-DAD analysis according to the skin sensitization animal replacement test method specified in the OECD Test Guideline 442 C. In this study, all criteria for skin sensitization experiments specified in OECD Test Guideline 442 C were satisfied. As a result of analyzing the disappearance rates of cysteine and lysine peptides for the five types of nanoparticle substrates (TiO2, CeO2, Co3O4, NiO, and Fe2O3) using the established analytical method, all were identified as positive. Therefore, our findings suggest that basic data from this technique can contribute to skin sensitization studies by providing the depletion percentage of cysteine and lysine peptides for nanoparticle materials that have not yet been tested for skin sensitization.
Collapse
Affiliation(s)
- Eun-Nam Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Jung-Ah Seo
- Department of Public Health, Keimyung University, Daegu, 42601 Republic of Korea
| | - Bae-Hwan Kim
- Department of Public Health, Keimyung University, Daegu, 42601 Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| |
Collapse
|
8
|
Spiewak R. Diseases from the Spectrum of Dermatitis and Eczema: Can "Omics" Sciences Help with Better Systematics and More Accurate Differential Diagnosis? Int J Mol Sci 2023; 24:10468. [PMID: 37445645 PMCID: PMC10342122 DOI: 10.3390/ijms241310468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Researchers active in the field of inflammatory skin diseases from the spectrum of dermatitis and eczema are well aware of a considerable overlap in the clinical pictures and proposed sets of diagnostic criteria for these diseases, which can hardly be overcome through the clinical or epidemiological research. In effect, patients are included in studies based on vague and overlapping criteria, while heterogeneous study populations may, in turn, lead to non-representative outcomes and continued confusion. In this narrative review, a systematics of diseases from the spectrum of dermatitis and eczema is proposed based on the origins of causative factors and the pathomechanisms involved. Difficulties in differentiating between these diseases are discussed, and the extent to which advances in the "omics" sciences might help to overcome them is considered. Of all the "omics" research in this field, more than 90% of the published papers were devoted to atopic dermatitis, with a striking underrepresentation of other diseases from the spectrum of dermatitis and eczema, conditions which collectively exceed the rates of atopic dermatitis by far. A greater "omics" research effort is urgently needed to tackle other dermatitides, like allergic, irritant and protein contact dermatitis, as well as radiation, seborrheic, stasis or autoimmune dermatitis. Atopic dermatitis findings should be validated not only against healthy donors but also other dermatitides. A clinic-oriented approach is proposed for future "omics" studies in the field of dermatitis and eczema.
Collapse
Affiliation(s)
- Radoslaw Spiewak
- Department of Experimental Dermatology and Cosmetology, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
9
|
Srour H, Gosset A, Moussallieh FM, Elbayed K, Giménez-Arnau E, Lepoittevin JP. Synthesis and In Situ Behavior of 1,4- and 2,5-( 13C) Isotopomers of p-Phenylenediamine in Reconstructed Human Epidermis Using High Resolution Magic Angle Spinning NMR. Chem Res Toxicol 2022; 35:1881-1892. [PMID: 35976686 DOI: 10.1021/acs.chemrestox.2c00151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
p-Phenylenediamine (PPD) has been classified as a strong skin allergen, but when it comes to toxicological concerns, benzoquinone diamine (BQDI), the primary oxidation derivative of PPD, is frequently considered and was shown to covalently bind nucleophilic residues on model peptides. However, tests in solution are far from providing a reliable model, as the cutaneous metabolism of PPD is not covered. We now report the synthesis of two 13C substituted isotopomers of PPD, 1,4-(13C)p-phenylenediamine 1 and 2,5-(13C)p-phenylenediamine 2, and the investigation of their reactivity in reconstructed human epidermis (RHE) using the high resolution magic angle spinning (HRMAS) NMR technique. RHE samples were first treated with 1 or 2 and incubated for 1 to 48 h. Compared to the control, spectra clearly showed only the signals of 1 or 2 gradually decreasing with time to disappear after 48 h of incubation. However, the culture media of RHE incubated with 1 for 1 and 24 h, respectively, showed the presence of both monoacetylated- and diacetylated-PPD as major products. Therefore, the acetylation reaction catalyzed by N-acetyltransferase (NAT) enzymes appeared to be the main process taking place in RHE. With the aim of increasing the reactivity by oxidation, 1 and 2 were treated with 0.5 equiv of H2O2 prior to their application to RHE and incubated for different times. Under these conditions, new peaks having close chemical shifts to those of PPD-cysteine adducts previously observed in solution were detected. Under such oxidative conditions, we were thus able to detect and quantify cysteine adducts in RHE (maximum of 0.2 nmol/mg of RHE at 8 h of incubation) while no reaction with other nucleophilic amino acid residues could be observed.
Collapse
Affiliation(s)
- Hassan Srour
- University of Strasbourg, CNRS, Institute of Chemistry UMR 7177, F-67081 Strasbourg Cedex, France
| | - Alexis Gosset
- University of Strasbourg, CNRS, Institute of Chemistry UMR 7177, F-67081 Strasbourg Cedex, France
| | | | - Karim Elbayed
- University of Strasbourg, CNRS, ICube UMR 7357, F-67412 Illkirch Cedex, France
| | - Elena Giménez-Arnau
- University of Strasbourg, CNRS, Institute of Chemistry UMR 7177, F-67081 Strasbourg Cedex, France
| | - Jean-Pierre Lepoittevin
- University of Strasbourg, CNRS, Institute of Chemistry UMR 7177, F-67081 Strasbourg Cedex, France
| |
Collapse
|
10
|
Co-Culture of THP-1 Cells and Normal Human Epidermal Keratinocytes (NHEK) for Modified Human Cell Line Activation Test (h-CLAT). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To improve the accuracy of skin sensitization prediction of chemicals by conventional alternative methods using cells, it is important to reproduce the environment of skin in vitro, such as the crosstalk between keratinocytes and dendritic cells (DCs). We developed a skin sensitization test system based on the markers and criteria of the human cell line activation test (h-CLAT), which combines THP-1 cells as a surrogate for DCs and keratinized normal human epidermal keratinocytes (NHEK). After exposure to chemicals via keratinized NHEK, the cell surface expression of CD54 and CD86 on THP-1 was measured by flow cytometry. This co-culture system evaluated 2,4-dinitrochlorobenzene (DNCB), a typical sensitizer, as positive, lactic acid (LA), a non-sensitizer, as negative, and isoeugenol (IE), a prohapten that requires biological activation to acquire skin sensitization, as positive. However, the expression levels of CD54 and CD86 in DNCB-treated THP-1 were lower than those in normal h-CLAT. Therefore, we investigated the effects of the medium and secretion by NHEK cells on THP-1 cells. CD54 and CD86 expression was enhanced in monocultured THP-1 in the medium for keratinized NHEK and in the conditioned medium of keratinized NHEK. The increase in CD54 and CD86 by changes in the medium type was higher than that by the NHEK secretion; therefore, it was found that the medium composition has a large effect on the evaluation index among the experimental parameters in the co-culture system. It is necessary to find the optimal medium for immunotoxicity assessment in the co-culture system.
