1
|
Marshall RL, Bavro VN. Mutations in the TolC Periplasmic Domain Affect Substrate Specificity of the AcrAB-TolC Pump. Front Mol Biosci 2020; 7:166. [PMID: 32850959 PMCID: PMC7396618 DOI: 10.3389/fmolb.2020.00166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
TolC and the other members of the outer membrane factor (OMF) family are outer membrane proteins forming trimeric channels that serve as a conduit for most actively effluxed substrates in Gram-negative bacteria by providing a key component in a multitude of tripartite efflux-pumps. Current models of tripartite pump assembly ascribe substrate selection to the inner-membrane transporter and periplasmic-adapter protein (PAP) assembly, suggesting that TolC is a passive, non-selective channel. While the membrane-embedded portion of the protein adopts a porin-like fold, the periplasmic domain of TolC presents a unique "alpha-barrel" architecture. This alpha-barrel consists of pseudo-continuous α-helices forming curved coiled-coils, whose tips form α-helical hairpins, relaxation of which results in a transition of TolC from a closed to an open-aperture state allowing effective efflux of substrates through its channel. Here, we analyzed the effects of site-directed mutations targeting the alpha-barrel of TolC, of the principal tripartite efflux-pump Escherichia coli AcrAB-TolC, on the activity and specificity of efflux. Live-cell functional assays with these TolC mutants revealed that positions both at the periplasmic tip of, and partway up the TolC coiled-coil alpha-barrel domain are involved in determining the functionality of the complex. We report that mutations affecting the electrostatic properties of the channel, particularly the D371V mutation, significantly impact growth even in the absence of antibiotics, causing hyper-susceptibility to all tested efflux-substrates. These results suggest that inhibition of TolC functionality is less well-tolerated than deletion of tolC, and such inhibition may have an antibacterial effect. Significantly and unexpectedly, we identified antibiotic-specific phenotypes associated with novel TolC mutations, suggesting that substrate specificity may not be determined solely by the transporter protein or the PAP, but may reside at least partially with the TolC-channel. Furthermore, some of the effects of mutations are difficult to reconcile with the currently prevalent tip-to-tip model of PAP-TolC interaction due to their location higher-up on the TolC alpha-barrel relative to the proposed PAP-docking sites. Taken together our results suggest a possible new role for TolC in vetting of efflux substrates, alongside its established role in tripartite complex assembly.
Collapse
Affiliation(s)
- Robert L. Marshall
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Vassiliy N. Bavro
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
2
|
Yonehara R, Yamashita E, Nakagawa A. Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of P
seudomonas aeruginosa. Proteins 2016; 84:759-69. [DOI: 10.1002/prot.25022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Ryo Yonehara
- Institute for Protein Research, Osaka University; Suita Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University; Suita Japan
| | | |
Collapse
|
3
|
Zgurskaya HI, Weeks JW, Ntreh AT, Nickels LM, Wolloscheck D. Mechanism of coupling drug transport reactions located in two different membranes. Front Microbiol 2015; 6:100. [PMID: 25759685 PMCID: PMC4338810 DOI: 10.3389/fmicb.2015.00100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
Abstract
Gram- negative bacteria utilize a diverse array of multidrug transporters to pump toxic compounds out of the cell. Some transporters, together with periplasmic membrane fusion proteins (MFPs) and outer membrane channels, assemble trans-envelope complexes that expel multiple antibiotics across outer membranes of Gram-negative bacteria and into the external medium. Others further potentiate this efflux by pumping drugs across the inner membrane into the periplasm. Together these transporters create a powerful network of efflux that protects bacteria against a broad range of antimicrobial agents. This review is focused on the mechanism of coupling transport reactions located in two different membranes of Gram-negative bacteria. Using a combination of biochemical, genetic and biophysical approaches we have reconstructed the sequence of events leading to the assembly of trans-envelope drug efflux complexes and characterized the roles of periplasmic and outer membrane proteins in this process. Our recent data suggest a critical step in the activation of intermembrane efflux pumps, which is controlled by MFPs. We propose that the reaction cycles of transporters are tightly coupled to the assembly of the trans-envelope complexes. Transporters and MFPs exist in the inner membrane as dormant complexes. The activation of complexes is triggered by MFP binding to the outer membrane channel, which leads to a conformational change in the membrane proximal domain of MFP needed for stimulation of transporters. The activated MFP-transporter complex engages the outer membrane channel to expel substrates across the outer membrane. The recruitment of the channel is likely triggered by binding of effectors (substrates) to MFP or MFP-transporter complexes. This model together with recent structural and functional advances in the field of drug efflux provides a fairly detailed understanding of the mechanism of drug efflux across the two membranes.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - Jon W Weeks
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - Abigail T Ntreh
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - Logan M Nickels
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - David Wolloscheck
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| |
Collapse
|
4
|
Hinchliffe P, Symmons MF, Hughes C, Koronakis V. Structure and operation of bacterial tripartite pumps. Annu Rev Microbiol 2013; 67:221-42. [PMID: 23808339 DOI: 10.1146/annurev-micro-092412-155718] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition.
Collapse
Affiliation(s)
- Philip Hinchliffe
- Department of Pathology, Cambridge University, Cambridge CB2 1QP, United Kingdom; , , ,
| | | | | | | |
Collapse
|
5
|
Bai J, Mosley L, Fralick JA. Evidence that the C-terminus of OprM is involved in the assembly of the VceAB-OprM efflux pump. FEBS Lett 2010; 584:1493-7. [PMID: 20206171 DOI: 10.1016/j.febslet.2010.02.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/23/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Although the architecture of tripartite multiple drug resistance (MDR) efflux pumps of Gram-negative bacteria has been well characterized, the means by which the components recognize each other and assemble into a functional pump remains obscure. In this study we present evidence that the C-terminal domain of the Pseudomonas aeruginosa OprM and the alpha-helical hairpin domain of Vibrio cholerae VceA play an important role in the recognition/specificity/recruitment step in the assembly of a functional, VceAB-OprM chimeric efflux pump. To our knowledge, this is the first evidence directly linking the C-terminal domain of an outer membrane efflux protein to its recruitment during the assembly of a tripartite efflux pump.
Collapse
Affiliation(s)
- Jiangping Bai
- Department of Microbiology and Immunology, Texas Tech University Health Science Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
6
|
The Escherichia coli efflux pump TolC promotes aggregation of enteroaggregative E. coli 042. Infect Immun 2007; 76:1247-56. [PMID: 18160483 DOI: 10.1128/iai.00758-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen in both developing and industrialized countries. EAEC is defined as a diarrheal pathogen based on its characteristic aggregative adherence to HEp-2 cells in culture and its biofilm formation on the intestinal mucosa. We have reported that the novel protein AatA, which is encoded on the EAEC virulence plasmid pAA2, localizes to the outer membrane and facilitates export of the dispersin Aap across the outer membrane. Because AatA is an E. coli efflux pump TolC homolog, we investigated the role of TolC in the virulence of EAEC. No difference in Aap secretion was observed between the wild type and its tolC mutant (042tolC). However, characteristic aggregation in high-glucose Dulbecco's minimal essential medium for the wild type was diminished for 042tolC. In a microtiter plate assay, there were significantly more planktonic cells for 042tolC than for the wild type, while there were significantly fewer spontaneously precipitated cells on the substratum for 042tolC than for the wild type. In a HEp-2 cell adherence test, 042tolC showed less aggregative adherence than did the wild type. The strong aggregation and aggregative adherence were restored in the complement strain with tolC. In a transwell assay, planktonic cells of 042tolC decreased when cocultured with the wild type or the complement, while precipitated cells of 042tolC increased when cocultured with them. These results suggest that TolC promotes the aggregation and adhesion of EAEC 042 by secreting an assumed humoral factor.
Collapse
|
7
|
DeVito JA. Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Res 2007; 36:e4. [PMID: 18084036 PMCID: PMC2248734 DOI: 10.1093/nar/gkm1084] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work describes the novel use of tolC as a selectable/counter-selectable marker for the facile modification of DNA in Escherichia coli. Expression of TolC (an outer membrane protein) confers relative resistance to toxic small molecules, while its absence renders the cell tolerant to colicin E1. These features, coupled with the lambdaredgam recombination system, allow for selection of tolC insertions/deletions anywhere on the E. coli chromosome or on plasmid DNA. This methodology obviates the need for minimal growth media, specialized wash protocols and the lengthy incubation times required by other published recombineering methods. As a rigorous test of the TolC selection system, six out of seven 23S rRNA genes were consecutively and seamlessly removed from the E. coli chromosome without affecting expression of neighboring genes within the complex rrn operons. The resulting plasmid-free strain retains one 23S rRNA gene (rrlC) in its natural location on the chromosome and is the first mutant of its kind. These new rRNA mutants will be useful in the study of rRNA gene regulation and ribosome function. Given its high efficiency, low background and facility in rich media, tolC selection is a broadly applicable method for the modification of DNA by recombineering.
