1
|
Mancin E, Maltecca C, Jiang J, Huang YJ, Tiezzi F. Capturing resilience from phenotypic deviations: a case study using feed consumption and whole genome data in pigs. BMC Genomics 2024; 25:1128. [PMID: 39574040 PMCID: PMC11583387 DOI: 10.1186/s12864-024-11052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND In recent years, interest has grown in quantifying resilience in livestock by examining deviations in target phenotypes. This method is based on the idea that variability in these phenotypes reflects an animal's ability to adapt to external factors. By utilizing routinely collected time-series feed intake data in pigs, researchers can obtain a broad measure of resilience. This measure extends beyond specific conditions, capturing the impact of various unknown external factors that influence phenotype variations. Importantly, this method does not require additional phenotyping investments. Despite growing interest, the relationship between resilience indicators-calculated as deviations from longitudinally recorded target traits-and the mean of those traits remains largely unexplored. This gap raises the risk of inadvertently selecting for the mean rather than accurately capturing true resilience. Additionally, distinguishing between random phenotype fluctuations (white noise) and structural variations linked to resilience poses a challenge. With the aim of developing general resilience indicators applicable to commercial swine populations, we devised four resilience indicators utilizing daily feed consumption as the target trait. These include a canonical resilience indicator (BALnVar) and three novel ones (BAMaxArea, SPLnVar, and SPMaxArea), designed to minimize noise and ensure independence from daily feed consumption. We subsequently integrated these indicators with Whole Genome Sequencing using SLEMM algorithm, data from 1,250 animals to assess their efficacy in capturing resilience and their independence from the mean of daily feed consumption. RESULTS Our findings revealed that conventional resilience indicators failed to differentiate from the mean of daily feed consumption, underscoring potential limitations in accurately capturing true resilience. Notably, significant associations involving conventional resilience indicators were identified on chromosome 1, which is commonly linked to body weight. CONCLUSION We observed that deviations in feed consumption can effectively serve as indicators for selecting resilience in commercial pig farming, as confirmed by the identification of genes such as PKN1 and GYPC. However, the identification of other genes, such as RNF152, related to growth, suggests that common resilience quantification methods may be more closely related to the mean of daily feed consumption rather than capturing true resilience.
Collapse
Affiliation(s)
- Enrico Mancin
- Department of Agronomy, Natural Resources, Animals and Environment, (DAFNAE), University of Padova, Viale del Università 14, Legnaro (Padova), Food, 35020, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, Firenze, 50144, Italy
| | - Jicaj Jiang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yi Jian Huang
- Smithfield Premium Genetics, Rose Hill, NC, 28458, USA
| | - Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, Firenze, 50144, Italy.
| |
Collapse
|
2
|
Niu N, Zhao R, Tian M, Zong W, Hou X, Liu X, Wang L, Wang L, Zhang L. Genomic Variants Associated with Haematological Parameters and T Lymphocyte Subpopulations in a Large White and Min Pig Intercross Population. Animals (Basel) 2024; 14:3140. [PMID: 39518863 PMCID: PMC11545393 DOI: 10.3390/ani14213140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The breeding of disease-resistant pigs has consistently been a topic of significant interest and concern within the pig farming industry. The study of pig blood indicators has the potential to confer economic benefits upon the pig farming industry, whilst simultaneously providing valuable insights that can inform the study of human diseases. In this study, an F2 resource population of 489 individuals was generated through the intercrossing of Large White boars and Min pig sows. A total of 17 haematological parameters and T lymphocyte subpopulations were measured, including white blood cell count (WBC), lymphocyte count (LYM), lymphocyte count percentage (LYM%), monocyte count (MID), monocyte count percentage (MID%), neutrophilic granulocyte count (GRN), percentage of neutrophils (GRN%), mean platelet volume (MPV), platelet distribution width (PDW), platelet count (PLT), CD4+/CD8+, CD4+CD8+CD3+, CD4+CD8-CD3+, CD4-CD8+CD3+, CD4-CD8-CD3+, and CD3+. The Illumina PorcineSNP60 Genotyping BeadChip was obtained for all of the F2 animals. Subsequently, a genome-wide association study (GWAS) was conducted using the TASSEL 5.0 software to identify associated variants and candidate genes for the 17 traits. Significant association signals were identified for PCT and PLT on SSC7, with 1 and 11 significant SNP loci, respectively. A single nucleotide polymorphism (SNP) on SSC12 was identified as a significant predictor of the white blood cell (WBC) trait. Significant association signals were detected for the T lymphocyte subpopulations, namely CD4+/CD8+, CD4+CD8+CD3+, CD4+CD8-CD3+, and CD4-CD8+CD3+, with the majority of these signals observed on SSC7. The genes CLIC5, TRIM15, and SLC17A4 were identified as potential candidates for influencing CD4+/CD8+ and CD4-CD8+CD3+. A missense variant, c.2707 G>A, in the SLC17A4 gene has been demonstrated to be significantly associated with the CD4+/CD8+ and CD4-CD8+CD3+ traits. Three missense variants (c.425 A>C, c.500 C>T, and c.733 A>G) have been identified in the TRIM15 gene as being linked to the CD4+/CD8+ trait. Nevertheless, only c.425 A>C has been demonstrated to be significantly associated with CD4-CD8+CD3+. In the CLIC5 gene, one missense variant (c.957 T>C) has been identified as being associated with the CD4+/CD8+ and CD4-CD8+CD3+ traits. Additionally, significant association signals were observed for CD4+CD8+CD3+ and CD4+CD8-CD3+ on SSC2 and 5, respectively. Subsequently, a gene ontology (GO) enrichment analysis was conducted on all genes within the quantitative trait loci (QTL) intervals of platelet count, CD4+/CD8+, and CD4-CD8+CD3+. The MHC class II protein complex binding pathway was identified as the most significant pathway among the three immune traits. These results provide guidance for further research in the field of breeding disease-resistant pigs.
Collapse
Affiliation(s)
- Naiqi Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Runze Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Ming Tian
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Wencheng Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Xinhua Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Xin Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Ligang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Lixian Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Longchao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| |
Collapse
|
3
|
Mekonnen KT, Lee DH, Cho YG, Son AY, Seo KS. Genome-Wide Association Studies and Runs of Homozygosity Reveals Genetic Markers Associated with Reproductive Performance in Korean Duroc, Landrace, and Yorkshire Breeds. Genes (Basel) 2024; 15:1422. [PMID: 39596622 PMCID: PMC11594135 DOI: 10.3390/genes15111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Reproductive performance is critical in the pig industry, and improved sow performance could lead to increased economic benefits. GWAS and ROH analyses based on SNP array data were conducted to identify the breed-specific genetic architecture underlying the variation in NBA and TNB. METHODS A total of 7488 breeding pigs with phenotypic data from 1586 Duroc, 2256 Landrace, and 3646 Yorkshire breeds, along with 76,756 SNP markers from Korean grand-grand-parent (GGP) breeding farms, were used. RESULTS In the Duroc breeds, SNPs on SSC 9 and 17 were found to be associated with the SIDT2 and TGM2 genes, respectively. In the Landrace breed, PPP1R9A, LMTK2, and GTF2H3 on SSCs 9, 3, and 14, respectively, were associated with both TNB and NBA. With the Yorkshire breed genome, GRID1, DLGAP2, ZZEF1, PARG, RNF17, and NDUFAF5 in SSCs 14, 15, 12, 14, 11, and 17, respectively, were associated with NBA and TNB traits. These genes have distinct functions, ranging from synaptic transmission and cytoskeletal organization to DNA repair and cellular energy production. In the Duroc breed, six genes identified in the ROH islands were associated with various biological pathways, molecular functions, and cellular components. NT5DC1 was associated with metaphyseal chondrodysplasia, CRTAC1 with ion binding, CFAP43 with spermatogenic failure, CASC3 with intracellular mRNA localization, ERC2 with cellular component organization, and FOCAD with Focadhesin. In the Landrace and Yorkshire breeds, PDE6D was associated with GTPase inhibitor activity. CONCLUSIONS Through GWAS and ROH analyses, we identified breed-specific SNP markers associated with NBA and TNB in three breed genotypes, providing insights for improving reproductive performance efficiency and contributing to future breeding strategies.
Collapse
Affiliation(s)
- Kefala Taye Mekonnen
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (K.T.M.)