Collapse
|
11
|
Nikitovic D. The role of extracellular matrix in allergic contact dermatitis pathogenesis. TOXICOLOGICAL RISK ASSESSMENT AND MULTI-SYSTEM HEALTH IMPACTS FROM EXPOSURE 2021:205-214. [DOI: 10.1016/b978-0-323-85215-9.00012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Mass Spectrometry-Based Solid Phase Peptide Reaction Assay for Detecting Allergenicity Using an Immobilized Peptide-Conjugating Photo-Cleavable Linker. Int J Mol Sci 2020; 21:ijms21218332. [PMID: 33172037 PMCID: PMC7664224 DOI: 10.3390/ijms21218332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022] Open
Abstract
The biological process of skin sensitization depends on the ability of a sensitizer to modify endogenous proteins. A direct peptide reactivity assay (DPRA), based on the biological process of skin sensitization, was developed as an alternative to controversial animal experiments. Although DPRA has been endorsed by industries and is internationally accepted as promising, it has several drawbacks, such as incompatibility with hydrophobic chemicals, inability to perform detailed reaction analysis, and ability to evaluate only single components. Here, we demonstrated that sensitizers and peptide adducts can be easily identified using a mass spectrometry-based solid-phase peptide reaction assay (M-SPRA). We synthesized peptides with a photo-cleavable linker immobilized on resins. We showed the potential of M-SPRA in predicting skin sensitization by measuring the peptide adducts that were selectively eluted from the resin after cleaving the linker post-reaction. M-SPRA provides more detailed information regarding chemical reactivity and accurate assessment of test samples, including mixtures. M-SPRA may be helpful for understanding the binding mechanism of sensitizers (toxicology), which may assist in further refining reactivity assays and aiding in the interpretation of reactivity data.
Collapse
|
13
|
Ryan CA, Troutman JA, Kern PS, Quijano M, Dobson RLM, Jian Dai H, Burt TM, Gerberick GF. Refinement of the Peroxidase Peptide Reactivity Assay and Prediction Model for Assessing Skin Sensitization Potential. Toxicol Sci 2020; 178:88-103. [DOI: 10.1093/toxsci/kfaa137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
A peptide reactivity assay with an activation component was developed for use in screening chemicals for skin sensitization potential. A horseradish peroxidase-hydrogen peroxide (HRP/P) oxidation system was incorporated into the assay for characterizing reactivity of hapten and pre-/prohapten sensitizers. The assay, named the Peroxidase Peptide Reactivity Assay (PPRA) had a predictive accuracy of 83% (relative to the local lymph node assay) with the original protocol and prediction model. However, apparent false positives attributed to cysteine depletion at relatively high chemical concentrations and, for some chemicals expected to react with the −NH2 group of lysine, little to no depletion of the lysine peptide were observed. To improve the PPRA, cysteine peptide reactions with and without HRP/P were modified by increasing the number of test concentrations and refining their range. In addition, removal of DL-dithiothreitol from the reaction without HRP/P increased cysteine depletion and improved detection of reactive aldehydes and thiazolines without compromising the assay’s ability to detect prohaptens. Modification of the lysine reaction mixture by changing the buffer from 0.1 M ammonium acetate buffer (pH 10.2) to 0.1 M phosphate buffer (pH 7.4) and increasing the level of organic solvent from 1% to 25% resulted in increased lysine depletion for known lysine reactive chemicals. Refinement of the prediction model improved the sensitivity, specificity, and accuracy for hazard identification. These changes resulted in significant improvement of the PPRA making it is a reliable method for predicting the skin sensitization potential of all chemicals, including pre-/prohaptens and directly reactive haptens.
Collapse
Affiliation(s)
- Cindy A Ryan
- Global Product Stewardship, Mason Business Center, The Procter & Gamble Company, Mason, Ohio 45040
| | - John A Troutman
- Global Product Stewardship, Mason Business Center, The Procter & Gamble Company, Mason, Ohio 45040
| | - Petra S Kern
- Central Product Safety, Brussels Innovation Center, Procter & Gamble Eurocor, B-1853 Strombeek-Bever, Belgium
| | - Mike Quijano
- Corporate Functions Analytical, Mason Business Center, The Procter & Gamble Company, Cincinnati, Ohio 45040
| | - Roy L M Dobson
- Corporate Functions Analytical, Mason Business Center, The Procter & Gamble Company, Cincinnati, Ohio 45040
| | - Hong Jian Dai
- Corporate Functions Analytical, Mason Business Center, The Procter & Gamble Company, Cincinnati, Ohio 45040
| | - Thomas M Burt
- Corporate Functions Analytical, Mason Business Center, The Procter & Gamble Company, Cincinnati, Ohio 45040
| | | |
Collapse
|
14
|
Nishijo T, Api AM, Gerberick GF, Miyazawa M, Roberts DW, Safford RJ, Sakaguchi H. Application of the dermal sensitization threshold concept to chemicals classified as high potency category for skin sensitization assessment of ingredients for consumer products. Regul Toxicol Pharmacol 2020; 117:104732. [PMID: 32795584 DOI: 10.1016/j.yrtph.2020.104732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/16/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022]
Abstract
Skin sensitization evaluation is a key part of the safety assessment of ingredients in consumer products, which may have skin sensitizing potential. The dermal sensitization threshold (DST) concept, which is based on the concept of the thresholds of toxicological concern, has been proposed for the risk assessment of chemicals to which skin exposure is very low level. There is negligible risk of skin sensitization if a skin exposure level for the substance of interest was below the reactive DST which would protect against 95% of protein-reactive chemicals. For the remaining 5%, the substance with the defined knowledge of chemical structure (i.e., High Potency Category (HPC) rules) needs to be excluded from the application. However, the DST value for HPC chemicals has not yet been proposed. In this study, we calculated the 95th percentile probabilities estimate from distributions of skin sensitization potency data and derived a novel DST for HPC chemicals (HPC DST) of 1.5 μg/cm2. This value presents a useful default approach for unidentified substances in ingredients considering, as a worst-case scenario, that the unidentified compound may be a potent skin sensitizer. Finally, we developed a novel risk assessment workflow incorporating the HPC DST along with the previously published DSTs.
Collapse
Affiliation(s)
- Taku Nishijo
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan.