Collapse
Affiliation(s)
- Joseph A DeVito
- Discovery Biology, Rib-X Pharmaceuticals Inc., New Haven, CT 06511, USA.
| |
Collapse
|
8
|
Lobedanz S, Bokma E, Symmons MF, Koronakis E, Hughes C, Koronakis V. A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps. Proc Natl Acad Sci U S A 2007; 104:4612-7. [PMID: 17360572 PMCID: PMC1838649 DOI: 10.1073/pnas.0610160104] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacteria such as Escherichia coli and Pseudomonas aeruginosa expel antibiotics and other inhibitors via tripartite multidrug efflux pumps spanning the inner and outer membranes and the intervening periplasmic space. A key event in pump assembly is the recruitment of an outer membrane-anchored TolC exit duct by the adaptor protein of a cognate inner membrane translocase, establishing a contiguous transenvelope efflux pore. We describe the underlying interaction of juxtaposed periplasmic exit duct and adaptor coiled-coils in the widespread RND-type pump TolC/AcrAB of E. coli, using in vivo cross-linking to map the extent of intermolecular contacts. Cross-linking of site-specific TolC cysteine variants to wild-type AcrA adaptor identified residues on the lower alpha-helical barrel domain of TolC, defining a contiguous cluster close to the entrance aperture of the exit duct. Reciprocally, site-specific cross-linking of AcrA cysteine variants to wild-type TolC identified the interaction surface on the adaptor within the N-terminal alpha-helix of the AcrA coiled-coil. The experimental data allowed a data-driven docking approach to model the interaction surface central to pump assembly. The lowest energy docked model satisfying all of the cross-link distance constraints places the adaptor at the intramolecular groove formed by the TolC entrance helices, aligning the adaptor coiled-coil with the exposed TolC outer helix. A key feature of this positioning is that it allows space for the proposed movement of the inner coil of TolC during transition to its open state.
Collapse
Affiliation(s)
- Sune Lobedanz
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Evert Bokma
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Martyn F. Symmons
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Eva Koronakis
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Colin Hughes
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
- To whom correspondence should be addressed. E-mail:
| | - Vassilis Koronakis
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
9
|
Yamanaka H, Tadokoro S, Miyano M, Takahashi E, Kobayashi H, Okamoto K. Studies on the region involved in the transport activity of Escherichia coli TolC by chimeric protein analysis. Microb Pathog 2007; 42:184-92. [PMID: 17350794 DOI: 10.1016/j.micpath.2007.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
Gram-negative bacteria possess the outer membrane protein TolC which acts as an exit duct across the outer membrane. However, the region involved in the transport activity of TolC has remained unclear. We analyzed this region by creating chimeric TolCs. First, we expressed the genes for TolCs of Vibrio parahaemolyticus (vp-tolC) and Salmonella typhimurium (sal-tolC) in Escherichia coli. The levels of sequence identity in the mature region of VP-TolC/EC-TolC and Sal-TolC/EC-TolC with maximum matching are 43% and 90%, respectively. We found that the transport activity of VP-TolC was weak compared with that of TolC of E. coli (EC-TolC) although the transport activity of Sal-TolC was similar to that of EC-TolC. A comparison of the sequence of the three tolCs showed that the sequence around the periplasmic region covering Asn-188 to Lys-214 of EC-TolC is lowly identical to that of VP-TolC although the region of EC-TolC is almost identical to that of Sal-TolC. We think, therefore, that the region covering Asn-188 to Lys-214 of EC-TolC may have an important role to express its transport activity in E. coli. To examine the possibility, we divided the region of EC-TolC into three and exchanged the gene for each portion with that of vp-tolC. These mutant ec-tolCs were expressed in E. coli and the activity of each chimeric TolC was measured. The results showed that the portion covering Val-198 to Lys-214 of EC-TolC is deeply involved in the transport activity.
Collapse
Affiliation(s)
- Hiroyasu Yamanaka
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Hiro-Koshingai, Kure, Hiroshima 737-0112, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Iwashita M, Nishi J, Wakimoto N, Fujiyama R, Yamamoto K, Tokuda K, Manago K, Kawano Y. Role of the carboxy-terminal region of the outer membrane protein AatA in the export of dispersin from enteroaggregative Escherichia coli. FEMS Microbiol Lett 2006; 256:266-72. [PMID: 16499616 DOI: 10.1111/j.1574-6968.2006.00123.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen in both developing and industrialized countries. AatA, an outer-membrane protein that is a homolog of E. coli TolC, facilitates the export of the dispersin protein Aap across the outer membrane in EAEC. To identify which amino acids are important for this export activity, site-directed mutagenesis of the carboxy terminus was performed. An insertional mutant of aatA was complemented with each of several deletion mutants, and was examined for Aap secretion. The results showed that three nonpolar amino acids at positions 381-383 (Phe-Leu-Leu) were required for the activity, and these residues were located at the base of carboxy-terminal elongation in the equatorial domain of AatA.
Collapse
Affiliation(s)
- Mayumi Iwashita
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|