1
|
Kawasaki H, Goda M, Fukuhara S, Hashikawa-Hobara N, Zamami Y, Takatori S. Nerve growth factor (NGF) has an anti-tumor effects through perivascular innervation of neovessels in HT1080 fibrosarcoma and HepG2 hepatitis tumor in nude mice. J Pharmacol Sci 2019; 140:1-7. [PMID: 31178329 DOI: 10.1016/j.jphs.2019.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022] Open
Abstract
This study investigated whether NGF prevents tumor growth by promoting neuronal regulation of tumor blood flow. HT1080 fibrosarcoma cells or HepG2 hepatitis cells were subcutaneously implanted into nude mice. On Day 21 after the implantation of tumor cells, human NGF (40 or 80 ng/h for 14 days) was administered using a micro-osmotic pump. Growth rates of both tumors were significantly inhibited by the treatment of NGF, and the survival rate was also extended. Significant suppression of HT1080 tumor growth lasted after withdrawing NGF. NGF markedly increased the density of α-smooth muscle actin (α-SMA)-immunoreactive (ir) cells without changing neovessel density in HT1080 tumor tissues. Double immunostaining demonstrated protein gene product (PGP) 9.5-ir nerves around α-SMA-ir cells were found in HT1080 tumor tissue treated with NGF. The blood flow in HepG2 tumors treated with saline was significantly higher than in the non-tumor control area, but the tumor blood flow was markedly reduced by NGF treatment. In in vitro studies, NGF significantly accelerated migration of aortic smooth muscle cells but not endothelial cells, whereas NGF had no cytotoxic action on both cells. NGF inhibits tumor growth via indirect action, probably through innervation and maturation of tumor neovasculature, which regulates blood flow into tumor tissues.
Collapse
Affiliation(s)
- Hiromu Kawasaki
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacy, Institute of Biomedical Sciences, Tokushima University Graduate School, 2-50-1 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Satoko Fukuhara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama, 700-8530, Japan
| | - Narumi Hashikawa-Hobara
- Department of Life Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacy, Institute of Biomedical Sciences, Tokushima University Graduate School, 2-50-1 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shingo Takatori
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime, 790-8578, Japan.
| |
Collapse
|
2
|
Najafi H, Hosseini SM, Tavallaie M, Soltani BM. A Predicted Molecular Model for Development of Human Intelligence. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
|
4
|
Feng X, Zhu K, Liu J, Chen J, Tang J, Liang Y, Jin R, Liang X, Cai X. The evaluative value of Sema3C and MFN2 co-expression detected by immunohistochemistry for prognosis in hepatocellular carcinoma patients after hepatectomy. Onco Targets Ther 2016; 9:3213-21. [PMID: 27313467 PMCID: PMC4892862 DOI: 10.2147/ott.s98322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The ability to evaluate the prognosis of hepatocellular carcinoma (HCC) following hepatectomy using biological markers is of great importance. Materials and methods In this study, we collected samples from 54 patients with HCC after hepatectomy. Immunohistochemistry was used to detect the expression of Sema3C and MFN2 in the HCC samples. Results Immunohistochemistry results showed that Sema3C and MFN2 co-expression was significantly associated with tumor size. In addition, a significant association between high Sema3C and low MFN2 levels and shorter overall survival was noted, when Sema3C and MFN2 co-expression was analyzed. Conclusion The results suggest that the correlative expression level of Sema3C and MFN2 has a strong value in the prognosis of patients with HCC following hepatectomy.
Collapse
Affiliation(s)
- Xu Feng
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Kelei Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China; Department of General Surgery, Yinzhou People's Hospital, Ningbo, People's Republic of China
| | - Jinghua Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiacheng Tang
- Key Lab of Surgery of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Renan Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China; Key Lab of Surgery of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
Keskinov AA, Tapias V, Watkins SC, Ma Y, Shurin MR, Shurin GV. Impact of the Sensory Neurons on Melanoma Growth In Vivo. PLoS One 2016; 11:e0156095. [PMID: 27227315 PMCID: PMC4882065 DOI: 10.1371/journal.pone.0156095] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/09/2016] [Indexed: 12/29/2022] Open
Abstract
Nerve endings are often identified within solid tumors, but their impact on the tumor growth and progression remains poorly understood. Emerging data suggests that the central nervous system may affect cancer development and spreading via the hypothalamic-pituitary-adrenal axis and autonomous nervous system. However, the role of the afferent sensory neurons in tumor growth is unclear, except some reports on perineural invasion in prostate and pancreatic cancer and cancer-related pain syndrome. Here, we provide the results of primary testing of the concept that the interaction between melanoma cells and sensory neurons may induce the formation of tumor-supporting microenvironment via attraction of immune regulatory cells by the tumor-activated dorsal root ganglion (DRG) neurons. We report that despite DRG cells not directly up-regulating proliferation of melanoma cells in vitro, presence of DRG neurons allows tumors to grow significantly faster in vivo. This effect has been associated with increased production of chemokines by tumor-activated DRG neurons and attraction of myeloid-derived suppressor cells both in vitro and in vivo. These initial proof-of-concept results justify further investigations of the sensory (afferent) nervous system in the context of tumorigenesis and the local protumorigenic immunoenvironment.
