1
|
Okuyama K, Tsuchiya M, Debnath KC, Islam S, Yanamoto S. Desmoplastic reaction in the microenvironment of head and neck and other solid tumors: the therapeutic barrier. Ther Adv Med Oncol 2025; 17:17588359251317144. [PMID: 39926258 PMCID: PMC11806477 DOI: 10.1177/17588359251317144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/15/2025] [Indexed: 02/11/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a challenge due to limited prognostic biomarkers and therapeutic options. The tumor microenvironment (TME), particularly the desmoplastic reaction (DR) characterized by stromal fibrosis, plays a crucial role in cancer progression and resistance to therapy. This review aims to summarize the biological significance of DR in HNSCC initiation, progression, and treatment resistance. Histologically, DR in HNSCC correlates with invasion patterns and clinical outcomes, affecting disease-free and overall survival. The interaction between cancer-associated fibroblasts (CAFs) and TME influences immune responses, including resistance to immunotherapy. Notably, human papillomavirus-driven HNSCC exhibits distinct DR characteristics that further influence the prognosis. DR promotes epithelial-mesenchymal transition and cancer cell invasion through CAF-mediated extracellular matrix remodeling and signaling pathways such as transforming growth factor-beta. DR also affects bone invasion and chemotherapy resistance by modulating stromal responses. Therapeutic strategies targeting DR and stromal components show promise in overcoming therapeutic resistance including resistance to immune checkpoint inhibitors. Understanding the role of DR in HNSCC biology and its impact on treatment response is critical to developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 123, Houston, TX 77030-4009, USA
| | - Maiko Tsuchiya
- Department of Pathology, Teikyo University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Kala Chand Debnath
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shajedul Islam
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima-shi, Hiroshima, Japan
| |
Collapse
|
2
|
Wan PKT, Ryan AJ, Seymour LW. Beyond cancer cells: Targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Mol Ther 2021; 29:1668-1682. [PMID: 33845199 PMCID: PMC8116634 DOI: 10.1016/j.ymthe.2021.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 01/17/2023] Open
Abstract
Cancer gene therapies are usually designed either to express wild-type copies of tumor suppressor genes or to exploit tumor-associated phenotypic changes to endow selective cytotoxicity. However, these approaches become less relevant to cancers that contain many independent mutations, and the situation is made more complex by our increased understanding of clonal evolution of tumors, meaning that different metastases and even regions of the same tumor mass have distinct mutational and phenotypic profiles. In contrast, the relatively genetically stable tumor microenvironment (TME) therefore provides an appealing therapeutic target, particularly since it plays an essential role in promoting cancer growth, immune tolerance, and acquired resistance to many therapies. Recently, a variety of different TME-targeted gene therapy and armed oncolytic strategies have been explored, with particular success observed in strategies targeting the cancer stroma, reducing tumor vasculature, and repolarizing the immunosuppressive microenvironment. Herein, we review the progress of these TME-targeting approaches and try to highlight those showing the greatest promise.
Collapse
Affiliation(s)
| | - Anderson J Ryan
- Department Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
3
|
Ghanaatgar-Kasbi S, Khorrami S, Avan A, Aledavoud SA, Ferns GA. Targeting the C-MET/HGF Signaling Pathway in Pancreatic Ductal Adenocarcinoma. Curr Pharm Des 2019; 24:4619-4625. [PMID: 30636579 DOI: 10.2174/1381612825666190110145855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023]
Abstract
The c-mesenchymal-epithelial transition factor (c-MET) is involved in the tumorigenesis of various
cancers. HGF/Met inhibitors are now attracting considerable interest due to their anti-tumor activity in multiple
malignancies such as pancreatic cancer. It is likely that within the next few years, HGF/Met inhibitors will become
a crucial component for cancer management. In this review, we summarize the role of HGF/Met pathway in
the pathogenesis of pancreatic cancer, with particular emphasize on HGF/Met inhibitors in the clinical setting,
including Cabozantinib (XL184, BMS-907351), Crizotinib (PF-02341066), MK-2461, Merestinib (LY2801653),
Tivantinib (ARQ197), SU11274, Onartuzumab (MetMab), Emibetuzumab (LY2875358), Ficlatuzumab (AV-
299), Rilotumumab (AMG 102), and NK4 in pancreatic cancer.