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, United States
| | - G Frank Gerberick
- GF3 Consultancy, LLC, 6592 Pullman Court, West Chester, OH 45069, United States
| | - Masaaki Miyazawa
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | - David W Roberts
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Robert J Safford
- B-Safe Toxicology Consulting, 31 Hayway, Rushden, Northants, NN10 6AG, United Kingdom
| | - Hitoshi Sakaguchi
- Safety Science Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| |
Collapse
|
15
|
Kang JC, Valerio LG. Investigating DNA adduct formation by flavor chemicals and tobacco byproducts in electronic nicotine delivery system (ENDS) using in silico approaches. Toxicol Appl Pharmacol 2020; 398:115026. [PMID: 32353386 DOI: 10.1016/j.taap.2020.115026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/04/2023]
Abstract
The presence of flavors is one of the commonly cited reasons for use of e-cigarettes by youth; however, the potential harms from inhaling these chemicals and byproducts have not been extensively studied. One mechanism of interest is DNA adduct formation, which may lead to carcinogenesis. We identified two chemical classes of flavors found in tobacco products and byproducts, alkenylbenzenes and aldehydes, documented to form DNA adducts. Using in silico toxicology approaches, we identified structural analogs to these chemicals without DNA adduct information. We conducted a structural similarity analysis and also generated in silico model predictions of these chemicals for genotoxicity, mutagenicity, carcinogenicity, and skin sensitization. The empirical and in silico data were compared, and we identified strengths and limitations of these models. Good concordance (80-100%) was observed between DNA adduct formation and models predicting mammalian mutagenicity (mouse lymphoma sassy L5178Y) and skin sensitization for both chemical classes. On the other hand, different prediction profiles were observed for the two chemical classes for the modeled endpoints, unscheduled DNA synthesis and bacterial mutagenicity. These results are likely due to the different mode of action between the two chemical classes, as aldehydes are direct acting agents, while alkenylbenzenes require bioactivation to form electrophilic intermediates, which form DNA adducts. The results of this study suggest that an in silico prediction for the mouse lymphoma assay L5178Y, may serve as a surrogate endpoint to help predict DNA adduct formation for chemicals found in tobacco products such as flavors and byproducts.
Collapse
Affiliation(s)
- Jueichuan Connie Kang
- United States Food and Drug Administration, Center for Tobacco Products, Office of Science, Division of Nonclinical Science, 11785 Beltsville Drive, Calverton, MD 20705, USA; US Public Health Service Commissioned Corps, Rockville, MD, USA.
| | - Luis G Valerio
- United States Food and Drug Administration, Center for Tobacco Products, Office of Science, Division of Nonclinical Science, 11785 Beltsville Drive, Calverton, MD 20705, USA
| |
Collapse
|
16
|
Mishra V, Sharma U, Rawat D, Benson D, Singh M, Sharma RS. Fast-changing life-styles and ecotoxicity of hair dyes drive the emergence of hidden toxicants threatening environmental sustainability in Asia. ENVIRONMENTAL RESEARCH 2020; 184:109253. [PMID: 32145548 DOI: 10.1016/j.envres.2020.109253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The practice of hair dyeing is a rapidly expanding industry on a global scale; however, it has become a major concern for Asian countries because they have been undergoing rapid transformations of their environment and lifestyles. While the socio-economic benefits and impacts of this globalization trend are widely understood, the environmental effects are largely unknown. In particular, commonly available oxidative dyes potentially pose specific environmental risks due to their use of a toxic aromatic amine p-Phenylenediamine (PPD). In investigating the environmental impacts of PPD chemicals, we first provide context to the study by setting out the socio-psychological drivers to industrial expansion in Asian countries along with an overview of research into its effects, to show that its environmental impacts are under-researched. We then investigate the environmental toxicity of PPD by focusing on the role of microbes in metabolizing waste products. Results show that Acinetobacter baumannii EB1 isolated from dye effluent prevents autoxidation of PPD under oxygen-enriched (shaking) or oxygen-deficient (static) conditions representing different environmental settings. Microbes transformed PPD into more toxic metabolites, which then significantly reduced plant growth, thereby having a direct bearing on ecosystem services. Based on the findings, we argue that stricter regulatory controls on hair dye wastewater are necessary, particularly in newly industrialising Asian countries where the expansion of commercial practice is most prevalent.
Collapse
Affiliation(s)
- Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India.
| | - Udita Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India
| | - Deepak Rawat
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India
| | - David Benson
- Environment and Sustainability Institute and Department of Politics, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Mrinalini Singh
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India
| | - Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
17
|
Tung CW, Lin YH, Wang SS. Transfer learning for predicting human skin sensitizers. Arch Toxicol 2019; 93:931-940. [PMID: 30806762 DOI: 10.1007/s00204-019-02420-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022]
Abstract
Computational prioritization of chemicals for potential skin sensitization risks plays essential roles in the risk assessment of environmental chemicals and drug development. Given the huge number of chemicals for testing, computational methods enable the fast identification of high-risk chemicals for experimental validation and design of safer alternatives. However, the development of robust prediction model requires a large dataset of tested chemicals that is usually not available for most toxicological endpoints, especially for human data. A small training dataset makes the development of effective models difficult with insufficient coverage and accuracy. In this study, an ensemble tree-based multitask learning method was developed incorporating three relevant tasks in the well-defined adverse outcome pathway (AOP) of skin sensitization to transfer shared knowledge to the major task of human sensitizers. The results show both largely improved coverage and accuracy compared with three state-of-the-art methods. A user-friendly prediction server was available at https://cwtung.kmu.edu.tw/skinsensdb/predict . As AOPs for various toxicity endpoints are being actively developed, the proposed method can be applied to develop prediction models for other endpoints.
Collapse
Affiliation(s)
- Chun-Wei Tung
- Graduate Institute of Data Science, College of Management, Taipei Medical University, 172-1, Sec. 2, Keelung Rd., Taipei, 10675, Taiwan.
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Rd., Zhunan, Miaoli County, 35053, Taiwan.
| | - Yi-Hui Lin
- School of Pharmacy, Kaohsiung Medical University, 100 Shihchuan 1st Rd., Kaohsiung, 80708, Taiwan
| | - Shan-Shan Wang
- School of Pharmacy, Kaohsiung Medical University, 100 Shihchuan 1st Rd., Kaohsiung, 80708, Taiwan
| |
Collapse
|
18
|
Corsini E, Engin AB, Neagu M, Galbiati V, Nikitovic D, Tzanakakis G, Tsatsakis AM. Chemical-induced contact allergy: from mechanistic understanding to risk prevention. Arch Toxicol 2018; 92:3031-3050. [PMID: 30097700 DOI: 10.1007/s00204-018-2283-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Chemical allergens are small molecules able to form a sensitizing complex once they bound to proteins. One of the most frequent manifestations of chemical allergy is contact hypersensitivity, which can have serious impact on quality of life. Allergic contact dermatitis is a predominantly CD8 + T cell-mediated immune disease, resulting in erythema and eczema. Chemical allergy is of considerable importance to the toxicologist, who has the responsibility of identifying and characterizing the allergenic potential of chemicals, and estimating the risk they pose to human health. This review aimed at exploring the phenomena of chemical-induced contact allergy starting from a mechanistic understanding, immunoregulatory mechanisms, passing through the potency of contract allergen until the hazard identification, pointing out the in vitro models for assessing contact allergen-induced cell activation and the risk prevention.