- Department of Animal Science, College of Agriculture and Environmental Science, Arsi University, Asella 193, Ethiopia
| | - Dong-Hui Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (K.T.M.)
| | - Young-Gyu Cho
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (K.T.M.)
| | - Ah-Yeong Son
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (K.T.M.)
| | - Kang-Seok Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea; (K.T.M.)
| |
Collapse
|
4
|
Roth K, Pröll-Cornelissen MJ, Henne H, Appel AK, Schellander K, Tholen E, Große-Brinkhaus C. Multivariate genome-wide associations for immune traits in two maternal pig lines. BMC Genomics 2023; 24:492. [PMID: 37641029 PMCID: PMC10463314 DOI: 10.1186/s12864-023-09594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Immune traits are considered to serve as potential biomarkers for pig's health. Medium to high heritabilities have been observed for some of the immune traits suggesting genetic variability of these phenotypes. Consideration of previously established genetic correlations between immune traits can be used to identify pleiotropic genetic markers. Therefore, genome-wide association study (GWAS) approaches are required to explore the joint genetic foundation for health biomarkers. Usually, GWAS explores phenotypes in a univariate (uv), trait-by-trait manner. Besides two uv GWAS methods, four multivariate (mv) GWAS approaches were applied on combinations out of 22 immune traits for Landrace (LR) and Large White (LW) pig lines. RESULTS In total 433 (LR: 351, LW: 82) associations were identified with the uv approach implemented in PLINK and a Bayesian linear regression uv approach (BIMBAM) software. Single Nucleotide Polymorphisms (SNPs) that were identified with both uv approaches (n = 32) were mostly associated with immune traits such as haptoglobin, red blood cell characteristics and cytokines, and were located in protein-coding genes. Mv GWAS approaches detected 647 associations for different mv immune trait combinations which were summarized to 133 Quantitative Trait Loci (QTL). SNPs for different trait combinations (n = 66) were detected with more than one mv method. Most of these SNPs are associated with red blood cell related immune trait combinations. Functional annotation of these QTL revealed 453 immune-relevant protein-coding genes. With uv methods shared markers were not observed between the breeds, whereas mv approaches were able to detect two conjoint SNPs for LR and LW. Due to unmapped positions for these markers, their functional annotation was not clarified. CONCLUSIONS This study evaluated the joint genetic background of immune traits in LR and LW piglets through the application of various uv and mv GWAS approaches. In comparison to uv methods, mv methodologies identified more significant associations, which might reflect the pleiotropic background of the immune system more accurately. In genetic research of complex traits, the SNP effects are generally small. Furthermore, one genetic variant can affect several correlated immune traits at the same time, termed pleiotropy. As mv GWAS methods consider strong dependencies among traits, the power to detect SNPs can be boosted. Both methods revealed immune-relevant potential candidate genes. Our results indicate that one single test is not able to detect all the different types of genetic effects in the most powerful manner and therefore, the methods should be applied complementary.
Collapse
Affiliation(s)
- Katharina Roth
- Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | | | - Hubert Henne
- BHZP GmbH, An der Wassermühle 8, 21368, Dahlenburg-Ellringen, Germany
| | | | - Karl Schellander
- Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | | |
Collapse
|
5
|
Di Gregorio P, Perna A, Di Trana A, Rando A. Identification of ROH Islands Conserved through Generations in Pigs Belonging to the Nero Lucano Breed. Genes (Basel) 2023; 14:1503. [PMID: 37510406 PMCID: PMC10378754 DOI: 10.3390/genes14071503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The recovery of Nero Lucano (NL) pigs in the Basilicata region (Southern Italy) started in 2001 with the collaboration of several public authorities in order to preserve native breeds that can play a significant economic role both due to their remarkable ability to adapt to difficult environments and the value of typical products from their area of origin. In this study, by using the Illumina Porcine SNP60 BeadChip, we compared the genetic structures of NL pigs reared in a single farm in two different periods separated by a time interval corresponding to at least three generations. The results showed an increase in the percentage of polymorphic loci, a decrease in the inbreeding coefficient calculated according to ROH genome coverage (FROH), a reduction in the number of ROH longer than 16 Mb and an increase in ROH with a length between 2 and 4 Mb, highlighting a picture of improved genetic variability. In addition, ROH island analysis in the two groups allowed us to identify five conserved regions, located on chromosomes 1, 4, 8, 14 and 15, containing genes involved in biological processes affecting immune response, reproduction and production traits. Only the conserved ROH island on chromosome 14 contains markers which, according to the literature, are associated with QTLs affecting thoracic vertebra number, teat number, gestation length, age at puberty and mean platelet volume.
Collapse
Affiliation(s)
- Paola Di Gregorio
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Annamaria Perna
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Adriana Di Trana
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Andrea Rando
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
6
|
Van Goor A, Pasternak A, Walugembe M, Chehab N, Hamonic G, Dekkers JCM, Harding JCS, Lunney JK. Genome wide association study of thyroid hormone levels following challenge with porcine reproductive and respiratory syndrome virus. Front Genet 2023; 14:1110463. [PMID: 36845393 PMCID: PMC9947478 DOI: 10.3389/fgene.2023.1110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory disease in piglets and reproductive disease in sows. Piglet and fetal serum thyroid hormone (i.e., T3 and T4) levels decrease rapidly in response to Porcine reproductive and respiratory syndrome virus infection. However, the genetic control of T3 and T4 levels during infection is not completely understood. Our objective was to estimate genetic parameters and identify quantitative trait loci (QTL) for absolute T3 and/or T4 levels of piglets and fetuses challenged with Porcine reproductive and respiratory syndrome virus. Methods: Sera from 5-week-old pigs (N = 1792) at 11 days post inoculation (DPI) with Porcine reproductive and respiratory syndrome virus were assayed for T3 levels (piglet_T3). Sera from fetuses (N = 1,267) at 12 or 21 days post maternal inoculation (DPMI) with Porcine reproductive and respiratory syndrome virus of sows (N = 145) in late gestation were assayed for T3 (fetal_T3) and T4 (fetal_T4) levels. Animals were genotyped using 60 K Illumina or 650 K Affymetrix single nucleotide polymorphism (SNP) panels. Heritabilities, phenotypic correlations, and genetic correlations were estimated using ASREML; genome wide association studies were performed for each trait separately using Julia for Whole-genome Analysis Software (JWAS). Results: All three traits were low to moderately heritable (10%-16%). Phenotypic and genetic correlations of piglet_T3 levels with weight gain (0-42 DPI) were 0.26 ± 0.03 and 0.67 ± 0.14, respectively. Nine significant quantitative trait loci were identified for piglet_T3, on Sus scrofa chromosomes (SSC) 3, 4, 5, 6, 7, 14, 15, and 17, and collectively explaining 30% of the genetic variation (GV), with the largest quantitative trait loci identified on SSC5, explaining 15% of the genetic variation. Three significant quantitative trait loci were identified for fetal_T3 on SSC1 and SSC4, which collectively explained 10% of the genetic variation. Five significant quantitative trait loci were identified for fetal_T4 on SSC1, 6, 10, 13, and 15, which collectively explained 14% of the genetic variation. Several putative immune-related candidate genes were identified, including CD247, IRF8, and MAPK8. Discussion: Thyroid hormone levels following Porcine reproductive and respiratory syndrome virus infection were heritable and had positive genetic correlations with growth rate. Multiple quantitative trait loci with moderate effects were identified for T3 and T4 levels during challenge with Porcine reproductive and respiratory syndrome virus and candidate genes were identified, including several immune-related genes. These results advance our understanding of growth effects of both piglet and fetal response to Porcine reproductive and respiratory syndrome virus infection, revealing factors associated with genomic control of host resilience.
Collapse
Affiliation(s)
- Angelica Van Goor
- Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Services, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Alex Pasternak
- Department of Animal Science, Purdue University, West Lafayette, IN, United States
| | - Muhammed Walugembe
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Nadya Chehab
- Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Services, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Glenn Hamonic
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jack C. M. Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - John C. S. Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joan K. Lunney
- Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Services, Beltsville Agricultural Research Center, Beltsville, MD, United States,*Correspondence: Joan K. Lunney,
| |
Collapse
|
7
|
Zhang D, Zhang X, Li F, Zhao Y, Li X, Wang J, Zhao L, Yang X, Zhang Y, Xu D, Cheng J, Li W, Lin C, Zhou B, Wang W. Expression Profiles of the Ovine IL18 Gene and Association of Its Polymorphism With Hematologic Parameters in Hu Lambs. Front Vet Sci 2022; 9:925928. [PMID: 35847634 PMCID: PMC9280051 DOI: 10.3389/fvets.2022.925928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Hematological traits are important indexes to evaluate health status and immunological conditions in human and livestock. In this study, we measured the hematologic indexes of 819 male Hu lambs and performed the descriptive statistical analysis. The results showed the coefficients of variation of partial indexes were >10%, and the heritability for mean erythrocyte volume (MCV), white blood cell count (WBC), hemoglobin concentration (HGB), hematocrit (HCT), and red blood cell (RBC) distribution-standard deviation (RDW_SD) were medium to high, ranging from 0.17 to 0.43. In addition, Interleukin 18 (IL18), as an important regulator of both innate and acquired immune responses, was selected as candidate gene and subjected to the expression profile analysis, single nucleotide polymorphism (SNP) scanning and association analysis by using quantitative real-time PCR (qRT-PCR), PCR amplification, Sanger sequencing, and KASP genotyping. The results of qRT-PCR indicated that IL18 is predominantly expressed in lymph and lung compared with that in the other tested tissues. In addition, three novel polymorphisms (g. 24991544 A > G, g. 24991651 A > G, and g. 24991749 C > T) were identified in IL18, and the three SNPs were in a strong linkage state. Therefore, only a SNP was genotyped and performed association analysis in the enlarged experimental population, the result of association analysis demonstrated that the polymorphism g. 24991651 A > G was significantly associated with RBC, MCV, MCHC, and RDW_CV. These results will provide the reference values and the novel genetic markers of hematological parameters in sheep.
