1
|
de Oliveira AP, Navarro CDC, Dias PRF, Arguello T, Walker BR, Bacman SR, Sousa LM, Castilho RF, Consonni SR, Moraes CT, Kobarg J. NEK10 kinase ablation affects mitochondrial morphology, function and protein phosphorylation status. Proteome Sci 2024; 22:8. [PMID: 39379991 PMCID: PMC11460017 DOI: 10.1186/s12953-024-00234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND NEK10, a serine/threonine/tyrosine kinase belonging to the NEK (NIMA-related kinases) family, has been associated with diverse cellular processes. However, no specific target pathways have been identified. Our previous work knocking down NEK10 in HeLa cells suggested a functional association with mitochondria, as we observed altered mitochondrial morphology, mitochondrial oxygen consumption, mtDNA integrity, and reactive oxygen species levels. METHODS To better understand this association, we studied human HAP1 cells fully knockout for NEK10 and confirmed that NEK10 has an important role in mitochondrial homeostasis. We performed the study of mitochondrial respiration, mitochondrial morphology, mitochondrial mass, and mtDNA analysis. Additionally, we showed proteome and phosphoproteome data of crude mitochondrial fraction of Parental and NEK10 KO cells using liquid chromatography-mass spectrometry (LC-MS/MS). RESULTS In the absence of NEK10 several mitochondrial functions were disturbed. Moreover, proteome and phosphoproteome analyses of mitochondrial fractions showed that NEK10 alters the threonine phosphorylation status of several mitochondrial/endoplasmic reticulum components, including HSP60, NDUFB4, and TOM20. These changes impacted the steady-state levels of a larger group of proteins, preferentially involving respiratory complexes and autophagy pathways. CONCLUSION We concluded that NEK10 plays a key role in mitochondrial function, possibly by modulating the phosphorylation status of mitochondrial proteins.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200 Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-871, Brazil
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Claudia D C Navarro
- Departamento de Patologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Pedro Rafael F Dias
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200 Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-871, Brazil
| | - Tania Arguello
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Brittni R Walker
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sandra R Bacman
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lizandra Maia Sousa
- Departamento de Bioquímica E Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Roger F Castilho
- Departamento de Patologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Sílvio R Consonni
- Departamento de Bioquímica E Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carlos T Moraes
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200 Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13083-871, Brazil.
| |
Collapse
|
2
|
Peres de Oliveira A, Basei FL, Slepicka PF, de Castro Ferezin C, Melo-Hanchuk TD, de Souza EE, Lima TI, Dos Santos VT, Mendes D, Silveira LR, Menck CFM, Kobarg J. NEK10 interactome and depletion reveal new roles in mitochondria. Proteome Sci 2020; 18:4. [PMID: 32368190 PMCID: PMC7189645 DOI: 10.1186/s12953-020-00160-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Background Members of the family of NEK protein kinases (NIMA-related kinases) were described to have crucial roles in regulating different aspects of the cell cycle. NEK10 was reported to take part in the maintenance of the G2/M checkpoint after exposure to ultraviolet light. NEK1, NEK5, NEK2 and NEK4 proteins on the other hand have been linked to mitochondrial functions. Methods HEK293T cells were transfected with FLAG empty vector or FLAG-NEK10 and treated or not with Zeocin. For proteomic analysis, proteins co-precipitated with the FLAG constructs were digested by trypsin, and then analyzed via LC-MS/MS. Proteomic data retrieved were next submitted to Integrated Interactome System analysis and differentially expressed proteins were attributed to Gene Ontology biological processes and assembled in protein networks by Cytoscape. For functional, cellular and molecular analyses two stable Nek10 silenced HeLa cell clones were established. Results Here, we discovered the following possible new NEK10 protein interactors, related to mitochondrial functions: SIRT3, ATAD3A, ATAD3B, and OAT. After zeocin treatment, the spectrum of mitochondrial interactors increased by the proteins: FKBP4, TXN, PFDN2, ATAD3B, MRPL12, ATP5J, DUT, YWHAE, CS, SIRT3, HSPA9, PDHB, GLUD1, DDX3X, and APEX1. We confirmed the interaction of NEK10 and GLUD1 by proximity ligation assay and confocal microscopy. Furthermore, we demonstrated that NEK10-depleted cells showed more fragmented mitochondria compared to the control cells. The knock down of NEK10 resulted further in changes in mitochondrial reactive oxygen species (ROS) levels, decreased citrate synthase activity, and culminated in inhibition of mitochondrial respiration, affecting particularly ATP-linked oxygen consumption rate and spare capacity. NEK10 depletion also decreased the ratio of mtDNA amplification, possibly due to DNA damage. However, the total mtDNA content increased, suggesting that NEK10 may be involved in the control of mtDNA content. Conclusions Taken together these data place NEK10 as a novel regulatory player in mitochondrial homeostasis and energy metabolism.