Collapse
Affiliation(s)
- Emanuela Corsini
- Laboratory of Toxicology, Department of Environmental and Political Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Ayşe Başak Engin
- Gazi Üniversitesi, Eczacılık Fakültesi, Toksikoloji, Hipodrom, 06330, Ankara, Turkey
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei, 050096, Bucharest, Romania
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Environmental and Political Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Dragana Nikitovic
- Department of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - George Tzanakakis
- Department of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Greece
| |
Collapse
|
19
|
Respiratory sensitization: toxicological point of view on the available assays. Arch Toxicol 2017; 92:803-822. [DOI: 10.1007/s00204-017-2088-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
|
20
|
Roberts DW, Patlewicz G. Non-animal assessment of skin sensitization hazard: Is an integrated testing strategy needed, and if so what should be integrated? J Appl Toxicol 2017; 38:41-50. [PMID: 28543848 DOI: 10.1002/jat.3479] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/22/2017] [Accepted: 03/25/2017] [Indexed: 12/31/2022]
Abstract
There is an expectation that to meet regulatory requirements, and avoid or minimize animal testing, integrated approaches to testing and assessment will be needed that rely on assays representing key events (KEs) in the skin sensitization adverse outcome pathway. Three non-animal assays have been formally validated and regulatory adopted: the direct peptide reactivity assay (DPRA), the KeratinoSens™ assay and the human cell line activation test (h-CLAT). There have been many efforts to develop integrated approaches to testing and assessment with the "two out of three" approach attracting much attention. Here a set of 271 chemicals with mouse, human and non-animal sensitization test data was evaluated to compare the predictive performances of the three individual non-animal assays, their binary combinations and the "two out of three" approach in predicting skin sensitization potential. The most predictive approach was to use both the DPRA and h-CLAT as follows: (1) perform DPRA - if positive, classify as sensitizing, and (2) if negative, perform h-CLAT - a positive outcome denotes a sensitizer, a negative, a non-sensitizer. With this approach, 85% (local lymph node assay) and 93% (human) of non-sensitizer predictions were correct, whereas the "two out of three" approach had 69% (local lymph node assay) and 79% (human) of non-sensitizer predictions correct. The findings are consistent with the argument, supported by published quantitative mechanistic models that only the first KE needs to be modeled. All three assays model this KE to an extent. The value of using more than one assay depends on how the different assays compensate for each other's technical limitations. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- David W Roberts
- School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, UK
| | - Grace Patlewicz
- National Center for Computational Toxicology (NCCT), US Environmental Protection Agency (US EPA), Research Triangle Park (RTP), NC, 27711, USA
| |
Collapse
|
21
|
Vukmanović S, Sadrieh N. Skin sensitizers in cosmetics and beyond: potential multiple mechanisms of action and importance of T-cell assays for in vitro screening. Crit Rev Toxicol 2017; 47:415-432. [DOI: 10.1080/10408444.2017.1288025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stanislav Vukmanović
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), MD, USA
| | - Nakissa Sadrieh
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), MD, USA
| |
Collapse
|
22
|
Criteria for the evidence-based categorisation of skin sensitisers. Food Chem Toxicol 2017; 105:14-21. [PMID: 28341136 DOI: 10.1016/j.fct.2017.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 11/22/2022]
|
23
|
Patlewicz G, Casati S, Basketter DA, Asturiol D, Roberts DW, Lepoittevin JP, Worth AP, Aschberger K. Can currently available non-animal methods detect pre and pro-haptens relevant for skin sensitization? Regul Toxicol Pharmacol 2016; 82:147-155. [DOI: 10.1016/j.yrtph.2016.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 11/28/2022]
|
24
|
Peptide reactivity associated with skin sensitization: The QSAR Toolbox and TIMES compared to the DPRA. Toxicol In Vitro 2016; 34:194-203. [DOI: 10.1016/j.tiv.2016.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 01/05/2023]
|
25
|
Dik S, Rorije E, Schwillens P, van Loveren H, Ezendam J. Can the Direct Peptide Reactivity Assay Be Used for the Identification of Respiratory Sensitization Potential of Chemicals? Toxicol Sci 2016; 153:361-71. [PMID: 27473337 DOI: 10.1093/toxsci/kfw130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prospective identification of low molecular weight respiratory sensitizers is difficult due to the current lack of adequate test methods. The direct peptide reactivity assay (DPRA) seems to be a promising method to determine the sensitization potential of chemicals because it determines the intrinsic characteristic of sensitizers to bind to proteins. It is already applied in the field of skin sensitization, and adaptation to respiratory sensitization has started recently. This article further evaluates the ability of the DPRA to predict the respiratory sensitization potential of chemicals. In addition, the added value of applying High Performance Liquid Chromatography (HPLC)-MS and measurements after 20 minutes and 24 hours of incubation was evaluated. Eighteen respiratory sensitizers (10 haptens, 3 prehaptens, and 5 prohaptens) and 14 nonsensitizers were tested with 2-model peptides. Based on peptide depletion, a prediction model was proposed for the identification of (respiratory) sensitizers. Application of mass spectrometry and measurements at 2 time-points increased prediction accuracy of the assay by resolving discordant results. The prediction model correctly identified all haptens and prehaptens as sensitizers. The 5 prohaptens were not identified as sensitizers, most likely due to lack of metabolic activity in the DPRA. All but 1 nonsensitizer was correctly predicted. The model, therefore, shows an accuracy of 78% for the tested dataset. Unfortunately, this assay cannot be used to distinguish respiratory from skin sensitizers. To make this distinction, the DPRA needs to be combined with other test methods that are able to identify respiratory sensitizers.