Collapse
Affiliation(s)
- Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Weimin Wang ; orcid.org/0000-0002-6660-4865
| |
Collapse
|
8
|
Ramayo-Caldas Y, Zingaretti LM, Pérez-Pascual D, Alexandre PA, Reverter A, Dalmau A, Quintanilla R, Ballester M. Leveraging host-genetics and gut microbiota to determine immunocompetence in pigs. Anim Microbiome 2021; 3:74. [PMID: 34689834 PMCID: PMC8543910 DOI: 10.1186/s42523-021-00138-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The gut microbiota influences host performance playing a relevant role in homeostasis and function of the immune system. The aim of the present work was to identify microbial signatures linked to immunity traits and to characterize the contribution of host-genome and gut microbiota to the immunocompetence in healthy pigs. RESULTS To achieve this goal, we undertook a combination of network, mixed model and microbial-wide association studies (MWAS) for 21 immunity traits and the relative abundance of gut bacterial communities in 389 pigs genotyped for 70K SNPs. The heritability (h2; proportion of phenotypic variance explained by the host genetics) and microbiability (m2; proportion of variance explained by the microbial composition) showed similar values for most of the analyzed immunity traits, except for both IgM and IgG in plasma that was dominated by the host genetics, and the haptoglobin in serum which was the trait with larger m2 (0.275) compared to h2 (0.138). Results from the MWAS suggested a polymicrobial nature of the immunocompetence in pigs and revealed associations between pigs gut microbiota composition and 15 of the analyzed traits. The lymphocytes phagocytic capacity (quantified as mean fluorescence) and the total number of monocytes in blood were the traits associated with the largest number of taxa (6 taxa). Among the associations identified by MWAS, 30% were confirmed by an information theory network approach. The strongest confirmed associations were between Fibrobacter and phagocytic capacity of lymphocytes (r = 0.37), followed by correlations between Streptococcus and the percentage of phagocytic lymphocytes (r = -0.34) and between Megasphaera and serum concentration of haptoglobin (r = 0.26). In the interaction network, Streptococcus and percentage of phagocytic lymphocytes were the keystone bacterial and immune-trait, respectively. CONCLUSIONS Overall, our findings reveal an important connection between gut microbiota composition and immunity traits in pigs, and highlight the need to consider both sources of information, host genome and microbial levels, to accurately characterize immunocompetence in pigs.
Collapse
Affiliation(s)
- Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, IRTA, Torre Marimón, 08140 Caldes de Montbui, Barcelona Spain
| | - Laura M. Zingaretti
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - David Pérez-Pascual
- Unité de Génétique des Biofilms, Institut Pasteur, UMR CNRS2001, Paris, France
| | | | - Antonio Reverter
- CSIRO Agriculture and Food, St. Lucia, Brisbane, QLD 4067 Australia
| | - Antoni Dalmau
- Animal Welfare Subprogram, IRTA, 17121 Monells, Girona Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, IRTA, Torre Marimón, 08140 Caldes de Montbui, Barcelona Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, IRTA, Torre Marimón, 08140 Caldes de Montbui, Barcelona Spain
| |
Collapse
|
9
|
Dauben CM, Pröll-Cornelissen MJ, Heuß EM, Appel AK, Henne H, Roth K, Schellander K, Tholen E, Große-Brinkhaus C. Genome-wide associations for immune traits in two maternal pig lines. BMC Genomics 2021; 22:717. [PMID: 34610786 PMCID: PMC8491387 DOI: 10.1186/s12864-021-07997-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background In recent years, animal welfare and health has become more and more important in pig breeding. So far, numerous parameters have been considered as important biomarkers, especially in the immune reaction and inflammation. Previous studies have shown moderate to high heritabilities in most of these traits. However, the genetic background of health and robustness of pigs needs to be extensively clarified. The objective of this study was to identify genomic regions with a biological relevance for the immunocompetence of piglets. Genome-wide Association Studies (GWAS) in 535 Landrace (LR) and 461 Large White (LW) piglets were performed, investigating 20 immune relevant traits. Besides the health indicators of the complete and differential blood count, eight different cytokines and haptoglobin were recorded in all piglets and their biological dams to capture mediating processes and acute phase reactions. Additionally, all animals were genotyped using the Illumina PorcineSNP60v2 BeadChip. Results In summary, GWAS detected 25 genome-wide and 452 chromosome-wide significant SNPs associated with 17 immune relevant traits in the two maternal pig lines LR and LW. Only small differences were observed considering the maternal immune records as covariate within the statistical model. Furthermore, the study identified across- and within-breed differences as well as relevant candidate genes. In LR more significant associations and related candidate genes were detected, compared with LW. The results detected in LR and LW are partly in accordance with previously identified quantitative trait loci (QTL) regions. In addition, promising novel genomic regions were identified which might be of interest for further detailed analysis. Especially putative pleiotropic regions on SSC5, SSC12, SSC15, SSC16 and SSC17 are of major interest with regard to the interacting structure of the immune system. The comparison with already identified QTL gives indications on interactions with traits affecting piglet survival and also production traits. Conclusion In conclusion, results suggest a polygenic and breed-specific background of immune relevant traits. The current study provides knowledge about regions with biological relevance for health and immune traits. Identified markers and putative pleiotropic regions provide first indications in the context of balancing a breeding-based modification of the porcine immune system. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-021-07997-1).
Collapse
Affiliation(s)
- Christina M Dauben
- Institute of Animal Sciences, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany
| | | | - Esther M Heuß
- Institute of Animal Sciences, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany
| | - Anne K Appel
- BHZP GmbH, An der Wassermühle 8, Dahlenburg-Ellringen, 21368, Germany
| | - Hubert Henne
- BHZP GmbH, An der Wassermühle 8, Dahlenburg-Ellringen, 21368, Germany
| | - Katharina Roth
- Institute of Animal Sciences, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany
| | - Karl Schellander
- Institute of Animal Sciences, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany
| | - Ernst Tholen
- Institute of Animal Sciences, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany
| | | |
Collapse
|
10
|
Uemoto Y, Ichinoseki K, Matsumoto T, Oka N, Takamori H, Kadowaki H, Kojima-Shibata C, Suzuki E, Okamura T, Aso H, Kitazawa H, Satoh M, Uenishi H, Suzuki K. Genome-wide association studies for production, respiratory disease, and immune-related traits in Landrace pigs. Sci Rep 2021; 11:15823. [PMID: 34349215 PMCID: PMC8338966 DOI: 10.1038/s41598-021-95339-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Identification of a quantitative trait locus (QTL) related to a chronic respiratory disease such as Mycoplasmal pneumonia of swine (MPS) and immune-related traits is important for the genetic improvement of disease resistance in pigs. The objective of this study was to detect a novel QTL for a total of 22 production, respiratory disease, and immune-related traits in Landrace pigs. A total of 874 Landrace purebred pigs, which were selected based on MPS resistance, were genotyped using the Illumina PorcineSNP60 BeadChip. We performed single nucleotide polymorphism (SNP)-based and haplotype-based genome-wide association studies (GWAS) to detect a novel QTL and to evaluate the possibility of a pleiotropic QTL for these traits. SNP-based GWAS detected a total of six significant regions in backfat thickness, ratio of granular leucocytes to lymphatic cells, plasma concentration of cortisol at different ages, and complement alternative pathway activity in serum. The significant region detected by haplotype-based GWAS was overlapped across the region detected by SNP-based GWAS. Most of these detected QTL regions were novel regions with some candidate genes located in them. With regard to a pleiotropic QTL among traits, only three of these detected QTL regions overlapped among traits, and many detected regions independently affected the traits.
Collapse
Affiliation(s)
- Yoshinobu Uemoto
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan.
| | - Kasumi Ichinoseki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Toshimi Matsumoto
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan
| | - Nozomi Oka
- Miyagi Prefecture Animal Industry Experiment Station, Osaki, Miyagi, 989-6445, Japan
| | - Hironori Takamori
- Miyagi Prefecture Animal Industry Experiment Station, Osaki, Miyagi, 989-6445, Japan
| | - Hiroshi Kadowaki
- Miyagi Prefecture Animal Industry Experiment Station, Osaki, Miyagi, 989-6445, Japan
| | | | - Eisaku Suzuki
- Miyagi Prefecture Animal Industry Experiment Station, Osaki, Miyagi, 989-6445, Japan
| | - Toshihiro Okamura
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 305-0901, Japan
| | - Hisashi Aso
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Haruki Kitazawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Masahiro Satoh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Hirohide Uenishi
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8634, Japan
| | - Keiichi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|
11
|
Wu P, Wang K, Zhou J, Chen D, Jiang A, Jiang Y, Zhu L, Qiu X, Li X, Tang G. A combined GWAS approach reveals key loci for socially-affected traits in Yorkshire pigs. Commun Biol 2021; 4:891. [PMID: 34285319 PMCID: PMC8292486 DOI: 10.1038/s42003-021-02416-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Socially affected traits in pigs are controlled by direct genetic effects and social genetic effects, which can make elucidation of their genetic architecture challenging. We evaluated the genetic basis of direct genetic effects and social genetic effects by combining single-locus and haplotype-based GWAS on imputed whole-genome sequences. Nineteen SNPs and 25 haplotype loci are identified for direct genetic effects on four traits: average daily feed intake, average daily gain, days to 100 kg and time in feeder per day. Nineteen SNPs and 11 haplotype loci are identified for social genetic effects on average daily feed intake, average daily gain, days to 100 kg and feeding speed. Two significant SNPs from single-locus GWAS (SSC6:18,635,874 and SSC6:18,635,895) are shared by a significant haplotype locus with haplotype alleles 'GGG' for both direct genetic effects and social genetic effects in average daily feed intake. A candidate gene, MT3, which is involved in growth, nervous, and immune processes, is identified. We demonstrate the genetic differences between direct genetic effects and social genetic effects and provide an anchor for investigating the genetic architecture underlying direct genetic effects and social genetic effects on socially affected traits in pigs.
