1
|
Matheux A, Collas L, Grisard M, Goulaieff L, Ghiringhelli F, Bengrine-Lefevre L, Vincent J, Goirand F, Royer B, Schmitt A. Plasma clearance of 5-fluorouracil is more influenced by variations in glomerular filtration rate than by uracil concentration. Cancer Chemother Pharmacol 2024; 95:9. [PMID: 39702680 DOI: 10.1007/s00280-024-04732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES The use of plasma uracil measurements to detect dihydropyrimidine dehydrogenase (DPD) deficiency is one of the methods for preventing toxicities associated with fluoropyrimidines, including 5-Fluorouracil (5-FU). Unfortunately, this measurement is subject to variations, that may lead to unnecessary dosage reductions and therefore to a reduced efficacy of treatment. Recently, new factors such as hepatic and renal impairment have been proposed as also influencing uracil concentration. The aim of our study was therefore to study the influence of renal or hepatic function on 5-FU clearance. PATIENTS AND METHODS This was a retrospective study, using patients treated with 5-FU between September 1, 2018 to December 1, 2022 in a French Clinical Cancer Center. Patients were included after treatment with 5FU and therapeutic monitoring of 5FU concentrations after each course of chemotherapy. For each patient, DPD phenotyping by uracil concentration measurement was determined before the first course of 5FU. Blood samples were then taken the day after the start of the 5-FU infusion, between 8 and 10 am, for the first three cycles of 5-FU. With the exception of uracil concentration, which was determined only once, the various data were recorded for each course of 5FU chemotherapy performed. Patients with incomplete information (missing one of the above parameters) were excluded from the database. RESULTS We included 227 patients, corresponding to 227 uracil concentrations and 575 5-FU concentrations. In an original development, our results show for the first time that 5-FU clearance was proportionally correlated with eGFR (calculated according to CKD-EPI formula). Although we failed to demonstrate this hypothesis significantly, we observed that 5-FU clearance may be more dependent on eGFR than on uracil concentration for low uracil concentrations values. CONCLUSION Our study reinforces the still poorly accepted idea of the value of focusing on eGFR in 5-FU dose adjustment.
Collapse
Affiliation(s)
- Alice Matheux
- Pharmacology and Toxicology Department, Pharmacology and Toxicology Laboratory, Dijon University Hospital, 2, Rue Angélique Ducoudray, 21000, Dijon, France.
| | - Laurine Collas
- Pharmacy Department, Centre Georges-François Leclerc, Dijon, France
| | - Maelle Grisard
- Pharmacology and Toxicology Department, Pharmacology and Toxicology Laboratory, Dijon University Hospital, 2, Rue Angélique Ducoudray, 21000, Dijon, France
| | - Léa Goulaieff
- Pharmacology and Toxicology Department, Pharmacology and Toxicology Laboratory, Dijon University Hospital, 2, Rue Angélique Ducoudray, 21000, Dijon, France
| | - François Ghiringhelli
- Oncology Department, Centre Georges-François Leclerc, Dijon, France
- INSERM U1231, University of Burgundy Franche-Comté, Dijon, France
| | | | - Julie Vincent
- Oncology Department, Centre Georges-François Leclerc, Dijon, France
| | - Francoise Goirand
- Pharmacology and Toxicology Department, Pharmacology and Toxicology Laboratory, Dijon University Hospital, 2, Rue Angélique Ducoudray, 21000, Dijon, France
- INSERM U1231, University of Burgundy Franche-Comté, Dijon, France
| | - Bernard Royer
- Laboratoire de Pharmacologie Clinique et Toxicologie, CHU Besançon, Besançon, France
- UMR RIGHT, Université de Franche-Comté, EFS, INSERM, 25000, Besançon, France
| | - Antonin Schmitt
- Pharmacy Department, Centre Georges-François Leclerc, Dijon, France
- INSERM U1231, University of Burgundy Franche-Comté, Dijon, France
| |
Collapse
|
2
|
Perazzolo S. SAAM II: A general mathematical modeling rapid prototyping environment. CPT Pharmacometrics Syst Pharmacol 2024; 13:1088-1102. [PMID: 38863172 PMCID: PMC11247119 DOI: 10.1002/psp4.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Simulation Analysis and Modeling II (SAAM II) is a graphical modeling software used in life sciences for compartmental model analysis, particularly, but not exclusively, appreciated in pharmacokinetics (PK) and pharmacodynamics (PD), metabolism, and tracer modeling. Its intuitive "circles and arrows" visuals allow users to easily build, solve, and fit compartmental models without the need for coding. It is suitable for rapid prototyping of models for complex kinetic analysis or PK/PD problems, and in educating students and non-modelers. Although it is straightforward in design, SAAM II incorporates sophisticated algorithms programmed in C to address ordinary differential equations, deal with complex systems via forcing functions, conduct multivariable regression featuring the Bayesian maximum a posteriori, perform identifiability and sensitivity analyses, and offer reporting functionalities, all within a single package. After 26 years from the last SAAM II tutorial paper, we demonstrate here SAAM II's updated applicability to current life sciences challenges. We review its features and present four contemporary case studies, including examples in target-mediated PK/PD, CAR-T-cell therapy, viral dynamics, and transmission models in epidemiology. Through such examples, we demonstrate that SAAM II provides a suitable interface for rapid model selection and prototyping. By enabling the fast creation of detailed mathematical models, SAAM II addresses a unique requirement within the mathematical modeling community.
Collapse
Affiliation(s)
- Simone Perazzolo
- Nanomath LLC, Spokane, Washington, USA
- University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Marok FZ, Wojtyniak JG, Selzer D, Dallmann R, Swen JJ, Guchelaar HJ, Schwab M, Lehr T. Personalized Chronomodulated 5-Fluorouracil Treatment: A Physiologically-Based Pharmacokinetic Precision Dosing Approach for Optimizing Cancer Therapy. Clin Pharmacol Ther 2024; 115:1282-1292. [PMID: 38264789 DOI: 10.1002/cpt.3181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
The discovery of circadian clock genes greatly amplified the study of diurnal variations impacting cancer therapy, transforming it into a rapidly growing field of research. Especially, use of chronomodulated treatment with 5-fluorouracil (5-FU) has gained significance. Studies indicate high interindividual variability (IIV) in diurnal variations in dihydropyrimidine dehydrogenase (DPD) activity - a key enzyme for 5-FU metabolism. However, the influence of individual DPD chronotypes on chronomodulated therapy remains unclear and warrants further investigation. To optimize precision dosing of chronomodulated 5-FU, this study aims to: (i) build physiologically-based pharmacokinetic (PBPK) models for 5-FU, uracil, and their metabolites, (ii) assess the impact of diurnal variation on DPD activity, (iii) estimate individual DPD chronotypes, and (iv) personalize chronomodulated 5-FU infusion rates based on a patient's DPD chronotype. Whole-body PBPK models were developed with PK-Sim(R) and MoBi(R). Sinusoidal functions were used to incorporate variations in enzyme activity and chronomodulated infusion rates as well as to estimate individual DPD chronotypes from DPYD mRNA expression or DPD enzymatic activity. Four whole-body PBPK models for 5-FU, uracil, and their metabolites were established utilizing data from 41 5-FU and 10 publicly available uracil studies. IIV in DPD chronotypes was assessed and personalized chronomodulated administrations were developed to achieve (i) comparable 5-FU peak plasma concentrations, (ii) comparable 5-FU exposure, and (iii) constant 5-FU plasma levels via "noise cancellation" chronomodulated infusion. The developed PBPK models capture the extent of diurnal variations in DPD activity and can help investigate individualized chronomodulated 5-FU therapy through testing alternative personalized dosing strategies.
Collapse
Affiliation(s)
| | - Jan-Georg Wojtyniak
- Clinical Pharmacy, Saarland University, Saarbruecken, Germany
- Dr. Margarete Fischer-Bosch-Institut of Clinical Pharmacology, Stuttgart, Germany
| | - Dominik Selzer
- Clinical Pharmacy, Saarland University, Saarbruecken, Germany
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institut of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University Tuebingen, Tuebingen, Germany
- Cluster of excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University Tuebingen, Tuebingen, Germany
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Saarbruecken, Germany
| |
Collapse
|
4
|
Royer B, Launay M, Ciccolini J, Derain L, Parant F, Thomas F, Guitton J. Impact of renal impairment on dihydropyrimidine dehydrogenase (DPD) phenotyping. ESMO Open 2023; 8:101577. [PMID: 37267808 DOI: 10.1016/j.esmoop.2023.101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND The chemotherapeutic agent 5-fluorouracil (5-FU) is catabolized by dihydropyrimidine dehydrogenase (DPD), the deficiency of which may lead to severe toxicity or death. