1
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
2
|
Ma L, Gilani A, Rubio-Navarro A, Cortada E, Li A, Reilly SM, Tang L, Lo JC. Adipsin and adipocyte-derived C3aR1 regulate thermogenic fat in a sex-dependent fashion. JCI Insight 2024; 9:e178925. [PMID: 38713526 PMCID: PMC11382875 DOI: 10.1172/jci.insight.178925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/09/2024] Open
Abstract
Thermogenesis in beige/brown adipose tissues can be leveraged to combat metabolic disorders such as type 2 diabetes and obesity. The complement system plays pleiotropic roles in metabolic homeostasis and organismal energy balance with canonical effects on immune cells and noncanonical effects on nonimmune cells. The adipsin/C3a/C3a receptor 1 (C3aR1) pathway stimulates insulin secretion and sustains pancreatic β cell mass. However, its role in adipose thermogenesis has not been defined. Here, we show that male Adipsin/Cfd-knockout mice exhibited increased energy expenditure and white adipose tissue (WAT) browning. In addition, male adipocyte-specific C3aR1-knockout mice exhibited enhanced WAT thermogenesis and increased respiration. In stark contrast, female adipocyte-specific C3aR1-knockout mice displayed decreased brown fat thermogenesis and were cold intolerant. Female mice expressed lower levels of Adipsin in thermogenic adipocytes and adipose tissues than males. C3aR1 was also lower in female subcutaneous adipose tissue than in males. Collectively, these results reveal sexual dimorphism in the adipsin/C3a/C3aR1 axis in regulating adipose thermogenesis and defense against cold stress. Our findings establish a potentially new role of the alternative complement pathway in adaptive thermogenesis and highlight sex-specific considerations in potential therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Lunkun Ma
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Eric Cortada
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Ang Li
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Shannon M Reilly
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - James C Lo
- Division of Cardiology, Department of Medicine
- Weill Center for Metabolic Health; and
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Avdonin PP, Blinova MS, Generalova GA, Emirova KM, Avdonin PV. The Role of the Complement System in the Pathogenesis of Infectious Forms of Hemolytic Uremic Syndrome. Biomolecules 2023; 14:39. [PMID: 38254639 PMCID: PMC10813406 DOI: 10.3390/biom14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases grouped under the general term atypical HUS represent a heterogeneous group of diseases with similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1, a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is based on congenital or acquired defects of complement system. This review presents summarized data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in various types of infection-induced HUS. Separate links in the complement system are considered, the damage of which during bacterial and viral infections can lead to complement hyperactivation following by microvascular endothelial injury and development of acute renal failure.
Collapse
Affiliation(s)
- Piotr P. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Maria S. Blinova
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Galina A. Generalova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Khadizha M. Emirova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| |
Collapse
|
4
|
Whyte CS. All tangled up: interactions of the fibrinolytic and innate immune systems. Front Med (Lausanne) 2023; 10:1212201. [PMID: 37332750 PMCID: PMC10272372 DOI: 10.3389/fmed.2023.1212201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
The hemostatic and innate immune system are intertwined processes. Inflammation within the vasculature promotes thrombus development, whilst fibrin forms part of the innate immune response to trap invading pathogens. The awareness of these interlinked process has resulted in the coining of the terms "thromboinflammation" and "immunothrombosis." Once a thrombus is formed it is up to the fibrinolytic system to resolve these clots and remove them from the vasculature. Immune cells contain an arsenal of fibrinolytic regulators and plasmin, the central fibrinolytic enzyme. The fibrinolytic proteins in turn have diverse roles in immunoregulation. Here, the intricate relationship between the fibrinolytic and innate immune system will be discussed.
Collapse
|
5
|
Coleman JR, Moore EE, Kelher MR, Jones K, Cohen MJ, Banerjee A, Silliman CC. Elucidating the molecular mechanisms of fibrinolytic shutdown after severe injury: The role of thrombin-activatable fibrinolysis inhibitor. J Trauma Acute Care Surg 2023; 94:857-862. [PMID: 36787438 PMCID: PMC10205661 DOI: 10.1097/ta.0000000000003911] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND The mechanisms underlying trauma-induced coagulopathy remain elusive. Hyperfibrinolysis has been linked to increased plasminogen activation and antiprotease consumption; however, the mechanistic players in its counterpart, fibrinolysis shutdown, remain unclear. We hypothesize that thrombin-activatable fibrinolysis inhibitor (TAFI) plays a major role in fibrinolytic shutdown after injury. METHODS As part of this observational cohort study, whole blood was collected from trauma activation patients at a single, level 1 trauma center. Citrated rapid thrombelastography and the following enzyme-linked immunosorbent assays were conducted: thrombin, antithrombin, thrombin-antithrombin complex, TAFI, plasminogen, antiplasmin, plasmin-antiplasmin (PAP), tissue plasminogen activator, plasminogen activator inhibitor 1, and tissue plasminogen activator-plasminogen activator inhibitor 1 complex. Univariate and cluster analysis were performed. RESULTS Overall, 56 patients (median age, 33.5 years; 70% male) were included. The majority (57%) presented after blunt mechanism and with severe injury (median New Injury Severity Score, 27). Two clusters of patients were identified: Group 1 (normal fibrinolysis, n = 21) and Group 2 (fibrinolysis shutdown, n = 35). Group 2 had significantly lower fibrinolysis with a median LY30 of 1.1% (interquartile range [IQR], 0.1-1.9%) versus 2.1% (IQR, 0.5-2.8%) in Group 1; while the median LY30 was within physiologic range, 45% of patients in Group 2 were in shutdown (vs. 24% in Group 1, p = 0.09). Compared with Group 1, Group 2 had significantly higher PAP (median, 4.7 [IQR, 1.7-9.3] vs. 1.4 [1.0-2.1] μg/mL in Group 1; p = 0.002) and higher TAFI (median, 152.5% [IQR, 110.3-190.7%] vs. 121.9% [IQR, 93.2-155.6%]; p = 0.04). There was a strong correlation between PAP and TAFI ( R2 = 0.5, p = 0.0002). CONCLUSION The presented data characterize fibrinolytic shutdown, indicating an initial plasmin burst followed by diminished fibrinolysis, which is distinct from hypofibrinolysis (inadequate plasmin burst and fibrinolysis). After an initial thrombin and plasmin burst (increased PAP), fibrinolysis is inhibited, mediated in part by increased TAFI.
Collapse
Affiliation(s)
- Julia R Coleman
- From the Department of Surgery (J.R.C., E.E.M., M.J.C., A.B., C.C.S.), University of Colorado-Denver, Aurora; Department of Surgery (E.E.M.), Ernest E Moore Shock Trauma Center at Denver Health; Department of Cell Biology (K.J.), University of Oklahoma; Vitalant Research Institute (M.R.K.); and Department of Pediatrics (C.C.S.), School of Medicine, University of Colorado Denver, Aurora, Colorado
| | | | | | | | | | | | | |
Collapse
|
6
|
Yang Z, Nicholson SE, Cancio TS, Cancio LC, Li Y. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target. Front Immunol 2023; 14:1100461. [PMID: 37006238 PMCID: PMC10064147 DOI: 10.3389/fimmu.2023.1100461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Susannah E. Nicholson
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Tomas S. Cancio
- Combat Casualty Care Research Team (CRT) 3, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Leopoldo C. Cancio
- United States (US) Army Burn Center, United States (US) Army Institute of Surgical Research, Joint Base San Antonio (JBSA)-Fort Sam Houston, TX, United States
| | - Yansong Li
- Division of Trauma Research, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- The Geneva Foundation, Immunological Damage Control Resuscitation Program, Tacoma, WA, United States
- *Correspondence: Yansong Li,
| |
Collapse
|
7
|
Claesen K, De Loose J, Van Wielendaele P, De bruyn E, Sim Y, Thys S, De Meester I, Hendriks D. ProCPU Is Expressed by (Primary) Human Monocytes and Macrophages and Expression Differs between States of Differentiation and Activation. Int J Mol Sci 2023; 24:ijms24043725. [PMID: 36835137 PMCID: PMC9967989 DOI: 10.3390/ijms24043725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Carboxypeptidase U (CPU, TAFIa, CPB2) is a potent attenuator of fibrinolysis that is mainly synthesized by the liver as its inactive precursor proCPU. Aside from its antifibrinolytic properties, evidence exists that CPU can modulate inflammation, thereby regulating communication between coagulation and inflammation. Monocytes and macrophages play a central role in inflammation and interact with coagulation mechanisms resulting in thrombus formation. The involvement of CPU and monocytes/macrophages in inflammation and thrombus formation, and a recent hypothesis that proCPU is expressed in monocytes/macrophages, prompted us to investigate human monocytes and macrophages as a potential source of proCPU. CPB2 mRNA expression and the presence of proCPU/CPU protein were studied in THP-1, PMA-stimulated THP-1 cells and primary human monocytes, M-CSF-, IFN-γ/LPS-, and IL-4-stimulated-macrophages by RT-qPCR, Western blotting, enzyme activity measurements, and immunocytochemistry. CPB2 mRNA and proCPU protein were detected in THP-1 and PMA-stimulated THP-1 cells as well as in primary monocytes and macrophages. Moreover, CPU was detected in the cell medium of all investigated cell types and it was demonstrated that proCPU can be activated into functionally active CPU in the in vitro cell culture environment. Comparison of CPB2 mRNA expression and proCPU concentrations in the cell medium between the different cell types provided evidence that CPB2 mRNA expression and proCPU secretion in monocytes and macrophages is related to the degree to which these cells are differentiated. Our results indicate that primary monocytes and macrophages express proCPU. This sheds new light on monocytes and macrophages as local proCPU sources.
Collapse
Affiliation(s)
- Karen Claesen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Joni De Loose
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Emilie De bruyn
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Yani Sim
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Sofie Thys
- Laboratory of Cell Biology and Histology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dirk Hendriks
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Correspondence: ; Tel.: +32-3-265-27-27
| |
Collapse
|
8
|
Washburn RL, Dufour JM. Complementing Testicular Immune Regulation: The Relationship between Sertoli Cells, Complement, and the Immune Response. Int J Mol Sci 2023; 24:ijms24043371. [PMID: 36834786 PMCID: PMC9965741 DOI: 10.3390/ijms24043371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Sertoli cells within the testis are instrumental in providing an environment for spermatogenesis and protecting the developing germ cells from detrimental immune responses which could affect fertility. Though these immune responses consist of many immune processes, this review focuses on the understudied complement system. Complement consists of 50+ proteins including regulatory proteins, immune receptors, and a cascade of proteolytic cleavages resulting in target cell destruction. In the testis, Sertoli cells protect the germ cells from autoimmune destruction by creating an immunoregulatory environment. Most studies on Sertoli cells and complement have been conducted in transplantation models, which are effective in studying immune regulation during robust rejection responses. In grafts, Sertoli cells survive activated complement, have decreased deposition of complement fragments, and express many complement inhibitors. Moreover, the grafts have delayed infiltration of immune cells and contain increased infiltration of immunosuppressive regulatory T cells as compared to rejecting grafts. Additionally, anti-sperm antibodies and lymphocyte infiltration have been detected in up to 50% and 30% of infertile testes, respectively. This review seeks to provide an updated overview of the complement system, describe its relationship with immune cells, and explain how Sertoli cells may regulate complement in immunoprotection. Identifying the mechanism Sertoli cells use to protect themselves and germ cells against complement and immune destruction is relevant for male reproduction, autoimmunity, and transplantation.