Collapse
Affiliation(s)
- Pingxian Wu
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Kai Wang
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Jie Zhou
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Dejuan Chen
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Anan Jiang
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Yanzhi Jiang
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Yaan, Sichuan China
| | - Li Zhu
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xiaotian Qiu
- grid.410634.4National Animal Husbandry Service, Beijing, Beijing, China
| | - Xuewei Li
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Guoqing Tang
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| |
Collapse
|
12
|
Genetic parameters and associated genomic regions for global immunocompetence and other health-related traits in pigs. Sci Rep 2020; 10:18462. [PMID: 33116177 PMCID: PMC7595139 DOI: 10.1038/s41598-020-75417-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The inclusion of health-related traits, or functionally associated genetic markers, in pig breeding programs could contribute to produce more robust and disease resistant animals. The aim of the present work was to study the genetic determinism and genomic regions associated to global immunocompetence and health in a Duroc pig population. For this purpose, a set of 30 health-related traits covering immune (mainly innate), haematological, and stress parameters were measured in 432 healthy Duroc piglets aged 8 weeks. Moderate to high heritabilities were obtained for most traits and significant genetic correlations among them were observed. A genome wide association study pointed out 31 significantly associated SNPs at whole-genome level, located in six chromosomal regions on pig chromosomes SSC4, SSC6, SSC17 and SSCX, for IgG, γδ T-cells, C-reactive protein, lymphocytes phagocytic capacity, total number of lymphocytes, mean corpuscular volume and mean corpuscular haemoglobin. A total of 16 promising functionally-related candidate genes, including CRP, NFATC2, PRDX1, SLA, ST3GAL1, and VPS4A, have been proposed to explain the variation of immune and haematological traits. Our results enhance the knowledge of the genetic control of traits related with immunity and support the possibility of applying effective selection programs to improve immunocompetence in pigs.
Collapse
|
13
|
Tiezzi F, Brito LF, Howard J, Huang YJ, Gray K, Schwab C, Fix J, Maltecca C. Genomics of Heat Tolerance in Reproductive Performance Investigated in Four Independent Maternal Lines of Pigs. Front Genet 2020; 11:629. [PMID: 32695139 PMCID: PMC7338773 DOI: 10.3389/fgene.2020.00629] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Improving swine climatic resilience through genomic selection has the potential to minimize welfare issues and increase the industry profitability. The main objective of this study was to investigate the genetic and genomic determinism of tolerance to heat stress in four independent purebred populations of swine. Three female reproductive traits were investigated: total number of piglets born (TNB), number of piglets born alive (NBA) and average birth weight (ABW). More than 80,000 phenotypic and 12,000 genotyped individuals were included in this study. Genomic random-regression models were fitted regressing the phenotypes of interest on a set of 95 environmental covariates extracted from public weather station records. The models yielded estimates of (genomic) reactions norms for individual pigs, as indicator of heat tolerance. Heat tolerance is a heritable trait, although the heritabilities are larger under comfortable than heat-stress conditions (larger than 0.05 vs. 0.02 for TNB; 0.10 vs. 0.05 for NBA; larger than 0.20 vs. 0.10 for ABW). TNB showed the lowest genetic correlation (-38%) between divergent climatic conditions, being the trait with the strongest impact of genotype by environment interaction, while NBA and ABW showed values slightly negative or equal to zero reporting a milder impact of the genotype by environment interaction. After estimating genetic parameters, a genome-wide association study was performed based on the single-step GBLUP method. Heat tolerance was observed to be a highly polygenic trait. Multiple and non-overlapping genomic regions were identified for each trait based on the genomic breeding values for reproductive performance under comfortable or heat stress conditions. Relevant regions were found on chromosomes (SSC) 1, 3, 5, 6, 9, 11, and 12, although there were important regions across all autosomal chromosomes. The genomic region located on SSC9 appears to be of particular interest since it was identified for two traits (TNB and NBA) and in two independent populations. Heat tolerance based on reproductive performance indicators is a heritable trait and genetic progress for heat tolerance can be achieved through genetic or genomic selection. Various genomic regions and candidate genes with important biological functions were identified, which will be of great value for future functional genomic studies.
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jeremy Howard
- Smithfield Premium Genetics, Rose Hill, NC, United States
| | - Yi Jian Huang
- Smithfield Premium Genetics, Rose Hill, NC, United States
| | - Kent Gray
- Smithfield Premium Genetics, Rose Hill, NC, United States
| | | | - Justin Fix
- The Maschhoffs LLC, Carlyle, IL, United States
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
14
|
Yang Q, Wu P, Wang K, Chen D, Zhou J, Ma J, Li M, Xiao W, Jiang A, Jiang Y, Bai L, Zhu L, Li X, Tang G. SNPs associated with body weight and backfat thickness in two pig breeds identified by a genome-wide association study. Genomics 2019; 111:1583-1589. [DOI: 10.1016/j.ygeno.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022]
|
15
|
Ma X, Jia C, Fu D, Chu M, Ding X, Wu X, Guo X, Pei J, Bao P, Liang C, Yan P. Analysis of Hematological Traits in Polled Yak by Genome-Wide Association Studies Using Individual SNPs and Haplotypes. Genes (Basel) 2019; 10:E463. [PMID: 31212963 PMCID: PMC6627507 DOI: 10.3390/genes10060463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
Yak (Bos grunniens) is an important domestic animal living in high-altitude plateaus. Due to inadequate disease prevention, each year, the yak industry suffers significant economic losses. The identification of causal genes that affect blood- and immunity-related cells could provide preliminary reference guidelines for the prevention of diseases in the population of yaks. The genome-wide association studies (GWASs) utilizing a single-marker or haplotype method were employed to analyze 15 hematological traits in the genome of 315 unrelated yaks. Single-marker GWASs identified a total of 43 significant SNPs, including 35 suggestive and eight genome-wide significant SNPs, associated with nine traits. Haplotype analysis detected nine significant haplotype blocks, including two genome-wide and seven suggestive blocks, associated with seven traits. The study provides data on the genetic variability of hematological traits in the yak. Five essential genes (GPLD1, EDNRA,APOB, HIST1H1E, and HIST1H2BI) were identified, which affect the HCT, HGB, RBC, PDW, PLT, and RDWSD traits and can serve as candidate genes for regulating hematological traits. The results provide a valuable reference to be used in the analysis of blood properties and immune diseases in the yak.
Collapse
Affiliation(s)
- Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Congjun Jia
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Donghai Fu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Xuezhi Ding
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| |
Collapse
|
16
|
Bovo S, Mazzoni G, Bertolini F, Schiavo G, Galimberti G, Gallo M, Dall'Olio S, Fontanesi L. Genome-wide association studies for 30 haematological and blood clinical-biochemical traits in Large White pigs reveal genomic regions affecting intermediate phenotypes. Sci Rep 2019; 9:7003. [PMID: 31065004 PMCID: PMC6504931 DOI: 10.1038/s41598-019-43297-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Haematological and clinical-biochemical parameters are considered indicators of the physiological/health status of animals and might serve as intermediate phenotypes to link physiological aspects to production and disease resistance traits. The dissection of the genetic variability affecting these phenotypes might be useful to describe the resilience of the animals and to support the usefulness of the pig as animal model. Here, we analysed 15 haematological and 15 clinical-biochemical traits in 843 Italian Large White pigs, via three genome-wide association scan approaches (single-trait, multi-trait and Bayesian). We identified 52 quantitative trait loci (QTLs) associated with 29 out of 30 analysed blood parameters, with the most significant QTL identified on porcine chromosome 14 for basophil count. Some QTL regions harbour genes that may be the obvious candidates: QTLs for cholesterol parameters identified genes (ADCY8, APOB, ATG5, CDKAL1, PCSK5, PRL and SOX6) that are directly involved in cholesterol metabolism; other QTLs highlighted genes encoding the enzymes being measured [ALT (known also as GPT) and AST (known also as GOT)]. Moreover, the multivariate approach strengthened the association results for several candidate genes. The obtained results can contribute to define new measurable phenotypes that could be applied in breeding programs as proxies for more complex traits.
Collapse
Affiliation(s)
- Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Gianluca Mazzoni
- Department of Health Technology, Technical University of Denmark (DTU), Lyngby, 2800, Denmark
| | - Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Lyngby, 2800, Denmark
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Giuliano Galimberti
- Department of Statistical Sciences "Paolo Fortunati", University of Bologna, Via delle Belle Arti 41, 40126, Bologna, Italy
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, 00198, Roma, Italy
| | - Stefania Dall'Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
17
|
Wang Y, Ning C, Wang C, Guo J, Wang J, Wu Y. Genome-wide association study for intramuscular fat content in Chinese Lulai black pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:607-613. [PMID: 30381738 PMCID: PMC6502724 DOI: 10.5713/ajas.18.0483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Objective Intramuscular fat (IMF) content plays an important role in meat quality. Identification of single nucleotide polymorphisms (SNPs) and genes related to pig IMF, especially using pig populations with high IMF content variation, can help to establish novel molecular breeding tools for optimizing IMF in pork and unveil the mechanisms that underlie fat metabolism. Methods We collected muscle samples of 453 Chinese Lulai black pigs, measured IMF content by Soxhlet petroleum-ether extraction method, and genotyped genome-wide SNPs using GeneSeek Genomic Profiler Porcine HD BeadChip. Then a genome-wide association study was performed using a linear mixed model implemented in the GEMMA software. Results A total of 43 SNPs were identified to be significantly associated with IMF content by the cutoff p<0.001. Among these significant SNPs, the greatest number of SNPs (n = 19) were detected on Chr.9, and two linkage disequilibrium blocks were formed among them. Additionally, 17 significant SNPs are mapped to previously reported quantitative trait loci (QTLs) of IMF and confirmed previous QTLs studies. Forty-two annotated genes centering these significant SNPs were obtained from Ensembl database. Overrepresentation test of pathways and gene ontology (GO) terms revealed some enriched reactome pathways and GO terms, which mainly involved regulation of basic material transport, energy metabolic process and signaling pathway. Conclusion These findings improve our understanding of the genetic architecture of IMF content in pork and facilitate the follow-up study of fine-mapping genes that influence fat deposition in muscle.