Collapse
Affiliation(s)
- Sander Dik
- *Centre for Health Protection Department of Toxicogenomics, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Emiel Rorije
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment, Bilthoven 3720 BA, The Netherlands
| | | | - Henk van Loveren
- *Centre for Health Protection Department of Toxicogenomics, Maastricht University, Maastricht 6200 MD, The Netherlands
| | | |
Collapse
|
26
|
Urbisch D, Becker M, Honarvar N, Kolle SN, Mehling A, Teubner W, Wareing B, Landsiedel R. Assessment of Pre- and Pro-haptens Using Nonanimal Test Methods for Skin Sensitization. Chem Res Toxicol 2016; 29:901-13. [DOI: 10.1021/acs.chemrestox.6b00055] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Urbisch
- Experimental
Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Matthias Becker
- Experimental
Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Naveed Honarvar
- Experimental
Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | | | | | - Britta Wareing
- Experimental
Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | |
Collapse
|
27
|
Reporter cell lines for skin sensitization testing. Arch Toxicol 2015; 89:1645-68. [DOI: 10.1007/s00204-015-1555-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
|
28
|
Safford RJ, Api AM, Roberts DW, Lalko JF. Extension of the Dermal Sensitisation Threshold (DST) approach to incorporate chemicals classified as reactive. Regul Toxicol Pharmacol 2015; 72:694-701. [PMID: 25934255 DOI: 10.1016/j.yrtph.2015.04.020] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/27/2022]
Abstract
The evaluation of chemicals for their skin sensitising potential is an essential step in ensuring the safety of ingredients in consumer products. Similar to the Threshold of Toxicological Concern, the Dermal Sensitisation Threshold (DST) has been demonstrated to provide effective risk assessments for skin sensitisation in cases where human exposure is low. The DST was originally developed based on a Local Lymph Node Assay (LLNA) dataset and applied to chemicals that were not considered to be directly reactive to skin proteins, and unlikely to initiate the first mechanistic steps leading to the induction of sensitisation. Here we have extended the DST concept to protein reactive chemicals. A probabilistic assessment of the original DST dataset was conducted and a threshold of 64 μg/cm(2) was derived. In our accompanying publication, a set of structural chemistry based rules was developed to proactively identify highly reactive and potentially highly potent materials which should be excluded from the DST approach. The DST and rule set were benchmarked against a test set of chemicals with LLNA/human data. It is concluded that by combining the reactive DST with knowledge of chemistry a threshold can be established below which there is no appreciable risk of sensitisation for protein-reactive chemicals.
Collapse
Affiliation(s)
- Robert J Safford
- B-Safe Toxicology Consulting, 31 Hayway, Rushden, Northants NN10 6AG, United Kingdom.
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, United States.
| | - David W Roberts
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom.
| | - Jon F Lalko
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, United States.
| |
Collapse
|
29
|
Ouyang Q, Wang L, Mu Y, Xie XQ. Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties. BMC Pharmacol Toxicol 2014; 15:76. [PMID: 25539579 PMCID: PMC4298069 DOI: 10.1186/2050-6511-15-76] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 11/20/2014] [Indexed: 11/17/2022] Open
Abstract
Background Advanced structure-activity relationship (SAR) modeling can be used as an alternative tool for identification of skin sensitizers and in improvement of the medical diagnosis and more effective practical measures to reduce the causative chemical exposures. It can also circumvent ethical concern of using animals in toxicological tests, and reduce time and cost. Compounds with aniline or phenol moieties represent two large classes of frequently skin sensitizing chemicals but exhibiting very variable, and difficult to predict, potency. The mechanisms of action are not well-understood. Methods A group of mechanistically hard-to-be-classified aniline and phenol chemicals were collected. An in silico model was established by statistical analysis of quantum descriptors for the determination of the relationship between their chemical structures and skin sensitization potential. The sensitization mechanisms were investigated based on the features of the established model. Then the model was utilized to analyze a subset of FDA approved drugs containing aniline and/or phenol groups for prediction of their skin sensitization potential. Results and discussion A linear discriminant model using the energy of the highest occupied molecular orbital (ϵHOMO) as the descriptor yielded high prediction accuracy. The contribution of ϵHOMO as a major determinant may suggest that autoxidation or free radical binding could be involved. The model was further applied to predict allergic potential of a subset of FDA approved drugs containing aniline and/or phenol moiety. The predictions imply that similar mechanisms (autoxidation or free radical binding) may also play a role in the skin sensitization caused by these drugs. Conclusions An accurate and simple quantum mechanistic model has been developed to predict the skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol chemicals. The model could be useful for the skin sensitization potential predictions of a subset of FDA approved drugs. Electronic supplementary material The online version of this article (doi:10.1186/2050-6511-15-76) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, School of Pharmacy, NIH National Center, of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Pittsburgh, PA 15261, USA.
| |
Collapse
|
30
|
Stiefel C, Schwack W. Photoprotection in changing times - UV filter efficacy and safety, sensitization processes and regulatory aspects. Int J Cosmet Sci 2014; 37:2-30. [DOI: 10.1111/ics.12165] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/20/2014] [Indexed: 12/14/2022]
Affiliation(s)
- C. Stiefel
- Institute of Food Chemistry; University of Hohenheim; Garbenstrasse 28 70599 Stuttgart Germany
| | - W. Schwack
- Institute of Food Chemistry; University of Hohenheim; Garbenstrasse 28 70599 Stuttgart Germany
| |
Collapse
|
31
|
Hudari FF, de Almeida LC, da Silva BF, Zanoni MVB. Voltammetric sensor for simultaneous determination of p-phenylenediamine and resorcinol in permanent hair dyeing and tap water by composite carbon nanotubes/chitosan modified electrode. Microchem J 2014. [DOI: 10.1016/j.microc.2014.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Mekenyan O, Patlewicz G, Kuseva C, Popova I, Mehmed A, Kotov S, Zhechev T, Pavlov T, Temelkov S, Roberts DW. A mechanistic approach to modeling respiratory sensitization. Chem Res Toxicol 2014; 27:219-39. [PMID: 24422459 DOI: 10.1021/tx400345b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical respiratory sensitization is an important occupational health problem which may lead to severely incapacitated human health, yet there are currently no validated or widely accepted models for identifying and characterizing the potential of a chemical to induce respiratory sensitization. This is in part due to the ongoing uncertainty about the immunological mechanisms through which respiratory sensitization may be acquired. Despite the lack of test method, regulations such as REACH still require an assessment of respiratory sensitization for risk assessment and/or for the purposes of classification and labeling. The REACH guidance describes an integrated evaluation strategy to characterize what information sources could be available to facilitate such an assessment. The components of this include a consideration of well-established structural alerts and existing data (whether it be derived from read-across, (quantitative) structure-activity relationships ((Q)SAR), in vivo studies etc.). There has been some progress in developing SARs as well as a handful of empirical QSARs. More recently, efforts have been focused on exploring whether the reaction chemistry mechanistic domains first characterized for skin sensitization are relevant for respiratory sensitization and to what extent modifications or refinements are needed to rationalize the differences between the two end points as far as their chemistry is concerned. This study has built upon the adverse outcome pathway (AOP) for skin sensitization that was developed and published by the OECD in 2012. We have structured a workflow to characterize the initiating events that are relevant in driving respiratory sensitization. OASIS pipeline technology was used to encode these events as components in a software platform to enable a prediction of respiratory sensitization potential to be made for new untested chemicals. This prediction platform could be useful in the assessment of respiratory sensitization potential or for grouping chemicals for subsequent read-across.