Collapse
Affiliation(s)
- Rachel L Washburn
- Immunology and Infectious Diseases, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79424, USA
| |
Collapse
|
9
|
Kolev M, Barbour T, Baver S, Francois C, Deschatelets P. With complements: C3 inhibition in the clinic. Immunol Rev 2023; 313:358-375. [PMID: 36161656 DOI: 10.1111/imr.13138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is a key complement protein, located at the nexus of all complement activation pathways. Extracellular, tissue, cell-derived, and intracellular C3 plays critical roles in the immune response that is dysregulated in many diseases, making it an attractive therapeutic target. However, challenges such as very high concentration in blood, increased acute expression, and the elevated risk of infections have historically posed significant challenges in the development of C3-targeted therapeutics. This is further complicated because C3 activation fragments and their receptors trigger a complex network of downstream effects; therefore, a clear understanding of these is needed to provide context for a better understanding of the mechanism of action (MoA) of C3 inhibitors, such as pegcetacoplan. Because of C3's differential upstream position to C5 in the complement cascade, there are mechanistic differences between pegcetacoplan and eculizumab that determine their efficacy in patients with paroxysmal nocturnal hemoglobinuria. In this review, we compare the MoA of pegcetacoplan and eculizumab in paroxysmal nocturnal hemoglobinuria and discuss the complement-mediated disease that might be amenable to C3 inhibition. We further discuss the current state and outlook for C3-targeted therapeutics and provide our perspective on which diseases might be the next success stories in the C3 therapeutics journey.
Collapse
Affiliation(s)
- Martin Kolev
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Tara Barbour
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Scott Baver
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
10
|
The complement C3-complement factor D-C3a receptor signalling axis regulates cardiac remodelling in right ventricular failure. Nat Commun 2022; 13:5409. [PMID: 36109509 PMCID: PMC9478115 DOI: 10.1038/s41467-022-33152-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Failure of the right ventricle plays a critical role in any type of heart failure. However, the mechanism remains unclear, and there is no specific therapy. Here, we show that the right ventricle predominantly expresses alternative complement pathway-related genes, including Cfd and C3aR1. Complement 3 (C3)-knockout attenuates right ventricular dysfunction and fibrosis in a mouse model of right ventricular failure. C3a is produced from C3 by the C3 convertase complex, which includes the essential component complement factor D (Cfd). Cfd-knockout mice also show attenuation of right ventricular failure. Moreover, the plasma concentration of CFD correlates with the severity of right ventricular failure in patients with chronic right ventricular failure. A C3a receptor (C3aR) antagonist dramatically improves right ventricular dysfunction in mice. In summary, we demonstrate the crucial role of the C3-Cfd-C3aR axis in right ventricular failure and highlight potential therapeutic targets for right ventricular failure. Right ventricular (RV) failure is clinically crucial, but there is no specific therapy. Here, the authors show that the complement alternative pathway is activated in RV failure and that blockade of the pathway ameliorates RV failure in mice.
Collapse
|
11
|
Pryzdial ELG, Leatherdale A, Conway EM. Coagulation and complement: Key innate defense participants in a seamless web. Front Immunol 2022; 13:918775. [PMID: 36016942 PMCID: PMC9398469 DOI: 10.3389/fimmu.2022.918775] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022] Open
Abstract
In 1969, Dr. Oscar Ratnoff, a pioneer in delineating the mechanisms by which coagulation is activated and complement is regulated, wrote, “In the study of biological processes, the accumulation of information is often accelerated by a narrow point of view. The fastest way to investigate the body’s defenses against injury is to look individually at such isolated questions as how the blood clots or how complement works. We must constantly remind ourselves that such distinctions are man-made. In life, as in the legal cliché, the devices through which the body protects itself form a seamless web, unwrinkled by our artificialities.” Our aim in this review, is to highlight the critical molecular and cellular interactions between coagulation and complement, and how these two major component proteolytic pathways contribute to the seamless web of innate mechanisms that the body uses to protect itself from injury, invading pathogens and foreign surfaces.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| | - Alexander Leatherdale
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| |
Collapse
|
12
|
Alfaro E, Díaz-García E, García-Tovar S, Zamarrón E, Mangas A, Galera R, Nanwani-Nanwani K, Pérez-de-Diego R, López-Collazo E, García-Río F, Cubillos-Zapata C. Impaired Kallikrein-Kinin System in COVID-19 Patients' Severity. Front Immunol 2022; 13:909342. [PMID: 35812405 PMCID: PMC9258198 DOI: 10.3389/fimmu.2022.909342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022] Open
Abstract
COVID-19 has emerged as a devastating disease in the last 2 years. Many authors appointed to the importance of kallikrein-kinin system (KKS) in COVID-19 pathophysiology as it is involved in inflammation, vascular homeostasis, and coagulation. We aim to study the bradykinin cascade and its involvement in severity of patients with COVID-19. This is an observational cohort study involving 63 consecutive patients with severe COVID-19 pneumonia and 27 healthy subjects as control group. Clinical laboratory findings and plasma protein concentration of KKS peptides [bradykinin (BK), BK1-8], KKS proteins [high–molecular weight kininogen (HK)], and KKS enzymes [carboxypeptidase N subunit 1 (CPN1), kallikrein B1 (KLKB1), angiotensin converting enzyme 2 (ACE2), and C1 esterase inhibitor (C1INH)] were analyzed. We detected dysregulated KKS in patients with COVID-19, characterized by an accumulation of BK1-8 in combination with decreased levels of BK. Accumulated BK1-8 was related to severity of patients with COVID-19. A multivariate logistic regression model retained BK1-8, BK, and D-dimer as independent predictor factors to intensive care unit (ICU) admission. A Youden’s optimal cutoff value of −0.352 was found for the multivariate model score with an accuracy of 92.9%. Multivariate model score-high group presented an odds ratio for ICU admission of 260.0. BK1-8 was related to inflammation, coagulation, and lymphopenia. Our data suggest that BK1-8/BK plasma concentration in combination with D-dimer levels might be retained as independent predictors for ICU admission in patients with COVID-19. Moreover, we reported KKS dysregulation in patients with COVID-19, which was related to disease severity by means of inflammation, hypercoagulation, and lymphopenia.
Collapse
Affiliation(s)
- Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Ester Zamarrón
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Alberto Mangas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Raúl Galera
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | | | - Rebeca Pérez-de-Diego
- Laboratory of Immunogenetics of Human Diseases, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | | | - Francisco García-Río
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- *Correspondence: Francisco García-Río, ; Carolina Cubillos-Zapata,
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- *Correspondence: Francisco García-Río, ; Carolina Cubillos-Zapata,
| |
Collapse
|
13
|
Oda H, Nagamatsu T, Osuga Y. Thrombomodulin and pregnancy in the limelight: Insights into the therapeutic aspect of thrombomodulin in pregnancy complications. J Thromb Haemost 2022; 20:1040-1055. [PMID: 35191182 DOI: 10.1111/jth.15680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thrombomodulin (TM) is a transmembrane glycoprotein expressed on the endothelial cell functioning as a cofactor in the anticoagulation system. However, aside from anticoagulation, recent studies have revealed its multiple organ protective roles such as anti-inflammation, angiogenesis, and cell proliferation, which may redefine the function of TM. Although TM is predominantly expressed on placental trophoblasts, the physiological role of TM during pregnancy remains unclear. Because the understanding of TM function has drastically progressed, these new discoveries shed light on the unknown activities of placental TM. Moreover, the clinical application of recombinant TM (rTM) has opened the possibility of TM as a therapeutic target for pregnancy complications. OBJECTIVES Here, we comprehensively review the studies elucidating the role of TM during pregnancy from both classic and newly discovered perspectives, and seek for its potential as a therapeutic target for pregnancy complications. METHODS Basic research using trophoblast cells and transgenic mice, as well as cohort studies of inherited TM deficiency and clinical trials of rTM were summarized, which led us to further discuss the clinical application of rTM as a novel therapeutic for pregnancy complications. RESULTS AND CONCLUSION Accumulating evidence suggest the relevance of placental TM deficiency in pregnancy complications such as miscarriage, fetal growth restriction, and preeclampsia. Most importantly, promising results in animal studies and clinical trials further assure the possibility of rTM as an optimal therapeutic for such conditions. The therapeutic potential of TM raised throughout this review could drastically change the clinical approach to pregnancy complication and improve maternal outcomes.
Collapse
Affiliation(s)
- Hiroko Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
14
|
Miyagawa S, Maeda A, Toyama C, Kogata S, Okamatsu C, Yamamoto R, Masahata K, Kamiyama M, Eguchi H, Watanabe M, Nagashima H, Ikawa M, Matsunami K, Okuyama H. Aspects of the Complement System in New Era of Xenotransplantation. Front Immunol 2022; 13:860165. [PMID: 35493484 PMCID: PMC9046582 DOI: 10.3389/fimmu.2022.860165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 01/16/2023] Open
Abstract
After producing triple (Gal, H-D and Sda)-KO pigs, hyperacute rejection appeared to no longer be a problem. However, the origin of xeno-rejection continues to be a controversial topic, including small amounts of antibodies and subsequent activation of the graft endothelium, the complement recognition system and the coagulation systems. The complement is activated via the classical pathway by non-Gal/H-D/Sda antigens and by ischemia-reperfusion injury (IRI), via the alternative pathway, especially on islets, and via the lectin pathway. The complement system therefore is still an important recognition and effector mechanism in xeno-rejection. All complement regulatory proteins (CRPs) regulate complement activation in different manners. Therefore, to effectively protect xenografts against xeno-rejection, it would appear reasonable to employ not only one but several CRPs including anti-complement drugs. The further assessment of antigens continues to be an important issue in the area of clinical xenotransplantation. The above conclusions suggest that the expression of sufficient levels of human CRPs on Triple-KO grafts is necessary. Moreover, multilateral inhibition on local complement activation in the graft, together with the control of signals between macrophages and lymphocytes is required.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- *Correspondence: Shuji Miyagawa,
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kogata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chizu Okamatsu
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Riho Yamamoto
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazunori Masahata
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masafumi Kamiyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Eguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahito Watanabe
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Hiroshi Nagashima
- International Institute for Bio-Resource Research, Meiji University, Kanagawa, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
15
|
Muldur S, Vadysirisack DD, Ragunathan S, Tang Y, Ricardo A, Sayegh CE, Irimia D. Human Neutrophils Respond to Complement Activation and Inhibition in Microfluidic Devices. Front Immunol 2021; 12:777932. [PMID: 34899737 PMCID: PMC8653703 DOI: 10.3389/fimmu.2021.777932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
Complement activation is key to anti-microbial defenses by directly acting on microbes and indirectly by triggering cellular immune responses. Complement activation may also contribute to the pathogenesis of numerous inflammatory and immunological diseases. Consequently, intense research focuses on developing therapeutics that block pathology-causing complement activation while preserving anti-microbial complement activities. However, the pace of research is slowed down significantly by the limitations of current tools for evaluating complement-targeting therapeutics. Moreover, the effects of potential therapeutic agents on innate immune cells, like neutrophils, are not fully understood. Here, we employ microfluidic assays and measure chemotaxis, phagocytosis, and swarming changes in human neutrophils ex vivo in response to various complement-targeting agents. We show that whereas complement factor 5 (C5) cleavage inhibitor eculizumab blocks all neutrophil anti-microbial functions, newer compounds like the C5 cleavage inhibitor RA101295 and C5a receptor antagonist avacopan inhibit chemotaxis and swarming while preserving neutrophil phagocytosis. These results highlight the utility of microfluidic neutrophil assays in evaluating potential complement-targeting therapeutics.
Collapse
Affiliation(s)
- Sinan Muldur
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Shriners Burns Hospital, Boston, MA, United States
| | | | | | - Yalan Tang
- Ra Pharmaceuticals, Inc., Cambridge, MA, United States
| | | | | | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Shriners Burns Hospital, Boston, MA, United States
| |
Collapse
|
16
|
Agostinis C, Mangogna A, Balduit A, Aghamajidi A, Ricci G, Kishore U, Bulla R. COVID-19, Pre-Eclampsia, and Complement System. Front Immunol 2021; 12:775168. [PMID: 34868042 PMCID: PMC8635918 DOI: 10.3389/fimmu.2021.775168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is characterized by virus-induced injury leading to multi-organ failure, together with inflammatory reaction, endothelial cell (EC) injury, and prothrombotic coagulopathy with thrombotic events. Complement system (C) via its cross-talk with the contact and coagulation systems contributes significantly to the severity and pathological consequences due to SARS-CoV-2 infection. These immunopathological mechanisms overlap in COVID-19 and pre-eclampsia (PE). Thus, mothers contracting SARS-CoV-2 infection during pregnancy are more vulnerable to developing PE. SARS-CoV-2 infection of ECs, via its receptor ACE2 and co-receptor TMPRSS2, can provoke endothelial dysfunction and disruption of vascular integrity, causing hyperinflammation and hypercoagulability. This is aggravated by bradykinin increase due to inhibition of ACE2 activity by the virus. C is important for the progression of normal pregnancy, and its dysregulation can impact in the form of PE-like syndrome as a consequence of SARS-CoV-2 infection. Thus, there is also an overlap between treatment regimens of COVID-19 and PE. C inhibitors, especially those targeting C3 or MASP-2, are exciting options for treating COVID-19 and consequent PE. In this review, we examine the role of C, contact and coagulation systems as well as endothelial hyperactivation with respect to SARS-CoV-2 infection during pregnancy and likely development of PE.
Collapse
Affiliation(s)
- Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Andrea Balduit
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy.,Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
17
|
Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther 2021; 6:407. [PMID: 34824200 PMCID: PMC8613465 DOI: 10.1038/s41392-021-00816-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection. Over decades, advanced understanding of host-microorganism interaction has gradually unmasked the genuine nature of sepsis, guiding toward new definition and novel therapeutic approaches. Diverse clinical manifestations and outcomes among infectious patients have suggested the heterogeneity of immunopathology, while systemic inflammatory responses and deteriorating organ function observed in critically ill patients imply the extensively hyperactivated cascades by the host defense system. From focusing on microorganism pathogenicity, research interests have turned toward the molecular basis of host responses. Though progress has been made regarding recognition and management of clinical sepsis, incidence and mortality rate remain high. Furthermore, clinical trials of therapeutics have failed to obtain promising results. As far as we know, there was no systematic review addressing sepsis-related molecular signaling pathways and intervention therapy in literature. Increasing studies have succeeded to confirm novel functions of involved signaling pathways and comment on efficacy of intervention therapies amid sepsis. However, few of these studies attempt to elucidate the underlining mechanism in progression of sepsis, while other failed to integrate preliminary findings and describe in a broader view. This review focuses on the important signaling pathways, potential molecular mechanism, and pathway-associated therapy in sepsis. Host-derived molecules interacting with activated cells possess pivotal role for sepsis pathogenesis by dynamic regulation of signaling pathways. Cross-talk and functions of these molecules are also discussed in detail. Lastly, potential novel therapeutic strategies precisely targeting on signaling pathways and molecules are mentioned.
Collapse
Affiliation(s)
- Yun-Yu Zhang
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Bo-Tao Ning
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
18
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
19
|
Pleiotropic Effects of Atorvastatin Result in a Downregulation of the Carboxypeptidase U System (CPU, TAFIa, CPB2) in a Mouse Model of Advanced Atherosclerosis. Pharmaceutics 2021; 13:pharmaceutics13101731. [PMID: 34684024 PMCID: PMC8540817 DOI: 10.3390/pharmaceutics13101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022] Open
Abstract
Statins (hydroxymethyl-glutaryl-CoA-reductase inhibitors) lower procarboxypeptidase U (proCPU, TAFI, proCPB2). However, it is challenging to prove whether this is a lipid or non-lipid-related pleiotropic effect, since statin treatment decreases cholesterol levels in humans. In apolipoprotein E-deficient mice with a heterozygous mutation in the fibrillin-1 gene (ApoE−/−Fbn1C1039G+/−), a model of advanced atherosclerosis, statins do not lower cholesterol. Consequently, studying cholesterol-independent effects of statins can be achieved more straightforwardly in these mice. Female ApoE −/−Fbn1C1039G+/− mice were fed a Western diet (WD). At week 10 of WD, mice were divided into a WD group (receiving WD only) and a WD + atorvastatin group (receiving 10 mg/kg/day atorvastatin +WD) group. After 15 weeks, blood was collected from the retro-orbital plexus, and the mice were sacrificed. Total plasma cholesterol and C-reactive protein (CRP) were measured with commercially available kits. Plasma proCPU levels were determined with an activity-based assay. Total plasma cholesterol levels were not significantly different between both groups, while proCPU levels were significantly lower in the WD + atorvastatin group. Interestingly proCPU levels correlated with CRP and circulating monocytes. In conclusion, our results confirm that atorvastatin downregulates proCPU levels in ApoE−/−Fbn1C1039G+/− mice on a WD, and evidence was provided that this downregulation is a pleiotropic effect of atorvastatin treatment.
Collapse
|
20
|
Wheeler JX, Thelwell C, Rigsby P, Whiting G. Quantitation of thrombin-activatable fibrinolysis inhibitor in human plasma by isotope dilution mass spectrometry. Anal Biochem 2021; 638:114413. [PMID: 34644544 DOI: 10.1016/j.ab.2021.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Measurement of Thrombin-activatable fibrinolysis inhibitor (TAFI) in human plasma is dependent on reproducible assays. To date, standards for measuring TAFI are frequently calibrated relative to pooled normal human plasma and arbitrarily assigned a potency of 100% TAFI, despite variation in TAFI concentrations between plasma pools. Alternatively, TAFI calibrators can be assigned a value in SI units but the approach used for value assignment is not consistent and furthermore, if purified TAFI is used to determine TAFI concentration in plasma, may be adversely affected by matrix effects. A TAFI plasma standard in mass units with traceability to the SI unit of mass is desirable. We report here the establishment of a quantitative mass spectrometry method for TAFI in plasma. Traceability is obtained by reference to calibrators that consist of blank plasma spiked with a defined amount of purified TAFI, value assigned by amino acid analysis. The calibrators are run alongside the samples, using the same preparation steps and conditions; an acetonitrile assisted tryptic digestion and multi-dimensional liquid chromatography (LC) separation followed by SRM-MS analysis. We measured the TAFI quantitatively in human plasma with reproducibility, reliability and precision, and demonstrated the applicability of this approach for value assigning a common reference standard.
Collapse
Affiliation(s)
- Jun X Wheeler
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, EN6 3QG, UK
| | - Craig Thelwell
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, EN6 3QG, UK
| | - Peter Rigsby
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, EN6 3QG, UK
| | - Gail Whiting
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, EN6 3QG, UK.
| |
Collapse
|
21
|
Othman R, Cagnone G, Joyal JS, Vaucher E, Couture R. Kinins and Their Receptors as Potential Therapeutic Targets in Retinal Pathologies. Cells 2021; 10:1913. [PMID: 34440682 PMCID: PMC8391508 DOI: 10.3390/cells10081913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/29/2022] Open
Abstract
The kallikrein-kinin system (KKS) contributes to retinal inflammation and neovascularization, notably in diabetic retinopathy (DR) and neovascular age-related macular degeneration (AMD). Bradykinin type 1 (B1R) and type 2 (B2R) receptors are G-protein-coupled receptors that sense and mediate the effects of kinins. While B2R is constitutively expressed and regulates a plethora of physiological processes, B1R is almost undetectable under physiological conditions and contributes to pathological inflammation. Several KKS components (kininogens, tissue and plasma kallikreins, and kinin receptors) are overexpressed in human and animal models of retinal diseases, and their inhibition, particularly B1R, reduces inflammation and pathological neovascularization. In this review, we provide an overview of the KKS with emphasis on kinin receptors in the healthy retina and their detrimental roles in DR and AMD. We highlight the crosstalk between the KKS and the renin-angiotensin system (RAS), which is known to be detrimental in ocular pathologies. Targeting the KKS, particularly the B1R, is a promising therapy in retinal diseases, and B1R may represent an effector of the detrimental effects of RAS (Ang II-AT1R).
Collapse
Affiliation(s)
- Rahmeh Othman
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Gael Cagnone
- Department of Pediatry, Faculty of Medicine, CHU St Justine, Université de Montréal, Montreal, QC H3T 1J4, Canada; (G.C.); (J.-S.J.)
| | - Jean-Sébastien Joyal
- Department of Pediatry, Faculty of Medicine, CHU St Justine, Université de Montréal, Montreal, QC H3T 1J4, Canada; (G.C.); (J.-S.J.)
| | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montreal, QC H3T 1P1, Canada
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
22
|
Juneja GK, Castelo M, Yeh CH, Cerroni SE, Hansen BE, Chessum JE, Abraham J, Cani E, Dwivedi DJ, Fraser DD, Slessarev M, Martin C, McGilvray S, Gross PL, Liaw PC, Weitz JI, Kim PY. Biomarkers of coagulation, endothelial function, and fibrinolysis in critically ill patients with COVID-19: A single-center prospective longitudinal study. J Thromb Haemost 2021; 19:1546-1557. [PMID: 33826233 PMCID: PMC8250276 DOI: 10.1111/jth.15327] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Immunothrombosis and coagulopathy in the lung microvasculature may lead to lung injury and disease progression in coronavirus disease 2019 (COVID-19). We aim to identify biomarkers of coagulation, endothelial function, and fibrinolysis that are associated with disease severity and may have prognostic potential. METHODS We performed a single-center prospective study of 14 adult COVID-19(+) intensive care unit patients who were age- and sex-matched to 14 COVID-19(-) intensive care unit patients, and healthy controls. Daily blood draws, clinical data, and patient characteristics were collected. Baseline values for 10 biomarkers of interest were compared between the three groups, and visualized using Fisher's linear discriminant function. Linear repeated-measures mixed models were used to screen biomarkers for associations with mortality. Selected biomarkers were further explored and entered into an unsupervised longitudinal clustering machine learning algorithm to identify trends and targets that may be used for future predictive modelling efforts. RESULTS Elevated D-dimer was the strongest contributor in distinguishing COVID-19 status; however, D-dimer was not associated with survival. Variable selection identified clot lysis time, and antigen levels of soluble thrombomodulin (sTM), plasminogen activator inhibitor-1 (PAI-1), and plasminogen as biomarkers associated with death. Longitudinal multivariate k-means clustering on these biomarkers alone identified two clusters of COVID-19(+) patients: low (30%) and high (100%) mortality groups. Biomarker trajectories that characterized the high mortality cluster were higher clot lysis times (inhibited fibrinolysis), higher sTM and PAI-1 levels, and lower plasminogen levels. CONCLUSIONS Longitudinal trajectories of clot lysis time, sTM, PAI-1, and plasminogen may have predictive ability for mortality in COVID-19.
Collapse
Affiliation(s)
- Ganeem K Juneja
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Matthew Castelo
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Calvin H Yeh
- Department of Medicine, Division of Emergency Medicine, University of Toronto, Toronto, ON, Canada
| | - Samantha E Cerroni
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bettina E Hansen
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - James E Chessum
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Joel Abraham
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Erblin Cani
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dhruva J Dwivedi
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, Canada
- Pediatrics, Western University, London, ON, Canada
- Clinical Neurological Sciences, Western University, London, ON, Canada
- Physiology & Pharmacology, Western University, London, ON, Canada
| | - Marat Slessarev
- Lawson Health Research Institute, London, ON, Canada
- Medicine, Western University, London, ON, Canada
| | - Claudio Martin
- Lawson Health Research Institute, London, ON, Canada
- Medicine, Western University, London, ON, Canada
| | - Scott McGilvray
- Department of Medicine, Division of Emergency Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter L Gross
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Patricia C Liaw
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeffrey I Weitz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Paul Y Kim
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW To discuss the crosstalk between the complement system and hemostatic factors (coagulation cascade, platelet, endothelium, and Von Willebrand Factor), and the consequences of this interaction under physiologic and pathologic conditions. RECENT FINDINGS The complement and coagulation systems are comprised of serine proteases and are genetically related. In addition to the common ancestral genes, the complement system and hemostasis interact directly, through protein-protein interactions, and indirectly, on the surface of platelets and endothelial cells. The close interaction between the complement system and hemostatic factors is manifested both in physiologic and pathologic conditions, such as in the inflammatory response to thrombosis, thrombosis at the inflamed area, and thrombotic complications of complement disorders. SUMMARY The interaction between the complement system and hemostasis is vital for homeostasis and the protective response of the host to tissue injury, but also results in the pathogenesis of several thrombotic and inflammatory disorders.
Collapse
|
24
|
Fan Y, Bai B, Liang Y, Ren Y, Liu Y, Zhou F, Lou X, Zi J, Hou G, Chen F, Zhao Q, Liu S. Proteomic Profiling of Gastric Signet Ring Cell Carcinoma Tissues Reveals Characteristic Changes of the Complement Cascade Pathway. Mol Cell Proteomics 2021; 20:100068. [PMID: 33676000 PMCID: PMC8121970 DOI: 10.1016/j.mcpro.2021.100068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/25/2020] [Accepted: 02/23/2021] [Indexed: 02/08/2023] Open
Abstract
Signet ring cell carcinoma (SRCC) is a histological subtype of gastric cancer with distinct features in multiple aspects compared with adenocarcinomas (ACs). The lack of a systematic molecular overview of this disease has led to slow progress in its clinical practice. In the present proteomics study, gastric tissues were collected from tumors and adjacent tissues, including 14 SRCCs and 34 ACs, and laser capture microdissection (LCM) was employed to eradicate the cellular heterogeneity of the tissues. The proteomes of tissues were profiled by data-independent acquisition (DIA) mass spectrometry (MS). Based on the over 6000 proteins quantified, univariate analysis and pathway enrichment revealed that some proteins and pathways demonstrated differences between SRCC and ACs. Importantly, the upregulation of a majority of complement-related proteins was notable for SRCC but not for ACs. A hypothesis, based on the proteomics evidence, was proposed that the complement cascade was evoked in the SRCC microenvironment upon infiltration, and the SRCC cells survived the complement cytotoxicity by secreting endogenous negative regulators. Moreover, an attempt was made to establish appropriate cell models for gastric SRCC through proteomic comparison of the 15 gastric cell lines and gastric tumors. The predictions of a supervised classifier suggested that none of these gastric cell lines qualified to mimic SRCC. This study discovered that the complement cascade is activated at a higher level in gastric SRCC than in ACs. LCM-DIA extracted unprecedented proteomic details of gastric in different subtypes. Complement cascade was found to be an SRCC-specific pathway for the first time. Gastric cell lines were evaluated based on proteomic features for the first time. Re-analyzable DIA data collected provide rich opportunity for future research.
Collapse
Affiliation(s)
- Yang Fan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China; Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Bin Bai
- State Key Laboratory of Cancer Biology & Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuting Liang
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China; Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Yan Ren
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Yanxia Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Fenli Zhou
- State Key Laboratory of Cancer Biology & Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jin Zi
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Guixue Hou
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology & Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China.
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China; Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
25
|
Asavapanumas N, Tradtrantip L, Verkman AS. Targeting the complement system in neuromyelitis optica spectrum disorder. Expert Opin Biol Ther 2021; 21:1073-1086. [PMID: 33513036 DOI: 10.1080/14712598.2021.1884223] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorder (NMOSD) is characterized by central nervous system inflammation and demyelination. In AQP4-IgG seropositive NMOSD, circulating immunoglobulin G (IgG) autoantibodies against astrocyte water channel aquaporin-4 (AQP4) cause tissue injury. Compelling evidence supports a pathogenic role for complement activation following AQP4-IgG binding to AQP4. Clinical studies supported the approval of eculizumab, an inhibitor of C5 cleavage, in AQP4-IgG seropositive NMOSD. AREAS COVERED This review covers in vitro, animal models, and human evidence for complement-dependent and complement-independent tissue injury in AQP4-IgG seropositive NMOSD. Complement targets are discussed, including complement proteins, regulators and anaphylatoxin receptors, and corresponding drug candidates. EXPERT OPINION Though preclinical data support a central pathogenic role of complement activation in AQP4-IgG seropositive NMOSD, they do not resolve the relative contributions of complement-dependent vs. complement-independent disease mechanisms such as antibody-dependent cellular cytotoxicity, T cell effector mechanisms, and direct AQP4-IgG-induced cellular injury. The best evidence that complement-dependent mechanisms predominate in AQP4-IgG seropositive NMOSD comes from eculizumab clinical data. Various drug candidates targeting distinct complement effector mechanisms may offer improved safety and efficacy. However, notwithstanding the demonstrated efficacy of complement inhibition in AQP4-IgG seropositive NMOSD, the ultimate niche for complement inhibition is not clear given multiple drug options with alternative mechanisms of action.Abbreviations: AAV2, Adeno-associated virus 2; ADCC, antibody-dependent cellular cytotoxicity; ANCA, antineutrophilic cytoplasmic autoantibody; AQP4, aquaporin-4; AQP4-IgG, AQP4-immunoglobulin G; C1-INH, C1-esterase inhibitor; C3aR, C3a receptor; C4BP, C4 binding protein; C5aR, C5a receptor; CDC, complement-dependent cytotoxicity; CFHR1, complement factor H related 1; CNS, central nervous system; EAE, experimental autoimmune encephalomyelitis; EndoS, endoglycosidase S; FHL-1, factor-H-like protein 1; GFAP, glial fibrillary acidic protein; Iba-1, ionized calcium-binding adaptor protein-1; IgG, immunoglobulin G; IVIG, intravenous human immunoglobulin G; MAC, membrane attack complex; MBL, maltose-binding lectin; MBP, myelin basic protein; MOG, myelin oligodendrocyte glycoprotein; NK cell, natural killer cell; NMOSD, neuromyelitis optica spectrum disorder; OAP, orthogonal arrays of particles; PNH, paroxysmal nocturnal hemoglobinuria.
Collapse
Affiliation(s)
- Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Lukmanee Tradtrantip
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
26
|
Akhir FNM, Noor MHM, Leong KWK, Nabizadeh JA, Manthey HD, Sonderegger SE, Fung JNT, McGirr CE, Shiels IA, Mills PC, Woodruff TM, Rolfe BE. An Immunoregulatory Role for Complement Receptors in Murine Models of Breast Cancer. Antibodies (Basel) 2021; 10:2. [PMID: 33430104 PMCID: PMC7838807 DOI: 10.3390/antib10010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
The complement system has demonstrated roles in regulating tumor growth, although these may differ between tumor types. The current study used two murine breast cancer models (EMT6 and 4T1) to investigate whether pharmacological targeting of receptors for complement proteins C3a (C3aR) and C5a (C5aR1) is protective in murine breast cancer models. In contrast to prior studies in other tumor models, treatment with the selective C5aR1 antagonist PMX53 had no effect on tumor growth. However, treatment of mice with a dual C3aR/C5aR1 agonist (YSFKPMPLaR) significantly slowed mammary tumor development and progression. Examination of receptor expression by quantitative polymerase chain reaction (qPCR) analysis showed very low levels of mRNA expression for either C3aR or C5aR1 by EMT6 or 4T1 mammary carcinoma cell lines compared with the J774 macrophage line or bone marrow-derived macrophages. Moreover, flow cytometric analysis found no evidence of C3aR or C5aR1 protein expression by either EMT6 or 4T1 cells, leading us to hypothesize that the tumor inhibitory effects of the dual agonist are indirect, possibly via regulation of the anti-tumor immune response. This hypothesis was supported by flow cytometric analysis of tumor infiltrating leukocyte populations, which demonstrated a significant increase in T lymphocytes in mice treated with the C3aR/C5aR1 agonist. These results support an immunoregulatory role for complement receptors in primary murine mammary carcinoma models. They also suggest that complement activation peptides can influence the anti-tumor response in different ways depending on the cancer type, the host immune response to the tumor and levels of endogenous complement activation within the tumor microenvironment.