Collapse
Affiliation(s)
- Andressa Peres de Oliveira
- 1Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,2Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Luisa Basei
- 1Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,3Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200; Cidade Universitária Zeferino Vaz; Campinas-SP; CEP, São Paulo, 13083-871 Brazil
| | - Priscila Ferreira Slepicka
- 4Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Camila de Castro Ferezin
- 1Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,3Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200; Cidade Universitária Zeferino Vaz; Campinas-SP; CEP, São Paulo, 13083-871 Brazil
| | - Talita D Melo-Hanchuk
- 1Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Edmarcia Elisa de Souza
- 4Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Tanes I Lima
- 5Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,6Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Valquiria Tiago Dos Santos
- 2Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Davi Mendes
- 2Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Leonardo Reis Silveira
- 5Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | - Jörg Kobarg
- 1Instituto de Biologia, Departamento de Bioquímica e Biologia Tecidual, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,3Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Rua Cândido Portinari, 200; Cidade Universitária Zeferino Vaz; Campinas-SP; CEP, São Paulo, 13083-871 Brazil
| |
Collapse
|
3
|
Furlong H, Mothersill C, Lyng FM, Howe O. Apoptosis is signalled early by low doses of ionising radiation in a radiation-induced bystander effect. Mutat Res 2013; 741-742:35-43. [PMID: 23454491 DOI: 10.1016/j.mrfmmm.2013.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/20/2013] [Accepted: 02/05/2013] [Indexed: 11/24/2022]
Abstract
It is known that ionising radiation (IR) induces a complex signalling apoptotic cascade post-exposure to low doses ultimately to remove damaged cells from a population, specifically via the intrinsic pathway. Therefore, it was hypothesised that bystander reporter cells may initiate a similar apoptotic response if exposed to low doses of IR (0.05Gy and 0.5Gy) and compared to directly irradiated cells. Key apoptotic genes were selected according to their role in the apoptotic cascade; tumour suppressor gene TP53, pro-apoptotic Bax and anti-apoptotic Bcl2, pro-apoptotic JNK and anti-apoptotic ERK, initiator caspase 2 and 9 and effector caspase 3, 6 and 7. The data generated consolidated the role of apoptosis following direct IR exposure for all doses and time points as pro-apoptotic genes such as Bax and JNK as well as initiator caspase 7 and effector caspase 3 and 9 were up-regulated. However, the gene expression profile for the bystander response was quite different and more complex in comparison to the direct response. The 0.05Gy dose point had a more significant apoptosis gene expression profile compared to the 0.5Gy dose point and genes were not always expressed within 1h but were sometimes expressed 24h later. The bystander data clearly demonstrates initiation of the apoptotic cascade by the up-regulation of TP53, Bax, Bcl-2, initiator caspase 2 and effector caspase 6. The effector caspases 3 and 7 of the bystander samples demonstrated down-regulation in their gene expression levels at 0.05Gy and 0.5Gy at both time points therefore not fully executing the apoptotic pathway. Extensive analysis of the mean-fold gene expression changes of bystander data demonstrated that the apoptosis is initiated in the up-regulation of pro-apoptotic and initiator genes but may not very well be executed to final stages of cell death due to down-regulation of effector genes.
Collapse
|
4
|
Ohsfeldt E, Huang SH, Baycin-Hizal D, Kristoffersen L, Le TMT, Li E, Hristova K, Betenbaugh MJ. Increased expression of the integral membrane proteins EGFR and FGFR3 in anti-apoptotic Chinese hamster ovary cell lines. Biotechnol Appl Biochem 2012; 59:155-62. [PMID: 23586824 DOI: 10.1002/bab.1000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/04/2012] [Indexed: 01/12/2023]
Abstract
Membrane proteins such as receptor tyrosine kinases (RTKs) have a vital role in many cellular functions, making them potential targets for therapeutic research. In this study, we investigated the coexpression of the anti-apoptosis gene Bcl-x(L) with model membrane proteins as a means of increasing membrane protein expression in mammalian cells. Chinese hamster ovary (CHO) cells expressing heterologous Bcl-x(L) and wild-type CHO cells were transfected with either epidermal growth factor receptor or fibroblast growth factor receptor 3. The CHO-Bcl-x(L) cell lines showed increased expression of both RTK proteins as compared with the wild-type CHO cell lines in transient expression analysis, as detected by Western blot and flow cytometry after 15 days of antibiotic selection in stable expression pools. Increased expression was also seen in clonal isolates from the CHO-Bcl-x(L) cell lines, whereas the clonal cell line expression was minimal in wild-type CHO cell lines. Our results demonstrate that application of the anti-apoptosis gene Bcl-x(L) can increase expression of RTK proteins in CHO cells. This approach may be applied to improve stable expression of other membrane proteins in the future using mammalian cell lines with Bcl-x(L) or perhaps other anti-apoptotic genes.
Collapse
Affiliation(s)
- Erika Ohsfeldt
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
O'Connor S, Li E, Majors BS, He L, Placone J, Baycin D, Betenbaugh MJ, Hristova K. Increased expression of the integral membrane protein ErbB2 in Chinese hamster ovary cells expressing the anti-apoptotic gene Bcl-xL. Protein Expr Purif 2009; 67:41-7. [PMID: 19376231 DOI: 10.1016/j.pep.2009.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/06/2009] [Accepted: 04/09/2009] [Indexed: 11/18/2022]
Abstract
Receptor tyrosine kinases (RTKs) are the second largest family of membrane receptors and play a key role in the regulation of vital cellular processes, such as control of cell growth, differentiation, metabolism, and migration. The production of whole-length RTKs in large quantities for biophysical or structural characterization, however, is a challenge. In this study, a cell engineering strategy using the anti-apoptotic Bcl-2 family protein, Bcl-x(L), was tested as a potential method for increasing stable expression levels of a recombinant RTK membrane protein in Chinese hamster ovary (CHO) cells. Wild-type and CHO cells stably overexpressing heterologous Bcl-x(L) were transformed with the gene for a model RTK membrane protein, ErbB2, on a plasmid also containing the Zeocin resistance gene. While CHO cells exhibited a gradual decrease in expression with passaging, CHO-bcl-x(L) cells offered an increased and sustained level of ErbB2 expression following continuous passaging over more than 33 days in culture. The increased ErbB2 expression in CHO-bcl-x(L) cells was evident both in stable transfected pools and in clonal isolates, and demonstrated both in Western blot analysis and flow cytometry. Furthermore, the sustained high-level protein expression in CHO-bcl-x(L) cells does not alter the correct membrane localization of the ErbB2 protein. Our results demonstrate that cellular engineering, specifically anti-apoptosis engineering, can provide increased and stable ErbB2 membrane protein expression in mammalian cells. This approach may also be useful for other membrane proteins in which large quantities are needed for biophysical and structural studies.
Collapse
Affiliation(s)
- Shannon O'Connor
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|