Collapse
Affiliation(s)
- Yanping Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Ning
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Cheng Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jianfeng Guo
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jiying Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying Wu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
18
|
Yan G, Guo T, Xiao S, Zhang F, Xin W, Huang T, Xu W, Li Y, Zhang Z, Huang L. Imputation-Based Whole-Genome Sequence Association Study Reveals Constant and Novel Loci for Hematological Traits in a Large-Scale Swine F 2 Resource Population. Front Genet 2018; 9:401. [PMID: 30405681 PMCID: PMC6204663 DOI: 10.3389/fgene.2018.00401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/03/2018] [Indexed: 11/13/2022] Open
Abstract
The whole-genome sequences of progenies with low-density single-nucleotide polymorphism (SNP) genotypes can be imputed with high accuracy based on the deep-coverage sequences of key ancestors. With this imputation technology, a more powerful genome-wide association study (GWAS) can be carried out using imputed whole-genome variants and the phenotypes of interest to overcome the shortcomings of low-power detection and the large confidence interval derived from low-density SNP markers in classic association studies. In this study, 19 ancestors of a large-scale swine F2 White Duroc × Erhualian population were deeply sequenced for their genome with an average coverage of 25×. Considering 98 pigs from 10 different breeds with high-quality deep sequenced genomes, we imputed the whole genomic variants of 1020 F2 pigs genotyped by the PorcineSNP60 BeadChip with high accuracy and obtained 14,851,440 sequence variants after quality control. Based on this, 87 novel quantitative traits loci (QTLs) for 18 hematological traits at three different physiological stages of the F2 pigs were identified, among which most of the novel QTLs have been repeated in two of the three stages. Literature mining pinpointed that the FGF14 and LCLAT1 genes at SSC11 and SSC3 may affect the MCH at day 240 and MCV at day 18, respectively. The present study shows that combining high-quality imputed genomic variants and correlated phenomic traits into GWAS can improve the capability to detect QTL considerably. The large number of different QTLs for hematological traits identified at multiple growth stages implies the complexity and time specificity of these traits.
Collapse
Affiliation(s)
- Guorong Yan
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tianfu Guo
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Feng Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenshui Xin
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenwu Xu
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yiping Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyan Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
19
|
Hao X, Plastow G, Zhang C, Xu S, Hu Z, Yang T, Wang K, Yang H, Yin X, Liu S, Wang Z, Wang Z, Zhang S. Genome-wide association study identifies candidate genes for piglet splay leg syndrome in different populations. BMC Genet 2017; 18:64. [PMID: 28679362 PMCID: PMC5499021 DOI: 10.1186/s12863-017-0532-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/28/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Piglet splay leg syndrome (PSL) is one of the most frequent genetic defects, and can cause considerable economic loss in pig production. The present understanding of etiology and pathogenesis of PSL is poor. The current study focused on identifying loci associated with PSL through a genome-wide association study (GWAS) performed with the Illumina Porcine60 SNP Beadchip v2.0. The study was a case/control design with four pig populations (Duroc, Landrace, Yorkshire and one crossbred of Landrace × Yorkshire). RESULT After quality control of the genotyping data, 185 animals (73 cases, 112 controls) and 43,495 SNPs were retained for further analysis. Principal components (PCs) identified from the genomic kinship matrix were included in the statistical model for correcting the effect of population structure. Seven chromosome-wide significant SNPs were identified on Sus scrofa chromosome 1 (SSC1), SSC2 (2 SNPs), SSC7, SSC15 (2 SNPs) and SSC16 after strict Bonferroni correction. Four genes (HOMER1 and JMY on SSC2, ITGA1 on SSC16, and RAB32 on SSC1) related to muscle development, glycogen metabolism and mitochondrial dynamics were identified as potential candidate genes for PSL. CONCLUSIONS We identified seven chromosome-wide significant SNPs associated with PSL and four potential candidate genes for PSL. To our knowledge, this is the first pilot study aiming to identify the loci associated with PSL using GWAS. Further investigations and validations for those findings are encouraged.
Collapse
Affiliation(s)
- Xingjie Hao
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 China
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8 Canada
| | - Graham Plastow
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8 Canada
| | - Chunyan Zhang
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8 Canada
| | - Sutong Xu
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Zhiqiu Hu
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8 Canada
| | - Tianfu Yang
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8 Canada
| | - Kai Wang
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Huawei Yang
- Hubei Tianzhong Stock Corporation, Wuhan, Hubei China
| | - Xiaoxue Yin
- Hubei Tianzhong Stock Corporation, Wuhan, Hubei China
| | - Shili Liu
- Hubei Tianzhong Stock Corporation, Wuhan, Hubei China
| | - Zhenghua Wang
- Hubei Tianzhong Stock Corporation, Wuhan, Hubei China
| | - Zhiquan Wang
- Livestock Gentec Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2C8 Canada
| | - Shujun Zhang
- Key Lab of Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| |
Collapse
|
20
|
Liu Y, Hu Z, Yang C, Wang S, Wang W, Zhang Q. A post-genome-wide association study validating the association of the glycophorin C gene with serum hemoglobin level in pig. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:638-642. [PMID: 28446001 PMCID: PMC5411822 DOI: 10.5713/ajas.16.0409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/31/2016] [Accepted: 11/16/2016] [Indexed: 12/24/2022]
Abstract
Objective This study aimed to validate the statistical evidence from the genome-wide association study (GWAS) as true-positive and to better understand the effects of the glycophorin C (GYPC) gene on serum hemoglobin traits. Methods Our initial GWAS revealed the presence of two single nucleotide polymorphisms (SNPs) (ASGA0069038 and ALGA0084612) for the hemoglobin concentration trait (HGB) in the 2.48 Mb region of SSC15. From this target region, GYPC was selected as a promising gene that associated with serum HGB traits in pigs. SNPs within the GYPC gene were detected by sequencing. Thereafter, we performed association analysis of the variant with the serum hemoglobin level in three pig populations. Results We identified one SNP (g.29625094 T>C) in exon 3 of the GYPC gene. Statistical analysis showed a significant association of the SNP with the serum hemoglobin level on day 20 (p<0.05). By quantitative real-time polymerase chain reaction, the GYPC gene was expressed in eight different tissues. Conclusion These results might improve our understanding of GYPC function and provide evidence for its association with serum hemoglobin traits in the pig. These results also indicate that the GYPC gene might serve as a useful marker in pig breeding programs.
Collapse
Affiliation(s)
- Yang Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengzheng Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shiwei Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Zhang J, Chen JH, Liu XD, Wang HY, Liu XL, Li XY, Wu ZF, Zhu MJ, Zhao SH. Genomewide association studies for hematological traits and T lymphocyte subpopulations in a Duroc × Erhualian F resource population. J Anim Sci 2017; 94:5028-5041. [PMID: 28046140 DOI: 10.2527/jas.2016-0924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It has been shown that hematological traits can act as important indicators of immune function in both humans and livestock. T lymphocytes are key components of the adaptive immune system, playing a critical role in immune response. To identify genomic regions affecting hematological traits and T lymphocyte subpopulations, we performed both a SNP-based genomewide association study (GWAS) and a haplotype analysis for 20 hematological traits and 8 T cell subpopulations at 3 different time points (d 20, 33, and 35) in a Duroc × Erhualian F intercross population. Bonferroni correction was used to calculate the threshold -values for suggestive and 5% genomewide significance levels. In total, for SNP-based GWAS, we detected 96 significant SNP, including 15 genomewide-significant SNP, associated with 23 hematological traits and 234 significant SNP, including 27 genomewide-significant SNP, associated with 8 T cell subpopulations. Meanwhile, we identified 563 significant SNP, including 7 genomewide-significant SNP, associated with 5 hematological traits and 2,407 significant SNP, including 1,261 genomewide-significant SNP, associated with 8 T cell subpopulations by haplotype analysis. Among the significant regions detected, we propose both the () gene and the () gene on SSC3 as plausible candidate genes associated with CD/CD T lymphocytes at d 20. The findings provide insights into the basis of molecular mechanisms that are involved with immune response in the domestic pig and would aid further identification of causative mutations.
Collapse
|
22
|
Meng Q, Wang K, Liu X, Zhou H, Xu L, Wang Z, Fang M. Identification of growth trait related genes in a Yorkshire purebred pig population by genome-wide association studies. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:462-469. [PMID: 27809465 PMCID: PMC5394831 DOI: 10.5713/ajas.16.0548] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/12/2016] [Accepted: 10/24/2016] [Indexed: 01/16/2023]
Abstract
Objective The aim of this study is to identify genomic regions or genes controlling growth traits in pigs. Methods Using a panel of 54,148 single nucleotide polymorphisms (SNPs), we performed a genome-wide Association (GWA) study in 562 pure Yorshire pigs with four growth traits: average daily gain from 30 kg to 100 kg or 115 kg, and days to 100 kg or 115 kg. Fixed and random model Circulating Probability Unification method was used to identify the associations between 54,148 SNPs and these four traits. SNP annotations were performed through the Sus scrofa data set from Ensembl. Bioinformatics analysis, including gene ontology analysis, pathway analysis and network analysis, was used to identify the candidate genes. Results We detected 6 significant and 12 suggestive SNPs, and identified 9 candidate genes in close proximity to them (suppressor of glucose by autophagy [SOGA1], R-Spondin 2 [RSPO2], mitogen activated protein kinase kinase 6 [MAP2K6], phospholipase C beta 1 [PLCB1], rho GTPASE activating protein 24 [ARHGAP24], cytoplasmic polyadenylation element binding protein 4 [CPEB4], GLI family zinc finger 2 [GLI2], neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adaptor 2 [NYAP2], and zinc finger protein multitype 2 [ZFPM2]). Gene ontology analysis and literature mining indicated that the candidate genes are involved in bone, muscle, fat, and lung development. Pathway analysis revealed that PLCB1 and MAP2K6 participate in the gonadotropin signaling pathway and suggests that these two genes contribute to growth at the onset of puberty. Conclusion Our results provide new clues for understanding the genetic mechanisms underlying growth traits, and may help improve these traits in future breeding programs.
Collapse
Affiliation(s)
- Qingli Meng
- Beijing Breeding Swine Center, Beijing 100194, China
| | - Kejun Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haishen Zhou
- Beijing Breeding Swine Center, Beijing 100194, China
| | - Li Xu
- Beijing Breeding Swine Center, Beijing 100194, China
| | - Zhaojun Wang
- Beijing Breeding Swine Center, Beijing 100194, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
A genomic variant in IRF9 is associated with serum cytokine levels in pig. Immunogenetics 2015; 68:67-76. [PMID: 26518782 DOI: 10.1007/s00251-015-0879-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/18/2015] [Indexed: 10/22/2022]
Abstract
The interferon regulatory factor 9 (IRF9) gene is a member of the IRF family and has been shown to play functionally diverse roles in the regulation of the immune system. Previous study revealed the IRF9 gene resides within the reported quantitative trait locus (QTLs) for cytokine levels. The aims of this study were to identify genomic variants in IRF9 and to test the association between the variants and cytokine levels in pig. A synonymous single-nucleotide polymorphism (c.459A>G) was identified in exon 4 of the IRF9 gene. Association analysis in 300 piglets (Landrace, n=68; large white, n=158; and Songliao black, n=74) showed that this variant was significantly associated with the level of interferon (IFN)-γ and the ratio of IFN-γ to IL-10 in serum (P<0.05). Relative quantification of messenger RNA (mRNA) revealed that spleen had the highest expression level and individuals with genotype AA had higher expression than those with genotype AG. Transfection-based mRNA stability assay analysis further showed that the mutant allele G could reduce the RNA stability of IRF9. These findings suggest that the SNP (c.459A>G) could be a causative mutation for the association between IRF9 and the serum cytokine levels in swine.
Collapse
|
24
|
Wang K, Liu D, Hernandez-Sanchez J, Chen J, Liu C, Wu Z, Fang M, Li N. Genome Wide Association Analysis Reveals New Production Trait Genes in a Male Duroc Population. PLoS One 2015; 10:e0139207. [PMID: 26418247 PMCID: PMC4587933 DOI: 10.1371/journal.pone.0139207] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/10/2015] [Indexed: 01/07/2023] Open
Abstract
In this study, 796 male Duroc pigs were used to identify genomic regions controlling growth traits. Three production traits were studied: food conversion ratio, days to 100 KG, and average daily gain, using a panel of 39,436 single nucleotide polymorphisms. In total, we detected 11 genome-wide and 162 chromosome-wide single nucleotide polymorphism trait associations. The Gene ontology analysis identified 14 candidate genes close to significant single nucleotide polymorphisms, with growth-related functions: six for days to 100 KG (WT1, FBXO3, DOCK7, PPP3CA, AGPAT9, and NKX6-1), seven for food conversion ratio (MAP2, TBX15, IVL, ARL15, CPS1, VWC2L, and VAV3), and one for average daily gain (COL27A1). Gene ontology analysis indicated that most of the candidate genes are involved in muscle, fat, bone or nervous system development, nutrient absorption, and metabolism, which are all either directly or indirectly related to growth traits in pigs. Additionally, we found four haplotype blocks composed of suggestive single nucleotide polymorphisms located in the growth trait-related quantitative trait loci and further narrowed down the ranges, the largest of which decreased by ~60 Mb. Hence, our results could be used to improve pig production traits by increasing the frequency of favorable alleles via artificial selection.
Collapse
Affiliation(s)
- Kejun Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Dewu Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People’s Republic of China
| | - Jules Hernandez-Sanchez
- Research Methods Group| Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Ave/cnr. Blamey St, Kelvin Grove, QLD 4059, Australia
| | - Jie Chen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Chengkun Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Zhenfang Wu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People’s Republic of China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People’s Republic of China
- * E-mail:
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100094, People’s Republic of China
| |
Collapse
|
25
|
Schroyen M, Tuggle CK. Current transcriptomics in pig immunity research. Mamm Genome 2014; 26:1-20. [PMID: 25398484 PMCID: PMC7087981 DOI: 10.1007/s00335-014-9549-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/21/2014] [Indexed: 01/05/2023]
Abstract
Swine performance in the face of disease challenge is becoming progressively more important. To improve the pig’s robustness and resilience against pathogens through selection, a better understanding of the genetic and epigenetic factors in the immune response is required. This review highlights results from the most recent transcriptome research, and the meta-analyses performed, in the context of pig immunity. A technological overview is given including wholegenome microarrays, immune-specific arrays, small-scale high-throughput expression methods, high-density tiling arrays, and next generation sequencing (NGS). Although whole genome microarray techniques will remain complementary to NGS for some time in domestic species, research will transition to sequencing-based methods due to cost-effectiveness and the extra information that such methods provide. Furthermore, upcoming high-throughput epigenomic studies, which will add greatly to our knowledge concerning the impact of epigenetic modifications on pig immune response, are listed in this review. With emphasis on the insights obtained from transcriptomic analyses for porcine immunity, we also discuss the experimental design in pig immunity research and the value of the newly published porcine genome assembly in using the pig as a model for human immune response. We conclude by discussing the importance of establishing community standards to maximize the possibility of integrative computational analyses, such as was clearly beneficial for the human ENCODE project.
Collapse
Affiliation(s)
- Martine Schroyen
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA,
| | | |
Collapse
|
26
|
Cui L, Zhang J, Ma J, Guo Y, Li L, Xiao S, Ren J, Yang B, Huang L. Sexually dimorphic genetic architecture of complex traits in a large-scale F2 cross in pigs. Genet Sel Evol 2014; 46:76. [PMID: 25374066 PMCID: PMC4221709 DOI: 10.1186/s12711-014-0076-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND It is common for humans and model organisms to exhibit sexual dimorphism in a variety of complex traits. However, this phenomenon has rarely been explored in pigs. RESULTS To investigate the genetic contribution to sexual dimorphism in complex traits in pigs, we conducted a sex-stratified analysis on 213 traits measured in 921 individuals produced by a White Duroc × Erhualian F2 cross. Of the 213 traits examined, 102 differed significantly between the two sexes (q value <0.05), which indicates that sex is an important factor that influences a broad range of traits in pigs. We compared the estimated heritability of these 213 traits between males and females. In particular, we found that traits related to meat quality and fatty acid composition were significantly different between the two sexes, which shows that genetic factors contribute to variation in sexual dimorphic traits. Next, we performed a genome-wide association study (GWAS) in males and females separately; this approach allowed us to identify 13.6% more significant trait-SNP (single nucleotide polymorphism) associations compared to the number of associations identified in a GWAS that included both males and females. By comparing the allelic effects of SNPs in the two sexes, we identified 43 significant sexually dimorphic SNPs that were associated with 22 traits; 41 of these 43 loci were autosomal. The most significant sexually dimorphic loci were found to be associated with muscle hue angle and Minolta a* values (which are parameters that reflect the redness of meat) and were located between 9.3 and 10.7 Mb on chromosome 6. A nearby gene i.e. NUDT7 that plays an important role in heme synthesis is a strong candidate gene. CONCLUSIONS This study illustrates that sex is an important factor that influences phenotypic values and modifies the effects of the genetic variants that underlie complex traits in pigs; it also emphasizes the importance of stratifying by sex when performing GWAS.
Collapse
Affiliation(s)
- Leilei Cui
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Junjie Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Junwu Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Yuanmei Guo
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Lin Li
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Bin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China
| |
Collapse
|
27
|
Jung EJ, Park HB, Lee JB, Yoo CK, Kim BM, Kim HI, Cho IC, Lim HT. Genome-wide association study identifies quantitative trait loci affecting hematological traits in an F2 intercross between Landrace and Korean native pigs. Anim Genet 2014; 45:534-41. [PMID: 24797309 DOI: 10.1111/age.12175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2014] [Indexed: 11/30/2022]
Abstract
Changes affecting the status of health and robustness can bring about physiological alterations including hematological parameters in swine. To identify quantitative trait loci (QTL) associated with eight hematological traits (one leukocyte trait, six erythrocyte traits and one platelet trait), we conducted a genome-wide association study using the PorcineSNP60K BeadChip in a resource population derived from an intercross between Landrace and Korean native pigs. A total of 36 740 SNPs from 816 F2 progeny were analyzed for each blood-related trait after filtering for quality control. Data were analyzed by the genome-wide rapid association using mixed model and regression (GRAMMAR) approach. A total of 257 significant SNPs (P < 1.36 × 10(-6) ) on SSC3, 6, 8, 13 and 17 were identified for blood-related traits in this study. Interestingly, the genomic region between 17.9 and 130 Mb on SSC8 was found to be significantly associated with red blood cell, mean corpuscular volume and mean corpuscular hemoglobin. Our results include the identification of five significant SNPs within five candidate genes (KIT, IL15, TXK, ARAP2 and ERG) for hematopoiesis. Further validation of these identified SNPs could give valuable information for understanding the variation of hematological traits in pigs.
Collapse
Affiliation(s)
- E J Jung
- Department of Animal Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ma Y, Zhang H, Zhang Q, Ding X. Identification of selection footprints on the X chromosome in pig. PLoS One 2014; 9:e94911. [PMID: 24740293 PMCID: PMC3989256 DOI: 10.1371/journal.pone.0094911] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/21/2014] [Indexed: 11/18/2022] Open
Abstract
Identifying footprints of selection can provide a straightforward insight into the mechanism of artificial selection and further dig out the causal genes related to important traits. In this study, three between-population and two within-population approaches, the Cross Population Extend Haplotype Homozygosity Test (XPEHH), the Cross Population Composite Likelihood Ratio (XPCLR), the F-statistics (Fst), the Integrated Haplotype Score (iHS) and the Tajima's D, were implemented to detect the selection footprints on the X chromosome in three pig breeds using Illumina Porcine60K SNP chip. In the detection of selection footprints using between-population methods, 11, 11 and 7 potential selection regions with length of 15.62 Mb, 12.32 Mb and 9.38 Mb were identified in Landrace, Chinese Songliao and Yorkshire by XPEHH, respectively, and 16, 13 and 17 potential selection regions with length of 15.20 Mb, 13.00 Mb and 19.21 Mb by XPCLR, 4, 2 and 4 potential selection regions with length of 3.20 Mb, 1.60 Mb and 3.20 Mb by Fst. For within-population methods, 7, 10 and 9 potential selection regions with length of 8.12 Mb, 8.40 Mb and 9.99 Mb were identified in Landrace, Chinese Songliao and Yorkshire by iHS, and 4, 3 and 2 potential selection regions with length of 3.20 Mb, 2.40 Mb and 1.60 Mb by Tajima's D. Moreover, the selection regions from different methods were partly overlapped, especially the regions around 22∼25 Mb were detected under selection in Landrace and Yorkshire while no selection in Chinese Songliao by all three between-population methods. Only quite few overlap of selection regions identified by between-population and within-population methods were found. Bioinformatics analysis showed that the genes relevant with meat quality, reproduction and immune were found in potential selection regions. In addition, three out of five significant SNPs associated with hematological traits reported in our genome-wide association study were harbored in potential selection regions.
Collapse
Affiliation(s)
- Yunlong Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Haihan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
29
|
Zhang F, Zhang Z, Yan X, Chen H, Zhang W, Hong Y, Huang L. Genome-wide association studies for hematological traits in Chinese Sutai pigs. BMC Genet 2014; 15:41. [PMID: 24674592 PMCID: PMC3986688 DOI: 10.1186/1471-2156-15-41] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 03/10/2014] [Indexed: 11/10/2022] Open
Abstract
Background It has been shown that hematological traits are strongly associated with the metabolism and the immune system in domestic pig. However, little is known about the genetic architecture of hematological traits. To identify quantitative trait loci (QTL) controlling hematological traits, we performed single marker Genome-wide association studies (GWAS) and haplotype analysis for 15 hematological traits in 495 Chinese Sutai pigs. Results We identified 161 significant SNPs including 44 genome-wide significant SNPs associated with 11 hematological traits by single marker GWAS. Most of them were located on SSC2. Meanwhile, we detected 499 significant SNPs containing 154 genome-wide significant SNPs associated with 9 hematological traits by haplotype analysis. Most of the identified loci were located on SSC7 and SSC9. Conclusions We detected 4 SNPs with pleiotropic effects on SSC2 by single marker GWAS and (or) on SSC7 by haplotype analysis. Furthermore, through checking the gene functional annotations, positions and their expression variation, we finally selected 7 genes as potential candidates. Specially, we found that three genes (TRIM58, TRIM26 and TRIM21) of them originated from the same gene family and executed similar function of innate and adaptive immune. The findings will contribute to dissection the immune gene network, further identification of causative mutations underlying the identified QTLs and providing insights into the molecular basis of hematological trait in domestic pig.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045 Nanchang, China.
| |
Collapse
|
30
|
Sanchez MP, Tribout T, Iannuccelli N, Bouffaud M, Servin B, Tenghe A, Dehais P, Muller N, Del Schneider MP, Mercat MJ, Rogel-Gaillard C, Milan D, Bidanel JP, Gilbert H. A genome-wide association study of production traits in a commercial population of Large White pigs: evidence of haplotypes affecting meat quality. Genet Sel Evol 2014; 46:12. [PMID: 24528607 PMCID: PMC3975960 DOI: 10.1186/1297-9686-46-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 12/13/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Numerous quantitative trait loci (QTL) have been detected in pigs over the past 20 years using microsatellite markers. However, due to the low density of these markers, the accuracy of QTL location has generally been poor. Since 2009, the dense genome coverage provided by the Illumina PorcineSNP60 BeadChip has made it possible to more accurately map QTL using genome-wide association studies (GWAS). Our objective was to perform high-density GWAS in order to identify genomic regions and corresponding haplotypes associated with production traits in a French Large White population of pigs. METHODS Animals (385 Large White pigs from 106 sires) were genotyped using the PorcineSNP60 BeadChip and evaluated for 19 traits related to feed intake, growth, carcass composition and meat quality. Of the 64,432 SNPs on the chip, 44,412 were used for GWAS with an animal mixed model that included a regression coefficient for the tested SNPs and a genomic kinship matrix. SNP haplotype effects in QTL regions were then tested for association with phenotypes following phase reconstruction based on the Sscrofa10.2 pig genome assembly. RESULTS Twenty-three QTL regions were identified on autosomes and their effects ranged from 0.25 to 0.75 phenotypic standard deviation units for feed intake and feed efficiency (four QTL), carcass (12 QTL) and meat quality traits (seven QTL). The 10 most significant QTL regions had effects on carcass (chromosomes 7, 10, 16, 17 and 18) and meat quality traits (two regions on chromosome 1 and one region on chromosomes 8, 9 and 13). Thirteen of the 23 QTL regions had not been previously described. A haplotype block of 183 kb on chromosome 1 (six SNPs) was identified and displayed three distinct haplotypes with significant (0.0001 < P < 0.03) associations with all evaluated meat quality traits. CONCLUSIONS GWAS analyses with the PorcineSNP60 BeadChip enabled the detection of 23 QTL regions that affect feed consumption, carcass and meat quality traits in a LW population, of which 13 were novel QTL. The proportionally larger number of QTL found for meat quality traits suggests a specific opportunity for improving these traits in the pig by genomic selection.
Collapse
Affiliation(s)
- Marie-Pierre Sanchez
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
- INRA, AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
| | - Thierry Tribout
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
- INRA, AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
| | - Nathalie Iannuccelli
- INRA, UMR444 Laboratoire de Génétique Cellulaire, F-31326 Castanet-Tolosan, France
| | | | - Bertrand Servin
- INRA, UMR444 Laboratoire de Génétique Cellulaire, F-31326 Castanet-Tolosan, France
| | - Amabel Tenghe
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
- INRA, AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
| | - Patrice Dehais
- INRA, UMR444 Laboratoire de Génétique Cellulaire, F-31326 Castanet-Tolosan, France
| | - Nelly Muller
- INRA, UE450 Testage Porcs, F-35651 Le Rheu, France
| | - Maria Pilar Del Schneider
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
- INRA, AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
| | | | - Claire Rogel-Gaillard
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
- INRA, AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
| | - Denis Milan
- INRA, UMR444 Laboratoire de Génétique Cellulaire, F-31326 Castanet-Tolosan, France
| | - Jean-Pierre Bidanel
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
- INRA, AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France
| | - Hélène Gilbert
- INRA, UMR444 Laboratoire de Génétique Cellulaire, F-31326 Castanet-Tolosan, France
| |
Collapse
|
31
|
Lu X, Liu J, Fu W, Zhou J, Luo Y, Ding X, Liu Y, Zhang Q. Genome-wide association study for cytokines and immunoglobulin G in swine. PLoS One 2013; 8:e74846. [PMID: 24098351 PMCID: PMC3788770 DOI: 10.1371/journal.pone.0074846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 08/08/2013] [Indexed: 12/31/2022] Open
Abstract
Increased disease resistance through improved immune capacity would be beneficial for the welfare and productivity of farm animals. To identify genomic regions responsible for immune capacity traits in swine, a genome-wide association study was conducted. In total, 675 pigs were included. At 21 days of age, all piglets were vaccinated with modified live classical swine fever vaccine. Blood samples were sampled when the piglets were 20 and 35 days of age, respectively. Four traits, including Interferon-gamma (IFN-γ) and Interleukin 10 (IL-10) levels, the ratio of IFN-γ to IL-10 and Immunoglobulin G (IgG) blocking percentage to CSFV in serum were measured. All the samples were genotyped for 62,163 single nucleotide polymorphisms (SNP) using the Illumina porcineSNP60k BeadChip. After quality control, 46,079 SNPs were selected for association tests based on a single-locus regression model. To tackle the issue of multiple testing, 10,000 permutations were performed to determine the chromosome-wise and genome-wise significance level. In total, 32 SNPs with chromosome-wise significance level (including 4 SNPs with genome-wise significance level) were identified. These SNPs account for 3.23% to 13.81% of the total phenotypic variance individually. For the four traits, the numbers of significant SNPs range from 5 to 15, which jointly account for 37.52%, 82.94%, 26.74% and 24.16% of the total phenotypic variance of IFN-γ, IL-10, IFN-γ/IL-10, and IgG, respectively. Several significant SNPs are located within the QTL regions reported in previous studies. Furthermore, several significant SNPs fall into the regions which harbour a number of known immunity-related genes. Results herein lay a preliminary foundation for further identifying the causal mutations affecting swine immune capacity in follow-up studies.