Collapse
Affiliation(s)
- Fazrena Nadia Md Akhir
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Mohd Hezmee Mohd Noor
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (M.H.M.N.); (I.A.S.); (P.C.M.)
| | - Keith Weng Kit Leong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| | - Jamileh A. Nabizadeh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| | - Helga D. Manthey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| | - Stefan E. Sonderegger
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| | - Jenny Nga Ting Fung
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| | - Crystal E. McGirr
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| | - Ian A. Shiels
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (M.H.M.N.); (I.A.S.); (P.C.M.)
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (M.H.M.N.); (I.A.S.); (P.C.M.)
| | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Barbara E. Rolfe
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; (F.N.M.A.); (K.W.K.L.); (J.A.N.); (H.D.M.); (S.E.S.); (J.N.T.F.); (C.E.M.)
| |
Collapse
|
27
|
Mellors J, Tipton T, Longet S, Carroll M. Viral Evasion of the Complement System and Its Importance for Vaccines and Therapeutics. Front Immunol 2020; 11:1450. [PMID: 32733480 PMCID: PMC7363932 DOI: 10.3389/fimmu.2020.01450] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
The complement system is a key component of innate immunity which readily responds to invading microorganisms. Activation of the complement system typically occurs via three main pathways and can induce various antimicrobial effects, including: neutralization of pathogens, regulation of inflammatory responses, promotion of chemotaxis, and enhancement of the adaptive immune response. These can be vital host responses to protect against acute, chronic, and recurrent viral infections. Consequently, many viruses (including dengue virus, West Nile virus and Nipah virus) have evolved mechanisms for evasion or dysregulation of the complement system to enhance viral infectivity and even exacerbate disease symptoms. The complement system has multifaceted roles in both innate and adaptive immunity, with both intracellular and extracellular functions, that can be relevant to all stages of viral infection. A better understanding of this virus-host interplay and its contribution to pathogenesis has previously led to: the identification of genetic factors which influence viral infection and disease outcome, the development of novel antivirals, and the production of safer, more effective vaccines. This review will discuss the antiviral effects of the complement system against numerous viruses, the mechanisms employed by these viruses to then evade or manipulate this system, and how these interactions have informed vaccine/therapeutic development. Where relevant, conflicting findings and current research gaps are highlighted to aid future developments in virology and immunology, with potential applications to the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Jack Mellors
- Public Health England, National Infection Service, Salisbury, United Kingdom.,Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Tom Tipton
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Stephanie Longet
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Miles Carroll
- Public Health England, National Infection Service, Salisbury, United Kingdom
| |
Collapse
|
28
|
Kloek AT, Brouwer MC, van de Beek D. Host genetic variability and pneumococcal disease: a systematic review and meta-analysis. BMC Med Genomics 2019; 12:130. [PMID: 31519222 PMCID: PMC6743160 DOI: 10.1186/s12920-019-0572-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Pneumonia, sepsis, meningitis, and empyema due to Streptococcus pneumoniae is a major cause of morbidity and mortality. We provide a systemic overview of genetic variants associated with susceptibility, phenotype and outcome of community acquired pneumococcal pneumonia (CAP) and invasive pneumococcal disease (IPD). Methods We searched PubMed for studies on the influence of host genetics on susceptibility, phenotype, and outcome of CAP and IPD between Jan 1, 1983 and Jul 4, 2018. We listed methodological characteristics and when genetic data was available we calculated effect sizes. We used fixed or random effect models to calculate pooled effect sizes in the meta-analysis. Results We identified 1219 studies of which 60 studies involving 15,358 patients were included. Twenty-five studies (42%) focused on susceptibility, 8 (13%) on outcome, 1 (2%) on disease phenotype, and 26 (43%) on multiple categories. We identified five studies with a hypothesis free approach of which one resulted in one genome wide significant association in a gene coding for lincRNA with pneumococcal disease susceptibility. We performed 17 meta-analyses of which two susceptibility polymorphisms had a significant overall effect size: variant alleles of MBL2 (odds ratio [OR] 1·67, 95% confidence interval [CI] 1·04–2·69) and a variant in CD14 (OR 1·77, 95% CI 1·18–2·66) and none of the outcome polymorphisms. Conclusions Studies have identified several host genetics factors influencing risk of pneumococcal disease, but many result in non-reproducible findings due to methodological limitations. Uniform case definitions and pooling of data is necessary to obtain more robust findings. Electronic supplementary material The online version of this article (10.1186/s12920-019-0572-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne T Kloek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Keppler-Noreuil KM, Lozier J, Oden N, Taneja A, Burton-Akright J, Sapp JC, Biesecker LG. Thrombosis risk factors in PIK3CA-related overgrowth spectrum and Proteus syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:571-581. [PMID: 31490637 DOI: 10.1002/ajmg.c.31735] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 01/19/2023]
Abstract
Increased risk of thromboembolism has been recognized in individuals with mosaic overgrowth disorders, Proteus syndrome (PS) and PIK3CA-related overgrowth spectrum (PROS), including Klippel-Trenaunay syndrome and CLOVES syndrome. PS and PROS have distinct, yet overlapping clinical findings and are caused by somatic pathogenic variants in the PI3K/AKT gene signaling pathway. PS is caused by a single somatic activating AKT1 c.49G > A p.E17K variant while PROS can be caused one of multiple variants in PIK3CA. The role of prothrombotic factors, endothelial cell adhesion molecules, and vascular malformations in both PS and PROS have not been previously investigated. A pilot study of prospective clinical and laboratory evaluations with the purposes of identifying potential risk factors for thrombosis was conducted. Doppler ultrasounds and magnetic resonance angiogram/ venography (MRA/MRV) scans identified vascular malformations in PS and PROS that were not appreciated on physical examination. Abnormal D-dimers (0.60-2.0 mcg/ml) occurred in half of individuals, many having vascular malformations, but no thromboses. Soluble vascular endothelial markers, including thrombomodulin, soluble vascular adhesion molecule (sVCAM), soluble intercellular adhesion molecule (sICAM), E-selectin, and P-selectin were significantly higher in PS and PROS compared to controls. However, no single attribute was identified that explained the risk of thrombosis. Predisposition to thrombosis is likely multifactorial with risk factors including chronic stasis within vascular malformations, stasis from impaired mobility (e.g., following surgery), decreased anticoagulant proteins, and effects of AKT1 and PIK3CA variants on vascular endothelium. Based on our findings, we propose clinical recommendations for surveillance of thrombosis in PS and PROS.
Collapse
Affiliation(s)
- Kim M Keppler-Noreuil
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jay Lozier
- Department of Laboratory Medicine, Warren Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Neal Oden
- Department of Biostatistics, The EMMES Corporation, Rockville, Maryland
| | - Anjali Taneja
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jasmine Burton-Akright
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Julie C Sapp
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Leslie G Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
30
|
Liposome-induced hypersensitivity reactions: Risk reduction by design of safe infusion protocols in pigs. J Control Release 2019; 309:333-338. [DOI: 10.1016/j.jconrel.2019.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/29/2019] [Accepted: 07/07/2019] [Indexed: 01/24/2023]
|
31
|
Lopatko Fagerström I, Ståhl AL, Mossberg M, Tati R, Kristoffersson AC, Kahn R, Bascands JL, Klein J, Schanstra JP, Segelmark M, Karpman D. Blockade of the kallikrein-kinin system reduces endothelial complement activation in vascular inflammation. EBioMedicine 2019; 47:319-328. [PMID: 31444145 PMCID: PMC6796560 DOI: 10.1016/j.ebiom.2019.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
Background The complement and kallikrein-kinin systems (KKS) are activated during vascular inflammation. The aim of this study was to investigate if blockade of the KKS can affect complement activation on the endothelium during inflammation. Methods Complement deposition on endothelial microvesicles was assayed in vasculitis patient plasma samples and controls. Plasma was perfused over glomerular endothelial cells and complement deposition assayed by flow cytometry. The effect of the kinin system was assessed using kinin receptor antagonists and C1-inhibitor. The in vivo effect was assessed in kidney sections from mice with nephrotoxic serum-induced glomerulonephritis treated with a kinin receptor antagonist. Findings Vasculitis patient plasma had significantly more C3- and C9-positive endothelial microvesicles than controls. Perfusion of patient acute-phase plasma samples over glomerular endothelial cells induced the release of significantly more complement-positive microvesicles, in comparison to remission or control plasma. Complement activation on endothelial microvesicles was reduced by kinin B1- and B2-receptor antagonists or by C1-inhibitor (the main inhibitor of the classical pathway and the KKS). Likewise, perfusion of glomerular endothelial cells with C1-inhibitor-depleted plasma induced the release of complement-positive microvesicles, which was significantly reduced by kinin-receptor antagonists or C1-inhibitor. Mice with nephrotoxic serum-induced glomerulonephritis exhibited significantly reduced glomerular C3 deposition when treated with a B1-receptor antagonist. Interpretation Excessive complement deposition on the endothelium will promote endothelial injury and the release of endothelial microvesicles. This study demonstrates that blockade of the KKS can reduce complement activation and thereby the inflammatory response on the endothelium. Funding Full details are provided in the Acknowledgements/Funding section.
Collapse
Affiliation(s)
| | - Anne-Lie Ståhl
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Maria Mossberg
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ramesh Tati
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Robin Kahn
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Jean-Loup Bascands
- Institut National de la Sante et de la Recherche Medicale (INSERM), U1188, Université de La Réunion, France
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institute of Cardiovascular and Metabolic Disease, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France
| | - Mårten Segelmark
- Department of Nephrology, Clinical Sciences Lund, Lund University, Lund, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
32
|
Khan KA, McMurray JL, Mohammed F, Bicknell R. C-type lectin domain group 14 proteins in vascular biology, cancer and inflammation. FEBS J 2019; 286:3299-3332. [PMID: 31287944 PMCID: PMC6852297 DOI: 10.1111/febs.14985] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
The C‐type lectin domain (CTLD) group 14 family of transmembrane glycoproteins consist of thrombomodulin, CD93, CLEC14A and CD248 (endosialin or tumour endothelial marker‐1). These cell surface proteins exhibit similar ectodomain architecture and yet mediate a diverse range of cellular functions, including but not restricted to angiogenesis, inflammation and cell adhesion. Thrombomodulin, CD93 and CLEC14A can be expressed by endothelial cells, whereas CD248 is expressed by vasculature associated pericytes, activated fibroblasts and tumour cells among other cell types. In this article, we review the current literature of these family members including their expression profiles, interacting partners, as well as established and speculated functions. We focus primarily on their roles in the vasculature and inflammation as well as their contributions to tumour immunology. The CTLD group 14 family shares several characteristic features including their ability to be proteolytically cleaved and engagement of some shared extracellular matrix ligands. Each family member has strong links to tumour development and in particular CD93, CLEC14A and CD248 have been proposed as attractive candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Canada
| | - Jack L McMurray
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Roy Bicknell
- Institutes of Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
| |
Collapse
|
33
|
Conway EM. Polyphosphates and Complement Activation. Front Med (Lausanne) 2019; 6:67. [PMID: 31019911 PMCID: PMC6458250 DOI: 10.3389/fmed.2019.00067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/18/2019] [Indexed: 01/11/2023] Open
Abstract
To sustain life in environments that are fraught with risks of life-threatening injury, organisms have developed innate protective strategies such that the response to wounds is rapid and localized, with the simultaneous recruitment of molecular, biochemical, and cellular pathways that limit bleeding and eliminate pathogens and damaged host cells, while promoting effective healing. These pathways are both coordinated and tightly regulated, as their over- or under-activation may lead to inadequate healing, disease, and/or demise of the host. Recent advances in our understanding of coagulation and complement, a key component of innate immunity, have revealed an intriguing linkage of the two systems. Cell-secreted polyphosphate promotes coagulation, while dampening complement activation, discoveries that are providing insights into disease mechanisms and suggesting novel therapeutic strategies.