Collapse
Affiliation(s)
- Ovanes Mekenyan
- Laboratory of Mathematical Chemistry, University "Prof As Zlatarov" , 1 Yakim Street, Bourgas, Bulgaria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kao D, Chaintreau A, Lepoittevin JP, Giménez-Arnau E. Mechanistic studies on the reactivity of sensitizing allylic hydroperoxides: investigation of the covalent modification of amino acids by carbon-radical intermediates. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50109d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Teubner W, Mehling A, Schuster PX, Guth K, Worth A, Burton J, van Ravenzwaay B, Landsiedel R. Computer models versus reality: how well do in silico models currently predict the sensitization potential of a substance. Regul Toxicol Pharmacol 2013; 67:468-85. [PMID: 24090701 DOI: 10.1016/j.yrtph.2013.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 11/29/2022]
Abstract
National legislations for the assessment of the skin sensitization potential of chemicals are increasingly based on the globally harmonized system (GHS). In this study, experimental data on 55 non-sensitizing and 45 sensitizing chemicals were evaluated according to GHS criteria and used to test the performance of computer (in silico) models for the prediction of skin sensitization. Statistic models (Vega, Case Ultra, TOPKAT), mechanistic models (Toxtree, OECD (Q)SAR toolbox, DEREK) or a hybrid model (TIMES-SS) were evaluated. Between three and nine of the substances evaluated were found in the individual training sets of various models. Mechanism based models performed better than statistical models and gave better predictivities depending on the stringency of the domain definition. Best performance was achieved by TIMES-SS, with a perfect prediction, whereby only 16% of the substances were within its reliability domain. Some models offer modules for potency; however predictions did not correlate well with the GHS sensitization subcategory derived from the experimental data. In conclusion, although mechanistic models can be used to a certain degree under well-defined conditions, at the present, the in silico models are not sufficiently accurate for broad application to predict skin sensitization potentials.
Collapse
|
35
|
Pot LM, Scheitza SM, Coenraads PJ, Blömeke B. Penetration and haptenation of p-phenylenediamine. Contact Dermatitis 2013; 68:193-207. [PMID: 23510340 DOI: 10.1111/cod.12032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although p-phenylenediamine (PPD) has been recognized as an extreme sensitizer for many years, the exact mechanism of sensitization has not been elucidated yet. Penetration and the ability to bind to proteins are the first two hurdles that an allergen has to overcome to be able to sensitize. This review is an overview of studies regarding PPD penetration through skin (analogues) and studies on the amino acids that are targeted by PPD. To complete this review, the auto-oxidation and N-acetylation steps involved in PPD metabolism are described. In summary, under normal hair dyeing exposure conditions, <1% of the applied PPD dose penetrates the skin. The majority (>80%) of PPD that penetrates will be converted into the detoxification products monoacetyl-PPD and diacetyl-PPD by the N-acetyltransferase enzymes. The small amount of PPD that does not become N-acetylated is susceptible to auto-oxidation reactions, yielding protein-reactive PPD derivatives. These derivatives may bind to specific amino acids, and some of the formed adducts might be the complexes responsible for sensitization. However, true in vivo evidence is lacking, and further research to unravel the definite mechanism of sensitization is needed.
Collapse
Affiliation(s)
- Laura M Pot
- Department of Dermatology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | | | | | | |
Collapse
|
36
|
Role of Th17 cells in skin inflammation of allergic contact dermatitis. Clin Dev Immunol 2013; 2013:261037. [PMID: 24023564 PMCID: PMC3759281 DOI: 10.1155/2013/261037] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
Abstract
Extending the classical concept considering an imbalance exclusively of T helper(h) 1 and Th2 cells on the bottom of many inflammatory diseases, Th17 cells were recently described. Today, there is sufficient experimental evidence to classify psoriasis and allergic contact dermatitis (ACD) amongst other inflammatory skin disorders as IL-17 associated diseases. In several human studies, T-cell-clones could be isolated from eczema biopsies, and high IL-17 levels were observed after challenge with allergen. In the last years, the phenotype of these IL-17 releasing T cells was in the focus of discussion. It has been suggested that Th17 could be identified by expression of retinoic acid receptor-related orphan receptor (ROR)C (humans) or RORγt (mice) and IL-17, accompanied by the absence of IFN-γ and IL-22. In cells from skin biopsies, contact allergens elevate IL-17A, IL-23, and RORC within the subset of Th cells. The indications for a participation of Th17 in the development of ACD are supported by data from IL-17 deficient mice with reduced contact hypersensitivity (CHS) reactions that could be restored after transplantation of wild type CD4+ T cells. In addition to Th17 cells, subpopulations of CD8+ T cells and regulatory T cells are further sources of IL-17 that play important roles in ACD as well. Finally, the results from Th17 cell research allow today identification of different skin diseases by a specific profile of signature cytokines from Th cells that can be used as a future diagnostic tool.
Collapse
|
37
|
Uter W, Johansen JD, Börje A, Karlberg AT, Lidén C, Rastogi S, Roberts D, White IR. Categorization of fragrance contact allergens for prioritization of preventive measures: clinical and experimental data and consideration of structure-activity relationships. Contact Dermatitis 2013; 69:196-230. [DOI: 10.1111/cod.12117] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Wolfgang Uter
- Department of Medical Informatics, Biometry and Epidemiology; University of Erlangen/Nürnberg; 91054 Erlangen; Germany
| | - Jeanne D. Johansen
- Department of Dermato-Allergology, National Allergy Research Centre; Gentofte Hospital, University of Copenhagen; 2900 Hellerup; Denmark
| | - Anna Börje
- Department of Chemistry and Molecular Biology; University of Gothenburg; 41137 Gothenburg; Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology; University of Gothenburg; 41137 Gothenburg; Sweden
| | - Carola Lidén
- Institute of Environmental Medicine; Karolinska Institutet; 17177 Stockholm; Sweden
| | | | - David Roberts
- Liverpool John Moores University; Liverpool, Merseyside L3 5UZ; UK
| | - Ian R. White
- Department of Cutaneous Allergy, St John's Institute of Dermatology; St Thomas' Hospital; London SE1 7EH; UK
| |
Collapse
|
38
|
El Ali Z, Gerbeix C, Hemon P, Esser PR, Martin SF, Pallardy M, Kerdine-Römer S. Allergic skin inflammation induced by chemical sensitizers is controlled by the transcription factor Nrf2. Toxicol Sci 2013; 134:39-48. [PMID: 23564646 DOI: 10.1093/toxsci/kft084] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Allergic contact dermatitis (ACD) is induced by low-molecular weight electrophilic chemicals and metal ions. Chemical contact sensitizers trigger reactive oxygen species production and provoke electrophilic stress, leading to the accumulation of the transcription factor nuclear-related factor 2 (Nrf2) in innate immune cell types. The objective of this work was to identify the role of Nrf2 in the regulation of ACD. We used the local lymph node assay (LLNA) and the mouse ear swelling test (MEST) to study the role of Nrf2 in both the sensitization and elicitation phase in nrf2 knockout (nrf2(-/-)) and wild-type (nrf2(+/+)) mice. Five chemicals were used: two compounds known to react with cysteine residues, 2,4-dinitrochlorobenzene (DNCB) and cinnamaldehyde (CinA); one sensitizer known to exhibit mixed reactivity to cysteine and lysine residues, isophorone diisocyanate; and one reacting specifically with lysine residues, trimellitic anhydride and croton oil, a well-known irritant. In the MEST assay, DNCB (1 and 2%) induced a significant increase in ear thickness in nrf2(-/-) compared with nrf2(+/+) mice, suggesting a role for Nrf2 in the control of the inflammatory process. When DNCB was used at 0.25 and 0.5% or when mice were treated with CinA, inflammation was found only in nrf2(-/-) mice. In the LLNA, all chemical sensitizers induced an increase of lymphocyte proliferation in nrf2(-/-) compared with nrf2(+/+) mice for the same chemical concentration. These results reveal an important role for Nrf2 in controlling ACD and lymphocyte proliferation in response to sensitizers.
