1
|
Mossop KD, Lemmon AR, Moriarty Lemmon E, Eytan R, Adams M, Unmack PJ, Smith Date K, Morales HE, Hammer MP, Wong BBM, Chapple DG. Phylogenomics and biogeography of arid-adapted Chlamydogobius goby fishes. Mol Phylogenet Evol 2023; 182:107757. [PMID: 36925090 DOI: 10.1016/j.ympev.2023.107757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/01/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
The progressive aridification of the Australian continent from ∼ 20 million years ago posed severe challenges for the persistence of its resident biota. A key question involves the role of refugial habitats - specifically, their ability to mediate the effects of habitat loss and fragmentation, and their potential to shape opportunities for allopatric speciation. With freshwater species, for example, the patchiness, or absence, of water will constrain distributions. However, aridity may not necessarily isolate populations if disjunct refugia experience frequent hydrological connections. To investigate this potential dichotomy, we explored the evolutionary history of the Chlamydogobius gobies (Gobiiformes: Gobiidae), an arid-adapted genus of six small, benthic fish species that exploit all types of waterbodies (i.e. desert springs, waterholes and bore-fed wetlands, coastal estuarine creeks and mangroves) across parts of central and northern Australia. We used Anchored Phylogenomics to generate a highly resolved phylogeny of the group from sequence data for 260 nuclear loci. Buttressed by companion allozyme and mtDNA datasets, our molecular findings infer the diversification of Chlamydogobius in arid Australia, and provide a phylogenetic structure that cannot be simply explained by invoking allopatric speciation events reflecting current geographic proximity. Our findings are generally consistent with the existing morphological delimitation of species, with one exception: at the shallowest nodes of phylogenetic reconstruction, the molecular data do not fully support the current dichotomous delineation of C. japalpa from C. eremius in Kati Thanda-Lake Eyre-associated waterbodies. Together these findings illustrate the ability of structural (hydrological) connections to generate patterns of connectivity and isolation for an ecologically moderate disperser in response to ongoing habitat aridification. Finally, we explore the implications of these results for the immediate management of threatened (C. gloveri) and critically endangered (C. micropterus, C. squamigenus) congeners.
Collapse
Affiliation(s)
- Krystina D Mossop
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL, USA
| | | | - Ron Eytan
- Marine Biology Department, Texas A&M University at Galveston, Galveston, TX 77554, USA; Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Mark Adams
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Peter J Unmack
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, ACT 2617, Australia
| | - Katie Smith Date
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; Museum Victoria, Sciences Department, GPO Box 666, Melbourne, VIC 3001, Australia
| | - Hernán E Morales
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael P Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, NT 0801, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
2
|
Wu TH, Tsang LM, Chen IS, Chu KH. Multilocus approach reveals cryptic lineages in the goby Rhinogobius duospilus in Hong Kong streams: Role of paleodrainage systems in shaping marked population differentiation in a city. Mol Phylogenet Evol 2016; 104:112-122. [PMID: 27421567 DOI: 10.1016/j.ympev.2016.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
Drainage history is a well-demonstrated factor that influences the population structure of freshwater inhabitants over a broad geographic scale. However, there has been little research undertaken on such a relationship with freshwater fish on a small geographical scale, especially in Asia. In this study, we investigated the role of local, small drainage systems in affecting the population genetic structure of a freshwater goby, Rhinogobius duospilus, in Hong Kong streams using a multilocus approach. Analyses on nine genetic markers (2 mitochondrial and 7 nuclear markers, including 5 microsatellite markers) reveal prominent and intensive genetic structuring (2.1-5.4% mtDNA sequence divergence) in R. duospilus in Hong Kong. The lineages and clusters recovered from mtDNA data and assignment analysis of nuclear markers coincide with the paleodrainage networks. Furthermore, marked population subdivision between streams located on different side branches (<20km apart) within the same paleodrainage area is observed and gene flow occurs only between closely situated streams that share common paleodrainage confluences. In an extreme case, gene flow is limited between streams that are less than 5km apart. Apparently, such an intensive population structure is attributed to the regional paleodrainage pattern, together with the highly sedentary life style of R. duospilus, which reduces contemporary gene flow and dispersal between populations in neighbouring streams.
Collapse
Affiliation(s)
- Tsz Huen Wu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong.
| | - Ling Ming Tsang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - I-Shiung Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|