Collapse
Affiliation(s)
- Xin Lu
- Key Laboratory Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - JianFeng Liu
- Key Laboratory Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - WeiXuan Fu
- Key Laboratory Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, United States of America
| | - JiaPeng Zhou
- Key Laboratory Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - YanRu Luo
- Key Laboratory Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - XiangDong Ding
- Key Laboratory Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yang Liu
- Key Laboratory Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
32
|
Gonzalez MV, Mousel MR, Herndon DR, Jiang Y, Dalrymple BP, Reynolds JO, Johnson WC, Herrmann-Hoesing LM, White SN. A divergent Artiodactyl MYADM-like repeat is associated with erythrocyte traits and weight of lamb weaned in domestic sheep. PLoS One 2013; 8:e74700. [PMID: 24023702 PMCID: PMC3758307 DOI: 10.1371/journal.pone.0074700] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/03/2013] [Indexed: 12/15/2022] Open
Abstract
A genome-wide association study (GWAS) was performed to investigate seven red blood cell (RBC) phenotypes in over 500 domestic sheep (Ovis aries) from three breeds (Columbia, Polypay, and Rambouillet). A single nucleotide polymorphism (SNP) showed genome-wide significant association with increased mean corpuscular hemoglobin concentration (MCHC, P = 6.2×10−14) and genome-wide suggestive association with decreased mean corpuscular volume (MCV, P = 2.5×10−6). The ovine HapMap project found the same genomic region and the same peak SNP has been under extreme historical selective pressure, demonstrating the importance of this region for survival, reproduction, and/or artificially selected traits. We observed a large (>50 kb) variant haplotype sequence containing a full-length divergent artiodactyl MYADM-like repeat in strong linkage disequilibrium with the associated SNP. MYADM gene family members play roles in membrane organization and formation in myeloid cells. However, to our knowledge, no member of the MYADM gene family has been identified in development of morphologically variant RBCs. The specific RBC differences may be indicative of alterations in morphology. Additionally, erythrocytes with altered morphological structure often exhibit increased structural fragility, leading to increased RBC turnover and energy expenditure. The divergent artiodactyl MYADM-like repeat was also associated with increased ewe lifetime kilograms of lamb weaned (P = 2×10−4). This suggests selection for normal RBCs might increase lamb weights, although further validation is required before implementation in marker-assisted selection. These results provide clues to explain the strong selection on the artiodactyl MYADM-like repeat locus in sheep, and suggest MYADM family members may be important for RBC morphology in other mammals.
Collapse
Affiliation(s)
- Michael V. Gonzalez
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Michelle R. Mousel
- U.S. Sheep Experiment Station, Agricultural Research Service, U.S. Department of Agriculture, Dubois, Idaho, United States of America
| | - David R. Herndon
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
| | - Yu Jiang
- CSIRO Animal, Food and Health Sciences, St. Lucia, Australia
| | | | - James O. Reynolds
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
| | - Wendell C. Johnson
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
| | - Lynn M. Herrmann-Hoesing
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Stephen N. White
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
33
|
Ma J, Yang J, Zhou L, Zhang Z, Ma H, Xie X, Zhang F, Xiong X, Cui L, Yang H, Liu X, Duan Y, Xiao S, Ai H, Ren J, Huang L. Genome-wide association study of meat quality traits in a White Duroc×Erhualian F2 intercross and Chinese Sutai pigs. PLoS One 2013; 8:e64047. [PMID: 23724019 PMCID: PMC3665833 DOI: 10.1371/journal.pone.0064047] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/07/2013] [Indexed: 12/31/2022] Open
Abstract
Thousands of QTLs for meat quality traits have been identified by linkage mapping studies, but most of them lack precise position or replication between populations, which hinder their application in pig breeding programs. To localize QTLs for meat quality traits to precise genomic regions, we performed a genome-wide association (GWA) study using the Illumina PorcineSNP60K Beadchip in two swine populations: 434 Sutai pigs and 933 F2 pigs from a White Duroc×Erhualian intercross. Meat quality traits, including pH, color, drip loss, moisture content, protein content and intramuscular fat content (IMF), marbling and firmness scores in the M. longissimus (LM) and M. semimembranosus (SM) muscles, were recorded on the two populations. In total, 127 chromosome-wide significant SNPs for these traits were identified. Among them, 11 SNPs reached genome-wise significance level, including 1 on SSC3 for pH, 1 on SSC3 and 3 on SSC15 for drip loss, 3 (unmapped) for color a*, and 2 for IMF each on SSC9 and SSCX. Except for 11 unmapped SNPs, 116 significant SNPs fell into 28 genomic regions of approximately 10 Mb or less. Most of these regions corresponded to previously reported QTL regions and spanned smaller intervals than before. The loci on SSC3 and SSC7 appeared to have pleiotropic effects on several related traits. Besides them, a few QTL signals were replicated between the two populations. Further, we identified thirteen new candidate genes for IMF, marbling and firmness, on the basis of their positions, functional annotations and reported expression patterns. The findings will contribute to further identification of the causal mutation underlying these QTLs and future marker-assisted selection in pigs.
Collapse
Affiliation(s)
- Junwu Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Jie Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Lisheng Zhou
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Huanban Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Xianhua Xie
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Feng Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Xinwei Xiong
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Leilei Cui
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Hui Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Xianxian Liu
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Yanyu Duan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
- * E-mail:
| |
Collapse
|
34
|
Zhang Z, Hong Y, Gao J, Xiao S, Ma J, Zhang W, Ren J, Huang L. Genome-wide association study reveals constant and specific loci for hematological traits at three time stages in a White Duroc × Erhualian F2 resource population. PLoS One 2013; 8:e63665. [PMID: 23691082 PMCID: PMC3656948 DOI: 10.1371/journal.pone.0063665] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
Hematological traits are important indicators of immune function and have been commonly examined as biomarkers of disease and disease severity in humans. Pig is an ideal biomedical model for human diseases due to its high degree of similarity with human physiological characteristics. Here, we conducted genome-wide association studies (GWAS) for 18 hematological traits at three growth stages (days 18, 46 and 240) in a White Duroc × Erhualian F2 intercross. In total, we identified 38 genome-wide significant regions containing 185 genome-wide significant SNPs by single-marker GWAS or LONG-GWAS. The significant regions are distributed on pig chromosomes (SSC) 1, 4, 5, 7, 8, 10, 11, 12, 13, 17 and 18, and most of significant SNPs reside on SSC7 and SSC8. Of the 38 significant regions, 7 show constant effects on hematological traits across the whole life stages, and 6 regions have time-specific effects on the measured traits at early or late stages. The most prominent locus is the genomic region between 32.36 and 84.49 Mb on SSC8 that is associated with multiple erythroid traits. The KIT gene in this region appears to be a promising candidate gene. The findings improve our understanding of the genetic architecture of hematological traits in pigs. Further investigations are warranted to characterize the responsible gene(s) and causal variant(s) especially for the major loci on SSC7 and SSC8.
Collapse
Affiliation(s)
- Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Becker D, Wimmers K, Luther H, Hofer A, Leeb T. A genome-wide association study to detect QTL for commercially important traits in Swiss Large White boars. PLoS One 2013; 8:e55951. [PMID: 23393604 PMCID: PMC3564845 DOI: 10.1371/journal.pone.0055951] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/04/2013] [Indexed: 01/11/2023] Open
Abstract
The improvement of meat quality and production traits has high priority in the pork industry. Many of these traits show a low to moderate heritability and are difficult and expensive to measure. Their improvement by targeted breeding programs is challenging and requires knowledge of the genetic and molecular background. For this study we genotyped 192 artificial insemination boars of a commercial line derived from the Swiss Large White breed using the PorcineSNP60 BeadChip with 62,163 evenly spaced SNPs across the pig genome. We obtained 26 estimated breeding values (EBVs) for various traits including exterior, meat quality, reproduction, and production. The subsequent genome-wide association analysis allowed us to identify four QTL with suggestive significance for three of these traits (p-values ranging from 4.99×10⁻⁶ to 2.73×10⁻⁵). Single QTL for the EBVs pH one hour post mortem (pH1) and carcass length were on pig chromosome (SSC) 14 and SSC 2, respectively. Two QTL for the EBV rear view hind legs were on SSC 10 and SSC 16.
Collapse
Affiliation(s)
- Doreen Becker
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | | | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|