Collapse
Affiliation(s)
- Edward M Conway
- Division of Hematology, Department of Medicine, Faculty of Medicine, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Wood AJT, Vassallo A, Summers C, Chilvers ER, Conway-Morris A. C5a anaphylatoxin and its role in critical illness-induced organ dysfunction. Eur J Clin Invest 2018; 48:e13028. [PMID: 30229880 DOI: 10.1111/eci.13028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022]
Abstract
Critical illness is an aetiologically and clinically heterogeneous syndrome that is characterised by organ failure and immune dysfunction. Mortality in critically ill patients is driven by inflammation-associated organ damage and a profound vulnerability to nosocomial infection. Both factors are influenced by the activated complement protein C5a, released by unbridled activation of the complement system during critical illness. C5a exerts deleterious effects on organ systems directly and suppresses antimicrobial functions of key immune cells. Whilst several recent reports have added key knowledge of the cellular signalling pathways triggered by C5a, there remain a number of areas that are incompletely understood and therapeutic opportunities are still being evaluated. In this review, we summarise the cellular basis for C5a-induced vulnerability to nosocomial infection and organ dysfunction. We focus on cells of the innate immune system, highlighting the major areas in need of further research and potential avenues for targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Andrew Conway-Morris
- Department of Medicine, University of Cambridge, Cambridge, UK.,Signaling Programme, Babraham Institute, Cambridge, UK
| |
Collapse
|
35
|
Munenaga S, Ouhara K, Hamamoto Y, Kajiya M, Takeda K, Yamasaki S, Kawai T, Mizuno N, Fujita T, Sugiyama E, Kurihara H. The involvement of C5a in the progression of experimental arthritis with Porphyromonas gingivalis infection in SKG mice. Arthritis Res Ther 2018; 20:247. [PMID: 30390695 PMCID: PMC6235227 DOI: 10.1186/s13075-018-1744-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
Background Epidemiological evidence to suggest that periodontal disease (PD) is involved in the progression of rheumatoid arthritis (RA) is increasing. The complement system plays a critical role in immune responses. C5a has been implicated in chronic inflammatory diseases, including PD and RA. Porphyromonas gingivalis is the major causative bacteria of PD and can produce C5a. Therefore, it is hypothesized that P. gingivalis infection is involved in the progression of RA by elevating C5a levels. In the present study, P. gingivalis–infected RA model mice were established to investigate the involvement of C5a. Methods SKG mice orally infected with P. gingivalis were immunized with intraperitoneal injection of laminarin (LA) to induce arthritis. Arthritis development was assessed by arthritis score (AS), bone destruction on the talus, histology, and serum markers of RA. In order to investigate the effects of serum C5a on bone destruction, osteoclast differentiation of bone marrow mononuclear cells was examined by using serum samples from each group of mice. The relationship between C5a levels and antibody titers to periodontal pathogens in patients with RA was investigated by enzyme-linked immunosorbent assay. Results P. gingivalis oral infection increased AS, infiltration of inflammatory cells, bone destruction on the talus, and serum markers of RA in mice immunized with LA. The addition of serum from LA-injected mice with the P. gingivalis oral infection promoted osteoclast differentiation, and the addition of a neutralization antibody against C5a suppressed osteoclast differentiation. C5a levels of serum in RA patients with positive P. gingivalis antibody were elevated compared with those in RA patients with negative P. gingivalis antibody. Conclusions These results suggest that P. gingivalis infection enhances the progression of RA via C5a.
Collapse
Affiliation(s)
- Syuichi Munenaga
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Yuta Hamamoto
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Satoshi Yamasaki
- Division of Rheumatology, Kurume University Medical Center, 155-1 Kokubu-machi, Kurume, 839-0863, Japan
| | - Toshihisa Kawai
- Department of Periodontology, Nova Southeastern University College of Dental Medicine, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Eiji Sugiyama
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Graduate School of Biomedical & Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
36
|
Abstract
: Complement and coagulation are evolutionarily related proteolytic cascades in the blood that are critical for effecting an appropriate innate response to injury that limits bleeding and infection, while promoting healing. Although often viewed as distinct, it has long been recognized that cross-talk likely exists between these pathways. Only recently have molecular links been established. These are providing insights that are revealing opportunities for the development of novel therapeutic strategies to better treat a wide range of thrombotic, inflammatory, immune, infectious, and malignant diseases. In this brief review, the complex relationship between complement and coagulation is highlighted, underlining some of the newly uncovered interactions, in the hopes of stimulating innovative research that will yield improvements in patient outcomes.
Collapse
|
37
|
Pohlman TH, Fecher AM, Arreola-Garcia C. Optimizing transfusion strategies in damage control resuscitation: current insights. J Blood Med 2018; 9:117-133. [PMID: 30154676 PMCID: PMC6108342 DOI: 10.2147/jbm.s165394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
From clinical and laboratory studies of specific coagulation defects induced by injury, damage control resuscitation (DCR) emerged as the most effective management strategy for hemorrhagic shock. DCR of the trauma patient who has sustained massive blood loss consists of 1) hemorrhage control; 2) permissive hypotension; and 3) the prevention and correction of trauma-induced coagulopathies, referred to collectively here as acute coagulopathy of trauma (ACOT). Trauma patients with ACOT have higher transfusion requirements, may eventually require massive transfusion, and are at higher risk of exsanguinating. Distinct impairments in the hemostatic system associated with trauma include acquired quantitative and qualitative platelet defects, hypocoagulable and hypercoagulable states, and dysregulation of the fibrinolytic system giving rise to hyperfibrinolysis or a phenomenon referred to as fibrinolytic shutdown. Furthermore, ACOT is a component of a systemic host defense dysregulation syndrome that bears several phenotypic features comparable with other acute systemic physiological insults such as sepsis, myocardial infarction, and postcardiac arrest syndrome. Progress in the science of resuscitation has been continuing at an accelerated rate, and clinicians who manage catastrophic blood loss may be incompletely informed of important advances that pertain to DCR. Therefore, we review recent findings that further characterize the pathophysiology of ACOT and describe the application of this new information to optimization of resuscitation strategies for the patient in hemorrhagic shock.
Collapse
Affiliation(s)
- Timothy H Pohlman
- Department of Surgery, Lutheran Hospital of Indiana, Fort Wayne, IN, USA,
| | - Alison M Fecher
- Department of Surgery, Lutheran Hospital of Indiana, Fort Wayne, IN, USA
| | - Cecivon Arreola-Garcia
- Department of Surgery, Section of Acute Care Surgery, Indiana University Health, Indianapolis, IN, USA
| |
Collapse
|
38
|
Exploring traditional and nontraditional roles for thrombomodulin. Blood 2018; 132:148-158. [DOI: 10.1182/blood-2017-12-768994] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
AbstractThrombomodulin (TM) is an integral component of a multimolecular system, localized primarily to the vascular endothelium, that integrates crucial biological processes and biochemical pathways, including those related to coagulation, innate immunity, inflammation, and cell proliferation. These are designed to protect the host from injury and promote healing. The “traditional” role of TM in hemostasis was determined with its discovery in the 1980s as a ligand for thrombin and a critical cofactor for the major natural anticoagulant protein C system and subsequently for thrombin-mediated activation of the thrombin activatable fibrinolysis inhibitor (also known as procarboxypeptidase B2). Studies in the past 2 decades are redefining TM as a molecule with many properties, exhibited via its multiple domains, through its interacting partners, complex regulated expression, and synthesis by cells other than the endothelium. In this report, we review some of the recently reported diverse properties of TM and how these may impact on our understanding of the pathogenesis of several diseases.
Collapse
|
39
|
Serum-Mediated Cleavage of Bacillus anthracis Protective Antigen Is a Two-Step Process That Involves a Serum Carboxypeptidase. mSphere 2018; 3:3/3/e00091-18. [PMID: 29950379 PMCID: PMC6021598 DOI: 10.1128/msphere.00091-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/09/2018] [Indexed: 11/20/2022] Open
Abstract
Our findings identify a serum-mediated modification of PA20 that has not been previously described. These observations further imply that the processing of PA is more complex than currently thought. Additional study is needed to define the contribution of serum processing of PA to the host response and individual susceptibility to anthrax. Much of our understanding of the activity of anthrax toxin is based on in vitro systems, which delineate the interaction between Bacillus anthracis toxins and the cell surface. However, these systems fail to account for the intimate association of B. anthracis with the circulatory system, including the contribution of serum proteins to the host response and processing of anthrax toxins. Using a variety of immunological techniques to inhibit serum processing of B. anthracis protective antigen (PA) along with mass spectrometry analysis, we demonstrate that serum digests PA via 2 distinct reactions. In the first reaction, serum cleaves PA83 into 2 fragments to produce PA63 and PA20 fragments, similarly to that observed following furin digestion. This is followed by carboxypeptidase-mediated removal of the carboxy-terminal arginine and lysines from PA20. IMPORTANCE Our findings identify a serum-mediated modification of PA20 that has not been previously described. These observations further imply that the processing of PA is more complex than currently thought. Additional study is needed to define the contribution of serum processing of PA to the host response and individual susceptibility to anthrax.
Collapse
|
40
|
Mertens JC, Leenaerts D, Brouns R, Engelborghs S, Ieven M, De Deyn PP, Lambeir AM, Hendriks D. Procarboxypeptidase U (proCPU, TAFI, proCPB2) in cerebrospinal fluid during ischemic stroke is associated with stroke progression, outcome and blood-brain barrier dysfunction. J Thromb Haemost 2018; 16:342-348. [PMID: 29194929 DOI: 10.1111/jth.13914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 11/28/2022]
Abstract
Essentials Little is known of procarboxypeptidase U (proCPU) in cerebrospinal fluid (CSF) of stroke patients. ProCPU levels were studied in CSF of controls and non-thrombolyzed acute ischemic stroke patients. ProCPU is elevated in CSF of stroke patients compared with controls. ProCPU in CSF correlates with stroke progression, outcome, and blood-brain barrier dysfunction. SUMMARY Background Procarboxypeptidase U (proCPU, TAFI, proCPB2), the zymogen of CPU, which is a potent antifibrinolytic enzyme and a modulator of inflammation, has previously been investigated in plasma of stroke patients, but so far, no information on the proCPU levels in cerebrospinal fluid (CSF) during acute ischemic stroke (AIS) is available. Objectives This case-control observational study investigates proCPU in CSF of AIS patients compared with controls with an intact blood-brain barrier (BBB) and evaluates the relationship of CSF/plasma proCPU ratios with stroke parameters. Methods A sensitive HPLC-based enzymatic assay was used to determine proCPU levels in CSF of non-thrombolyzed patients in the hyperacute phase (< 24 h after onset) of AIS (n = 72). Individuals (n = 32) without stroke, an intact BBB and no apparent abnormalities in biochemical and microbiological tests, served as controls. Relations between the CSF/plasma proCPU ratio and (i) stroke severity, (ii) stroke progression/recurrence, (iii) stroke outcome and (iv) BBB dysfunction (CSF/serum albumin ratio) were assessed. Results Mean (SEM) proCPU levels were elevated in the CSF of stroke patients compared with controls (4.36 (0.23) U L-1 vs. 3.50 (0.23) U L-1 ). Higher median [IQR] CSF/plasma proCPU ratios were found in patients with stroke progression ((6.0 [4.2-6.9]) × 10-3 ) and poor outcome ((6.4 [3.9-7.0]) × 10-3 ) after 3 months (modified Rankin Scale; mRS > 3) compared with patients without progression ((3.9 [2.7-5.4]) × 10-3 ) or better outcome ((4.0 [2.8-5.0]) × 10-3 ). In stroke patients with a disrupted BBB, proCPU ratios were higher compared with stroke patients with an intact BBB ((6.4 [5.8-9.0]) × 10-3 vs. (3.7 [2.8-5.0]) × 10-3 ). Conclusions ProCPU is increased in CSF during hyperacute ischemic stroke and is associated with stroke progression and outcome after 3 months, most likely due to BBB dysfunction in the hyperacute phase of ischemic stroke.
Collapse
Affiliation(s)
- J C Mertens
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - D Leenaerts
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - R Brouns
- Department of Neurology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - S Engelborghs
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - M Ieven
- Department of Microbiology, University Hospital Antwerp, Edegem, Belgium
| | - P P De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - A-M Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - D Hendriks
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
41
|
Pan X, Gong D, Nguyen DN, Zhang X, Hu Q, Lu H, Fredholm M, Sangild PT, Gao F. Early microbial colonization affects DNA methylation of genes related to intestinal immunity and metabolism in preterm pigs. DNA Res 2018; 25:4818260. [PMID: 29365082 PMCID: PMC6014285 DOI: 10.1093/dnares/dsy001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/08/2018] [Indexed: 01/08/2023] Open
Abstract
Epigenetic regulation may play an important role in mediating microbe-host interactions and adaptation of intestinal gene expression to bacterial colonization just after birth. This is particularly important after preterm birth because the immature intestine is hypersensitive to invading bacteria. We compared the intestinal DNA methylome and microbiome between conventional (CON) and antibiotics-treated (AB) preterm pigs, used as a model for preterm infants. Oral AB treatment reduced bacterial density (∼100-fold), diversity and fermentation, improved the resistance to necrotizing enterocolitis (NEC) and changed the genome-wide DNA methylation in the distal small intestine. Integration of epigenome data with previously obtained proteome data showed that intestinal immune-metabolic pathways were affected by the AB-induced delay in bacterial colonization. DNA methylation and expression of intestinal genes, related to innate immune response, phagocytosis, endothelial homeostasis and tissue metabolism (e.g. CPN1, C3, LBP, HIF1A, MicroRNA-126, PTPRE), differed between AB and CON pigs even before any evidence of NEC lesions. Our findings document that the newborn immature intestine is influenced by bacterial colonization via DNA methylation changes. Microbiota-dependent epigenetic programming of genes related to gut immunity, vascular integrity and metabolism may be critical for short- and long-term intestinal health in preterm neonates.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg DK 1870 C, Denmark
| | - Desheng Gong
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg DK 1870 C, Denmark
| | - Xinxin Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qi Hu
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hanlin Lu
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Merete Fredholm
- Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg DK 1870 C, Denmark
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg DK 1870 C, Denmark
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
42
|
Angiopoietins bind thrombomodulin and inhibit its function as a thrombin cofactor. Sci Rep 2018; 8:505. [PMID: 29323190 PMCID: PMC5765006 DOI: 10.1038/s41598-017-18912-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023] Open
Abstract
Angiopoietin-1 (Ang1) and Angiopoietin-2 (Ang2) are ligands for Tie2, an endothelial-specific receptor tyrosine kinase that is an essential regulator of angiogenesis. Here we report the identification, via expression cloning, of thrombomodulin (TM) as another receptor for Ang1 and Ang2. Thrombomodulin is an endothelial cell surface molecule that plays an essential role as a coagulation inhibitor via its function as a cofactor in the thrombin-mediated activation of protein C, an anticoagulant protein, as well as thrombin-activatable fibrinolysis inhibitor (TAFI). Ang1 and Ang2 inhibited the thrombin/TM-mediated generation of activated protein C and TAFI in cultured endothelial cells, and inhibited the binding of thrombin to TM in vitro. Ang2 appears to bind TM with higher affinity than Ang1 and is a more potent inhibitor of TM function. Consistent with a potential role for angiopoietins in coagulation, administration of thrombin to mice rapidly increased plasma Ang1 levels, presumably reflecting release from activated platelets (previously shown to contain high levels of Ang1). In addition, Ang1 levels were significantly elevated in plasma prepared from wound blood, suggesting that Ang1 is released from activated platelets at sites of vessel injury. Our results imply a previously undescribed role for angiopoietins in the regulation of hemostasis.
Collapse
|
43
|
Vinnikov I, Shahzad K, Bock F, Ranjan S, Wolter J, Kashif M, Oh J, Bierhaus A, Nawroth P, Kirschfink M, Conway E, Madhusudhan T, Isermann B, Wang H. The lectin-like domain of thrombomodulin ameliorates diabetic glomerulopathy via complement inhibition. Thromb Haemost 2017; 108:1141-53. [DOI: 10.1160/th12-07-0460] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/28/2012] [Indexed: 12/28/2022]
Abstract
SummaryCoagulation and complement regulators belong to two interactive systems constituting emerging mechanisms of diabetic nephropathy. Thrombomodulin (TM) regulates both coagulation and complement activation, in part through discrete domains. TM’s lectin like domain dampens complement activation, while its EGF-like domains independently enhance activation of the anticoagulant and cytoprotective serine protease protein C (PC). A protective effect of activated PC in diabetic nephropathy is established. We hypothesised that TM controls diabetic nephropathy independent of PC through its lectin-like domain by regulating complement. Diabetic nephropathy was analysed in mice lacking TM’s lectin-like domain (TMLeD/LeD) and controls (TMwt/wt). Albuminuria (290 μg/mg vs. 166 μg/mg, p=0.03) and other indices of experimental diabetic nephropathy were aggravated in diabetic TMLeD/LeDmice. Complement deposition (C3 and C5b-9) was markedly increased in glomeruli of diabetic TMLeD/LeDmice. Complement inhibition with enoxaparin ameliorated diabetic nephropathy in TMLeD/LeDmice (e.g. albuminuria 85 μg/mg vs. 290 μg/mg, p <0.001). In vitroTM’s lectin-like domain cell-autonomously prevented glucose-induced complement activation on endothelial cells and –notably –on podocytes. Podocyte injury, which was enhanced in diabetic TMLeD/LeDmice, was reduced following complement inhibition with enoxaparin. The current study identifies a novel mechanism regulating complement activation in diabetic nephropathy. TM’s lectin-like domain constrains glucose-induced complement activation on endothelial cells and podocytes and ameliorates albuminuria and glomerular damage in mice.
Collapse
|
44
|
Komnenov D, Scipione C, Bazzi Z, Garabon J, Koschinsky M, Boffa M. Pro-inflammatory cytokines reduce human TAFI expression via tristetraprolin-mediated mRNA destabilisation and decreased binding of HuR. Thromb Haemost 2017; 114:337-49. [DOI: 10.1160/th14-08-0653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 03/12/2015] [Indexed: 01/26/2023]
Abstract
SummaryThrombin activatable fibrinolysis inhibitor (TAFI) is the zymogen form of a basic carboxypeptidase (TAFIa) with both anti-fibrinolytic and anti-inflammatory properties. The role of TAFI in inflammatory disease is multifaceted and involves modulation both of specific inflammatory mediators as well as of the behaviour of inflammatory cells. Moreover, as suggested by in vitro studies, inflammatory mediators are capable of regulating the expression of CPB2, the gene encoding TAFI. In this study we addressed the hypothesis that decreased TAFI levels observed in inflammation are due to post-transcriptional mechanisms. Treatment of human HepG2 cells with pro-inflammatory cytokines TNFα, IL-6 in combination with IL-1β, or with bacterial lipopolysaccharide (LPS) decreased TAFI protein levels by approximately two-fold over 24 to 48 hours of treatment. Conversely, treatment of HepG2 cells with the anti-inflammatory cytokine IL-10 increased TAFI protein levels by two-fold at both time points. We found that the mechanistic basis for this modulation of TAFI levels involves binding of tristetraprolin (TTP) to the CPB2 3′-UTR, which mediates CPB2 mRNA destabilisation. In this report we also identified that HuR, another ARE-binding protein but one that stabilises transcripts, is capable of binding the CBP2 3’UTR. We found that pro-inflammatory mediators reduce the occupancy of HuR on the CPB2 3’-UTR and that the mutation of the TTP binding site in this context abolishes this effect, although TTP and HuR appear to contact discrete binding sites. Interestingly, all of the mediators tested appear to increase TAFI protein expression in THP-1 macrophages, likewise through effects on CPB2 mRNA stability.
Collapse
|
45
|
Bridge KI, Bollen L, Zhong J, Hesketh M, Macrae FL, Johnson A, Philippou H, Scott DJ, Gils A, Ariёns RAS. Thrombin-activatable fibrinolysis inhibitor in human abdominal aortic aneurysm disease. J Thromb Haemost 2017; 15:2218-2225. [PMID: 28834317 DOI: 10.1111/jth.13804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 12/01/2022]
Abstract
Essentials Patients with abdominal aortic aneurysms (AAA) develop dense clots that are resistant to lysis. This study explores the role of thrombin-activatable fibrinolysis inhibitor (TAFI) in human AAA. There is evidence of chronically increased TAFI activation in patients with AAA. TAFI may represent a pharmacological target for cardiovascular risk reduction in AAA. SUMMARY Background Intra-luminal thrombosis is a key factor in growth of abdominal aortic aneurysms (AAAs). Patients with AAA form dense clots that are resistant to fibrinolysis. Thrombin-activatable fibrinolysis inhibitor (TAFI) has been shown to influence AAA development in murine models. Objective The aim of this study is to characterize the role of TAFI in human AAA. Methods Plasma levels of TAFI, TAFI activation peptide (TAFI-AP), activated/inactivated TAFI (TAFIa/ai) and plasmin-α2-antiplasmin complex were measured by ELISAs in patients with AAA (n = 202) and controls (n = 188). Results TAFIa/ai and TAFI-AP levels were higher in patients than controls (median [IQR], 20.3 [14.6-32.8] ng mL-1 vs. 14.2 [11.2-19.3] ng mL-1 and 355.0 [232.4-528.1] ng mL-1 vs. 248.6 [197.1-328.1] ng mL-1 ). TAFIa/ai was positively correlated with TAFI-AP (r = 0.164). Intact TAFI levels were not different between patients and controls (13.4 [11.2-16.1] μg mL-1 vs. 12.8 [10.6-15.4] μg mL-1 ). Plasmin-α2-antiplasmin was higher in AAA patients than controls (690.0 [489.1-924.3] ng mL-1 vs. 480.7 [392.6-555.3] ng mL-1 ). Conclusions The increase in TAFIa/ai and TAFI-AP suggests an increased TAFI activation in patients with AAA. Prospective studies are required to further elucidate the role of TAFI and fibrinolysis in AAA pathogenesis.
Collapse
Affiliation(s)
- K I Bridge
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - L Bollen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, Laboratory for Therapeutic and Diagnostic Antibodies, Leuven, Belgium
| | - J Zhong
- Department of Radiology, Leeds General Infirmary, Leeds, UK
| | - M Hesketh
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - F L Macrae
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - A Johnson
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- The Leeds Vascular Institute, Leeds General Infirmary, Leeds, UK
| | - H Philippou
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - D J Scott
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- The Leeds Vascular Institute, Leeds General Infirmary, Leeds, UK
| | - A Gils
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, Laboratory for Therapeutic and Diagnostic Antibodies, Leuven, Belgium
| | - R A S Ariёns
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
46
|
Thrombin activatable fibrinolysis inhibitor (TAFI) — A possible link between coagulation and complement activation in the antiphospholipid syndrome (APS). Thromb Res 2017; 158:168-173. [DOI: 10.1016/j.thromres.2017.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 11/23/2022]
|
47
|
Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V. Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev 2017; 274:307-329. [PMID: 27782324 DOI: 10.1111/imr.12479] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelium is strategically located at the interface between blood and interstitial tissues, placing thus endothelial cell as a key player in vascular homeostasis. Endothelial cells are in a dynamic equilibrium with their environment and constitute concomitantly a source, a barrier, and a target of defensive mediators. This review will discuss the recent advances in our understanding of the complex crosstalk between the endothelium, the complement system and the hemostasis in health and in disease. The first part will provide a general introduction on endothelial cells heterogeneity and on the physiologic role of the complement and hemostatic systems. The second part will analyze the interplay between complement, hemostasis and endothelial cells in physiological conditions and their alterations in diseases. Particular focus will be made on the prototypes of thrombotic microangiopathic disorders, resulting from complement or hemostasis dysregulation-mediated endothelial damage: atypical hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Novel aspects of the pathophysiology of the thrombotic microangiopathies will be discussed.
Collapse
Affiliation(s)
- Lubka T Roumenina
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Marie Frimat
- INSERM UMR 995, Lille, France.,Nephrology Department, CHU Lille, Lille, France
| | - Veronique Fremeaux-Bacchi
- INSERM UMRS 1138, Cordeliers Research Center, Université Pierre et Marie Curie (UPMC-Paris-6) and Université Paris Descartes Sorbonne Paris-Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
48
|
Heinrich V, Simpson WD, Francis EA. Analytical Prediction of the Spatiotemporal Distribution of Chemoattractants around Their Source: Theory and Application to Complement-Mediated Chemotaxis. Front Immunol 2017; 8:578. [PMID: 28603522 PMCID: PMC5445147 DOI: 10.3389/fimmu.2017.00578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022] Open
Abstract
The ability of motile immune cells to detect and follow gradients of chemoattractant is critical to numerous vital functions, including their recruitment to sites of infection and-in emerging immunotherapeutic applications-to malignant tumors. Facilitated by a multitude of chemotactic receptors, the cells navigate a maze of stimuli to home in on their target. Distinct chemotactic processes direct this navigation at particular times and cell-target distances. The expedient coordination of this spatiotemporal hierarchy of chemotactic stages is the central element of a key paradigm of immunotaxis. Understanding this hierarchy is an enormous interdisciplinary challenge that requires, among others, quantitative insight into the shape, range, and dynamics of the profiles of chemoattractants around their sources. We here present a closed-form solution to a diffusion-reaction problem that describes the evolution of the concentration gradient of chemoattractant under various conditions. Our ready-to-use mathematical prescription captures many biological situations reasonably well and can be explored with standard graphing software, making it a valuable resource for every researcher studying chemotaxis. We here apply this mathematical model to characterize the chemoattractant cloud of anaphylatoxins that forms around bacterial and fungal pathogens in the presence of host serum. We analyze the spatial reach, rate of formation, and rate of dispersal of this locator cloud under realistic physiological conditions. Our analysis predicts that simply being small is an effective protective strategy of pathogens against complement-mediated discovery by host immune cells over moderate-to-large distances. Leveraging our predictions against single-cell, pure-chemotaxis experiments that use human immune cells as biosensors, we are able to explain the limited distance over which the cells recognize microbes. We conclude that complement-mediated chemotaxis is a universal, but short-range, homing mechanism by which chemotaxing immune cells can implement a last-minute course correction toward pathogenic microbes. Thus, the integration of theory and experiments provides a sound mechanistic explanation of the primary role of complement-mediated chemotaxis within the hierarchy of immunotaxis, and why other chemotactic processes are required for the successful recruitment of immune cells over large distances.
Collapse
Affiliation(s)
- Volkmar Heinrich
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, United States
| | - Wooten D Simpson
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, United States
| | - Emmet A Francis
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, United States
| |
Collapse
|
49
|
Tuboly E, Futakuchi M, Varga G, Érces D, Tőkés T, Mészáros A, Kaszaki J, Suzui M, Imai M, Okada A, Okada N, Boros M, Okada H. C5a inhibitor protects against ischemia/reperfusion injury in rat small intestine. Microbiol Immunol 2016; 60:35-46. [PMID: 26576826 PMCID: PMC4819679 DOI: 10.1111/1348-0421.12338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 11/28/2022]
Abstract
Acute mesenteric ischemia (AMI) is caused by considerable intestinal injury, which is associated with intestinal ischemia followed by reperfusion. To elucidate the mechanisms of ischemia/reperfusion injuries, a C5a inhibitory peptide termed AcPepA was used to examine the role of C5a anaphylatoxin, induction of inflammatory cells, and cell proliferation of the intestinal epithelial cells in an experimental AMI model. In this rat model, the superior mesenteric artery was occluded and subsequently reperfused (Induce‐I/R). Other groups were treated with AcPepA before ischemia or reperfusion. Induce‐I/R induced injuries in the intestine and AcPepA significantly decreased the proportion of severely injured villi. Induce‐I/R induced secondary receptor for C5a‐positive polymorphonuclear leukocytes in the vessels and CD204‐positive macrophages near the injured site; this was correlated with hypoxia‐induced factor 1‐alpha‐positive cells. Induction of these inflammatory cells was attenuated by AcPepA. In addition, AcPepA increased proliferation of epithelial cells in the villi, possibly preventing further damage. Therefore, Induce‐I/R activates C5a followed by the accumulation of polymorphonuclear leukocyte and hypoxia‐induced factor 1‐alpha‐producing macrophages, leading to villus injury. AcPepA, a C5a inhibitory peptide, blocks the deleterious effects of C5a, indicating it has a therapeutic effect on the inflammatory consequences of experimental AMI.
Collapse
Affiliation(s)
- Eszter Tuboly
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, 6 Szőkefalvi-Nagy Béla Street, Szeged, 6720, Hungary
| | | | - Gabriella Varga
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, 6 Szőkefalvi-Nagy Béla Street, Szeged, 6720, Hungary
| | - Daniel Érces
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, 6 Szőkefalvi-Nagy Béla Street, Szeged, 6720, Hungary
| | - Tünde Tőkés
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, 6 Szőkefalvi-Nagy Béla Street, Szeged, 6720, Hungary
| | - Andras Mészáros
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, 6 Szőkefalvi-Nagy Béla Street, Szeged, 6720, Hungary
| | - József Kaszaki
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, 6 Szőkefalvi-Nagy Béla Street, Szeged, 6720, Hungary
| | | | - Masaki Imai
- Department of Immunology, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601
| | - Alan Okada
- Research Institute for Protein Science, 2-18 Nakayama-cho, Mizuho-ku, Nagoya, 467-0803, Japan
| | | | - Mihály Boros
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, 6 Szőkefalvi-Nagy Béla Street, Szeged, 6720, Hungary
| | | |
Collapse
|
50
|
Abstract
The protein C anticoagulant pathway is critical for controlling microvascular thrombosis and is initiated when thrombin binds to thrombomodulin (TM) on the surface of the endothelium. Protein C activation is augmented by an endothelial cell protein C receptor (EPCR). EPCR is shed from the vasculature by inflammatory mediators and thrombin. EPCR binds to activated neutrophils in a process that involves proteinase 3 and Mac-1 and appears to inhibit leukocyte extravasation. EPCR can undergo translocation from the plasma membrane to the nucleus where it re-directs gene expression. During translocation, EPCR can carry activated protein C (APC) to the nucleus, possibly accounting for the ability of APC to modulate inflammatory mediator responses in the endothelium. TNF-α and other inflammatory mediators can down-regulate EPCR and TM. Inhibition of protein C pathway function increases cytokine elaboration, endothelial cell injury and leukocyte extravasation in response to endotoxin and infusion of APC reverses these processes. In vitro, APC has been reported to inhibit TNF-α elaboration from monocytes and to block leukocyte adhesion to selectins. Since thrombin can elicit many inflammatory responses in microvascular endothelium, loss of control of microvascular thrombin generation due to impaired protein C pathway function probably contributes to microvascular dysfunction in sepsis.
Collapse
Affiliation(s)
- Charles T. Esmon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation; Departments of Pathology, and Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, , Howard Hughes Medical Institute, Oklahoma City, Oklahoma, USA
| |
Collapse
|