Collapse
Affiliation(s)
- Sadaf Ghanaatgar-Kasbi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Khorrami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed A. Aledavoud
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| |
Collapse
|
4
|
TOMIZAWA MINORU, SHINOZAKI FUMINOBU, MOTOYOSHI YASUFUMI, SUGIYAMA TAKAO, YAMAMOTO SHIGENORI, ISHIGE NAOKI. SU11274 suppresses proliferation and motility of pancreatic cancer cells. Oncol Lett 2015; 10:1468-1472. [PMID: 26622692 PMCID: PMC4533741 DOI: 10.3892/ol.2015.3452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 06/16/2015] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal-epithelial transition factor (c-Met) is associated with the proliferation and motility of cancer cells. c-Met expression has been detected in surgical pancreatic cancer specimens, and its overexpression is associated with a poor prognosis. SU11274 is a specific inhibitor of c-Met. In the present study, the cell proliferation and motility of pancreatic cancer cells treated with SU11274 was investigated. The PANC-1, MIA-Paca2, NOR-P1, PK-45H, PK-1 and PK-59 pancreatic cancer cell lines were used. The expression of c-Met and cyclin D1 was analyzed by quantitative polymerase chain reaction. In addition, a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt assay was performed to assess cell proliferation, and a scratch assay was performed to assess cell motility. c-Met expression was higher in PANC-1, PK-45H, PK-1 and PK-59 cell lines compared with that in normal pancreatic tissue. Following treatment with 30 µM SU11274, the proliferation of MIA-Paca2 and PK-45H cells was suppressed to 19.8±10.7% (P<0.05) and 45.8±14.8% (P<0.05) of the control level, respectively. Furthermore, cyclin D1 expression was downregulated to 43.7±17.9% (P<0.05) and 53.2±18.6% (P<0.05) of the control level in the MIA-Paca2 and PK-45H cell lines, respectively, following treatment with 30 µM SU11274. In addition, cell motility was reduced to 1.0±0.3% in MIA-Paca2 (P<0.05) and 14.7±3.5% in PK-45H (P<0.05) following treatment with 30 µM SU11274, compared with the motility of untreated cells. These results indicated that SU11274 suppresses the proliferation of pancreatic cancer cells via the downregulation of cyclin D1. The present study also demonstrated that cell motility was suppressed by treatment with SU11274.
Collapse
Affiliation(s)
- MINORU TOMIZAWA
- Department of Gastroenterology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - FUMINOBU SHINOZAKI
- Department of Radiology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - YASUFUMI MOTOYOSHI
- Department of Neurology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - TAKAO SUGIYAMA
- Department of Rheumatology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - SHIGENORI YAMAMOTO
- Department of Pediatrics, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - NAOKI ISHIGE
- Department of Neurosurgery, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| |
Collapse
|
5
|
Brauer HA, Makowski L, Hoadley KA, Casbas-Hernandez P, Lang LJ, Romàn-Pèrez E, D'Arcy M, Freemerman AJ, Perou CM, Troester MA. Impact of tumor microenvironment and epithelial phenotypes on metabolism in breast cancer. Clin Cancer Res 2012; 19:571-85. [PMID: 23236214 DOI: 10.1158/1078-0432.ccr-12-2123] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Cancer cells have altered metabolism, with increased glucose uptake, glycolysis, and biomass production. This study conducted genomic and metabolomic analyses to elucidate how tumor and stromal genomic characteristics influence tumor metabolism. EXPERIMENTAL DESIGN Thirty-three breast tumors and six normal breast tissues were analyzed by gene expression microarray and by mass spectrometry for metabolites. Gene expression data and clinical characteristics were evaluated in association with metabolic phenotype. To evaluate the role of stromal interactions in altered metabolism, cocultures were conducted using breast cancer cells and primary cancer-associated fibroblasts (CAF). RESULTS Across all metabolites, unsupervised clustering resulted in two main sample clusters. Normal breast tissue and a subset of tumors with less aggressive clinical characteristics had lower levels of nucleic and amino acids and glycolysis byproducts, whereas more aggressive tumors had higher levels of these Warburg-associated metabolites. While tumor-intrinsic subtype did not predict metabolic phenotype, metabolic cluster was significantly associated with expression of a wound response signature. In cocultures, CAFs from basal-like breast cancers increased glucose uptake and basal-like epithelial cells increased glucose oxidation and glycogen synthesis, suggesting interplay of stromal and epithelial phenotypes on metabolism. Cytokine arrays identified hepatocyte growth factor (HGF) as a potential mediator of stromal-epithelial interaction and antibody neutralization of HGF resulted in reduced expression of glucose transporter 1 (GLUT1) and decreased glucose uptake by epithelium. CONCLUSIONS Both tumor/epithelial and stromal characteristics play important roles in metabolism. Warburg-like metabolism is influenced by changes in stromal-epithelial interactions, including altered expression of HGF/Met pathway and GLUT1 expression.
Collapse
Affiliation(s)
- Heather Ann Brauer
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hiss DC, Fielding BC. Optimization and preclinical design of genetically engineered viruses for human oncolytic therapy. Expert Opin Biol Ther 2012; 12:1427-47. [PMID: 22788715 DOI: 10.1517/14712598.2012.707183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Oncolytic viruses (OVs) occupy a strategic niche in the dynamic era of biological and gene therapy of human cancers. However, the use of OVs is the subject of close scrutiny due to impediments such as the insufficiency of patient generalizations posed by heterogeneous tumor responses to treatment, inherent or potentially lethal viral pathogenicities, unanticipated host- or immune-related adverse effects, and the emergence of virus-resistant cancer cells. These challenges can be overcome by the design and development of more definitive (optimized, targeted, and individualized) cancer virotherapeutics. AREAS COVERED The translation of current knowledge and recent innovations into rational treatment prospects hinges on an iterative loop of variables pertaining to genetically engineered viral oncolytic efficacy and safety profiles, mechanism-of-action data, potencies of synergistic oncolytic viral combinations with conventional tumor, immuno-, chemo-, and radiation treatment modalities, optimization of the probabilities of treatment successes in heterogeneous (virus-sensitive and -resistant) tumor cell populations by mathematical modeling, and lessons learned from preclinical studies and human clinical trials. EXPERT OPINION In recent years, it has become increasingly clear that proof-of-principle is critical for the preclinical optimization of oncolytic viruses to target heterogeneous forms of cancer and to prioritize current concerns related to the efficacy and safety of oncolytic virotherapy.
Collapse
Affiliation(s)
- Donavon C Hiss
- University of the Western Cape, Department of Medical Biosciences, Molecular Oncology Research Laboratory, Bellville, 7535, South Africa.
| | | |
Collapse
|
7
|
Stroma and pancreatic ductal adenocarcinoma: an interaction loop. Biochim Biophys Acta Rev Cancer 2012; 1826:170-8. [PMID: 22521638 DOI: 10.1016/j.bbcan.2012.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/06/2012] [Accepted: 04/08/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has two exceptional features. First, it is a highly lethal disease, with a median survival of less than 6 months and a 5-year survival rate less than 5%. Second, PDA tumor cells are surrounded by an extensive stroma, which accounts for up to 90% of the tumor volume. It is well recognized that stromal microenvironment can accelerate malignant transformation, tumor growth and progression. More importantly, the interaction loop between PDA and its stroma greatly contributes to tumor growth and progression. We propose that the extensive stroma of PDA is closely linked to its poor prognosis. An improved understanding of the mechanisms that contribute to pancreatic tumor growth and progression is therefore urgently needed. Targeting the stroma may thus provide novel prevention, earlier detection and therapeutic options to this deadly malignancy. Accordingly, in this review, we will summarize the mechanism of PDA stroma formation, the role of the stroma in tumor progression and therapy resistance and the potential of stroma-targeted therapeutics strategies.
Collapse
|