Collapse
Affiliation(s)
- Zeina El Ali
- UnivSud, INSERM UMR-996, Faculty of Pharmacy, Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
39
|
In chemico evaluation of prohapten skin sensitizers: Behavior of 2-methoxy-4-(13C)methylphenol in the peroxidase peptide reactivity assay (PPRA) as an alternative to animal testing. Toxicol Lett 2013; 218:266-72. [DOI: 10.1016/j.toxlet.2013.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 11/15/2022]
|
40
|
Stachulski AV, Baillie TA, Kevin Park B, Scott Obach R, Dalvie DK, Williams DP, Srivastava A, Regan SL, Antoine DJ, Goldring CEP, Chia AJL, Kitteringham NR, Randle LE, Callan H, Castrejon JL, Farrell J, Naisbitt DJ, Lennard MS. The Generation, Detection, and Effects of Reactive Drug Metabolites. Med Res Rev 2012; 33:985-1080. [DOI: 10.1002/med.21273] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrew V. Stachulski
- Department of Chemistry, Robert Robinson Laboratories; University of Liverpool; Liverpool; L69 7ZD; UK
| | - Thomas A. Baillie
- School of Pharmacy; University of Washington; Box 357631; Seattle; Washington; 98195-7631
| | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - R. Scott Obach
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; Groton; Connecticut 06340
| | - Deepak K. Dalvie
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; La Jolla; California 94121
| | - Dominic P. Williams
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Abhishek Srivastava
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Sophie L. Regan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Daniel J. Antoine
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Christopher E. P. Goldring
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Alvin J. L. Chia
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Neil R. Kitteringham
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Laura E. Randle
- School of Pharmacy and Biomolecular Sciences, Faculty of Science; Liverpool John Moores University; James Parsons Building, Byrom Street; Liverpool L3 3AF; UK
| | - Hayley Callan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - J. Luis Castrejon
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - John Farrell
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Martin S. Lennard
- Academic Unit of Medical Education; University of Sheffield; 85 Wilkinson Street; Sheffield S10 2GJ; UK
| |
Collapse
|
41
|
Jahn S, Karst U. Electrochemistry coupled to (liquid chromatography/) mass spectrometry—Current state and future perspectives. J Chromatogr A 2012; 1259:16-49. [DOI: 10.1016/j.chroma.2012.05.066] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/09/2012] [Accepted: 05/19/2012] [Indexed: 02/04/2023]
|
42
|
Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol 2012; 133:303-15. [PMID: 22931926 DOI: 10.1038/jid.2012.284] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allergic contact dermatitis (ACD) is one of the most common skin diseases, consisting of sensitization and elicitation phases. With the advancement of technology and the discovery of new types of immune cells, our knowledge of the immunological mechanisms of contact hypersensitivity (CHS) as a murine model of ACD has expanded significantly in the past decade. For example, by introducing regulatory T cells, CD4(+) T-helper 17 cells, and Langerin-positive dermal dendritic cells, the initiation and termination mechanism of CHS has been revealed. In addition, the role of mast cells in CHS, long a matter of debate, has become apparent by developing conditional mast cell-deficient mice. Moreover, the role of the innate immunity system, such as that of Toll-like receptor signaling, has made a breakthrough in this field. In this review, we will integrate the recent advancement of immunological mechanisms of both the sensitization and elicitation phases of CHS into the classic view, and we will discuss updated mechanisms on its development and future directions.
Collapse
|
43
|
Bauch C, Kolle SN, Ramirez T, Eltze T, Fabian E, Mehling A, Teubner W, van Ravenzwaay B, Landsiedel R. Putting the parts together: Combining in vitro methods to test for skin sensitizing potentials. Regul Toxicol Pharmacol 2012; 63:489-504. [DOI: 10.1016/j.yrtph.2012.05.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/24/2022]
|
44
|
Jahn S, Faber H, Zazzeroni R, Karst U. Electrochemistry/mass spectrometry as a tool in the investigation of the potent skin sensitizer p-phenylenediamine and its reactivity toward nucleophiles. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1453-1464. [PMID: 22592989 DOI: 10.1002/rcm.6249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RATIONALE Although para-phenylenediamine (PPD) is known to cause severe allergic contact dermatitis in consequence of autoxidation and/or skin metabolism pathways, it is commonly utilized as an ingredient in permanent hair dyes. The aim of this work was to simultaneously accelerate the autoxidation process and to simulate the metabolic activation of PPD using a purely instrumental system. METHODS Electrochemistry (EC) in combination with electrospray ionization mass spectrometry (ESI-MS) was used in this study to assess the skin-sensitizing potential of PPD. Online and offline coupled EC/ESI-MS experiments were carried out and the emerging oxidation products were investigated. In a second approach, these primary species were allowed to react with the nucleophiles glutathione (GSH), cysteine (Cys), potassium cyanide (KCN) and lysine (Lys) in order to evaluate their reactivity. RESULTS The reactive p-phenylene quinone diimine (PPQD), which can form upon autoxidation and/or skin metabolism of PPD, was effectively generated in a simple EC cell next to further oxidation products, including the trimeric product Bandrowski's Base (BB). Conjugation with GSH and Cys was successfully proven, but no adducts with KCN or Lys were observed. Furthermore, the application of different concentration ratios between PPD and nucleophile was shown to play a crucial role concerning the type of oxidation products and adducts being formed. CONCLUSIONS It was found that EC/MS is a well-suited approach for the targeted generation of reactive haptens such as PPQD while avoiding detection problems due to the complexity of matrices encountered when conducting conventional in vitro or in vivo experiments.
Collapse
Affiliation(s)
- Sandra Jahn
- University of Münster, Institute of Inorganic and Analytical Chemistry and NRW Graduate School of Chemistry, Corrensstr. 30, 48149 Münster, Germany
| | | | | | | |
Collapse
|
45
|
Jahn S, Faber H, Zazzeroni R, Karst U. Electrochemistry/liquid chromatography/mass spectrometry to demonstrate irreversible binding of the skin allergen p-phenylenediamine to proteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1415-1425. [PMID: 22592985 DOI: 10.1002/rcm.6247] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RATIONALE para-Phenylenediamine (PPD) is a potent and well-known allergen, which is commonly used in hair or fur dyes and can cause severe allergic contact dermatitis. In this work, the skin-sensitizing potential of PPD with respect to the conjugation of proteins was evaluated using an approach without animal testing. METHODS Electrochemistry (EC) coupled offline to liquid chromatography (LC) and electrospray ionization mass spectrometry (ESI-MS) was employed to convert the pre-hapten PPD into its reactive hapten analogs. A previous study had already shown that this purely instrumental method is suitable for accelerating and simulating the various oxidation processes, which PPD may undergo, and that the emerging products are prone to react with soft thiol groups of small nucleophiles like glutathione and cysteine. RESULTS This investigation was extended by successfully demonstrating adduct formation between EC-generated PPD oxidation products and the three proteins β-lactoglobulin A (β-LGA), human serum albumin and human hemoglobin. A tryptic digest of modified β-LGA provided evidence for irreversible protein binding of monomeric PPD, a PPD dimer and the PPD trimer known as Bandrowski's Base. It was shown that the main oxidation product p-phenylene quinone diimine, and the reactive oligomerized species, primarily attack the free thiol function of proteins rather than other nucleophilic amino acid residues. CONCLUSIONS The pre-hapten PPD was efficiently activated upon EC oxidation and the resulting species were further reacted with different proteins leading to diverse hapten-protein complexes. Thereby, problems related to the complex matrix present in conventional in vitro or in vivo methods could effectively be avoided.
Collapse
Affiliation(s)
- Sandra Jahn
- University of Münster, Institute of Inorganic and Analytical Chemistry and NRW Graduate School of Chemistry, Corrensstr. 30, 48149 Münster, Germany
| | | | | | | |
Collapse
|
46
|
Lalko JF, Kimber I, Gerberick GF, Foertsch LM, Api AM, Dearman RJ. The Direct Peptide Reactivity Assay: Selectivity of Chemical Respiratory Allergens. Toxicol Sci 2012; 129:421-31. [DOI: 10.1093/toxsci/kfs205] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Mehling A, Eriksson T, Eltze T, Kolle S, Ramirez T, Teubner W, van Ravenzwaay B, Landsiedel R. Non-animal test methods for predicting skin sensitization potentials. Arch Toxicol 2012; 86:1273-95. [PMID: 22707154 DOI: 10.1007/s00204-012-0867-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/09/2012] [Indexed: 12/01/2022]
Abstract
Contact allergies are complex diseases, and it is estimated that 15-20 % of the general population suffers from contact allergy, with increasing prevalence. Evaluation of the sensitization potential of a substance is usually carried out in animal models. Nowadays, there is much interest in reducing and ultimately replacing current animal tests. Furthermore, as of 2013, the EU has posed a ban on animal testing of cosmetic ingredients that includes skin sensitization. Therefore, predictive and robust in vitro tests are urgently needed. In order to establish alternatives to animal testing, the in vitro tests must mimic the very complex interactions between the sensitizing chemical and the different parts of the immune system. This review article summarizes recent efforts to develop in vitro tests for predicting skin sensitizers. Cell-based assays, in chemico methods and, to a lesser extent, in silico methods are presented together with a discussion of their current status. With considerable progress having been achieved during the last years, the rationale today is that data from different non-animal test methods will have to be combined in order to obtain reliable hazard and potency information on potential skin sensitizers.
Collapse
|
48
|
Jäckh C, Fabian E, van Ravenzwaay B, Landsiedel R. Relevance of xenobiotic enzymes in human skin in vitro models to activate pro-sensitizers. J Immunotoxicol 2012; 9:426-38. [PMID: 22471730 DOI: 10.3109/1547691x.2012.664578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Skin exposure to sensitizing chemicals can induce allergic reactions. Certain chemicals, so called pro-sensitizers, need metabolic activation to become allergenic. Their metabolic activation occurs in skin cells such as keratinocytes or dendritic cells. These cell types are also incorporated into dermal in vitro test systems used to assess the sensitizing potential of chemicals for humans. In vitrosystems range from single cell cultures to organotypic multi-cellular reconstructed skin models. Until now, their metabolic competence to unmask sensitizing potential of pro-sensitizers was rarely investigated. This review aims to summarize current information on available skin in vitro models and the relevance of xenobiotic metabolizing enzymes for the activation of pro-sensitizers such as eugenol, 4-allylanisole, and ethylendiamine. Among others, these chemicals are discussed as performance standards to validate new coming in vitro systems for their potential to identify pro-sensitizers.
Collapse
Affiliation(s)
- Christine Jäckh
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | | | | | | |
Collapse
|
49
|
Rudbäck J, Bergström MA, Börje A, Nilsson U, Karlberg AT. α-Terpinene, an Antioxidant in Tea Tree Oil, Autoxidizes Rapidly to Skin Allergens on Air Exposure. Chem Res Toxicol 2012; 25:713-21. [DOI: 10.1021/tx200486f] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johanna Rudbäck
- Department of Chemistry and
Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Moa Andresen Bergström
- Department of Chemistry and
Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Anna Börje
- Department of Chemistry and
Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Ulrika Nilsson
- Department of Analytical Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and
Molecular Biology, Dermatochemistry and Skin Allergy, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
50
|
Kaplan DH, Igyártó BZ, Gaspari AA. Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol 2012; 12:114-24. [PMID: 22240625 DOI: 10.1038/nri3150] [Citation(s) in RCA: 391] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The skin is a barrier site that is exposed to a wide variety of potential pathogens. As in other organs, pathogens that invade the skin are recognized by pattern-recognition receptors (PRRs). Recently, it has been recognized that PRRs are also engaged by chemical contact allergens and, in susceptible individuals, this elicits an inappropriate immune response that results in allergic contact dermatitis. In this Review, we focus on how contact allergens promote inflammation by activating the innate immune system. We also examine how innate immune cells in the skin, including mast cells and dendritic cells, cooperate with each other and with T cells and keratinocytes to initiate and drive early responses to contact allergens.
Collapse
Affiliation(s)
- Daniel H Kaplan
- Department of Dermatology, Center for Immunology, University of Minnesota, MBB 3-146, 2101 6th St. SE, Minneapolis, Minnesota 55414, USA.
| | | | | |
Collapse
|