Collapse
Affiliation(s)
- Anton A. Keskinov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,United States of America
- * E-mail:
| | - Victor Tapias
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Yang Ma
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,United States of America
| | - Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,United States of America
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,United States of America
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,United States of America
| |
Collapse
|
6
|
Miyato H, Tsuno NH, Kitayama J. Semaphorin 3C is involved in the progression of gastric cancer. Cancer Sci 2012; 103:1961-6. [PMID: 22924992 DOI: 10.1111/cas.12003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 01/03/2023] Open
Abstract
Malignant tumors are often associated with denervation, suggesting the functional implication of axonal guidance molecules in tumor growth. Here, we assessed the role of semaphorin 3C (sema3C) in the progression of gastric cancer. Immunohistochemistry of human samples revealed that sema3C was strongly expressed in neoplastic cells, especially at the invasion front. Stable transfection of target sequences of sema3C miRNA did not affect the in vitro proliferative activity of human gastric cancer AZ-521 cells. However, when the tumor growth was examined in vivo using an orthotopic model in nude mice, primary stomach tumors as well as metastatic liver tumors were significantly suppressed by sema3C silencing with the reduction of microvessel density. Immunostaining of primary tumor indicated the rate of Ki-67 positive carcinoma cells was decreased, whereas that of apoptotic cells was significantly increased in sema3C-silenced tumor. In addition, capillary-like tubular formation was reduced by the addition of culture media of sema3C miRNA cells compared with the media of control miRNA cells. Semaphorin 3C is positively expressed in gastric cancer cells and may be involved in tumor progression, presumably through the stimulation of angiogenesis.
Collapse
Affiliation(s)
- Hideyo Miyato
- Division of Surgical Oncology, Department of Surgery, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
7
|
Miyato H, Kitayama J, Ishigami H, Kaisaki S, Nagawa H. Loss of sympathetic nerve fibers around intratumoral arterioles reflects malignant potential of gastric cancer. Ann Surg Oncol 2011; 18:2281-8. [PMID: 21290194 DOI: 10.1245/s10434-011-1562-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND The role and clinical significance of the alteration of sympathetic nerve fibers (SNF) was assessed in gastric cancer. Loss of nerve fibers in malignant tumors has previously been described; however, how dysfunction of the nervous system is involved in cancer progression has not been clarified in clinical studies. MATERIALS AND METHODS The distribution of SNF was examined in 82 surgically resected gastric cancer specimens with immunohistochemical staining of tyrosine hydroxylase (TH), and the association with clinicopathological findings as well as the clinical outcome of the patients was retrospectively evaluated. RESULTS Arterioles in the normal gastric wall were totally covered with SNF, while the immunoreactivity to TH was markedly reduced around arterioles in cancer tissue. The degree of loss of SNF was significantly correlated with the depth of invasion (P < .0001) and lymph node metastasis (P < .0001) as well as microvessel density (MVD) (P = .0043). Moreover, patients who had tumors with marked loss of SNF showed a markedly worse clinical outcome, with an independent association by multivariate analysis. CONCLUSIONS Loss of periarteriolar SNF is associated with aggressive phenotype of gastric cancer possibly through enhanced angiogenesis and thus could be a useful marker to predict the clinical outcome.
Collapse
Affiliation(s)
- Hideyo Miyato
- Department of Surgery, Division of Surgical Oncology, University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
8
|
Capparuccia L, Tamagnone L. Semaphorin signaling in cancer cells and in cells of the tumor microenvironment--two sides of a coin. J Cell Sci 2009; 122:1723-36. [PMID: 19461072 DOI: 10.1242/jcs.030197] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Semaphorins are a large family of secreted and membrane-bound molecules that were initially implicated in the development of the nervous system and in axon guidance. More recently, they have been found to regulate cell adhesion and motility, angiogenesis, immune responses, and tumor progression. Semaphorin receptors, the neuropilins and the plexins, are expressed by a wide variety of cell types, including endothelial cells, bone-marrow-derived cells and cancer cells. Interestingly, a growing body of evidence indicates that semaphorins also have an important role in cancer. It is now known that cancer progression, invasion and metastasis involve not only genetic changes in the tumor cells but also crosstalk between tumor cells and their surrounding non-tumor cells. Through the recruitment of endothelial cells, leukocytes, pericytes and fibroblasts, and the local release of growth factors and cytokines, the tumor microenvironment can mediate tumor-cell survival, tumor proliferation and regulation of the immune response. Moreover, by conferring cancer cells with an enhanced ability to migrate and invade adjacent tissues, extracellular regulatory signals can play a major role in the metastatic process. In this Commentary, we focus on the emerging role of semaphorins in mediating the crosstalk between tumor cells and multiple stromal cell types in the surrounding microenvironment.
Collapse
Affiliation(s)
- Lorena Capparuccia
- Institute for Cancer Research and Treatment (IRCC), University of Turin, S.P. 142, 10060, Candiolo (TO), Italy
| | | |
Collapse
|
9
|
Mravec B, Gidron Y, Hulin I. Neurobiology of cancer: Interactions between nervous, endocrine and immune systems as a base for monitoring and modulating the tumorigenesis by the brain. Semin Cancer Biol 2008; 18:150-63. [DOI: 10.1016/j.semcancer.2007.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 12/05/2007] [Indexed: 12/26/2022]
|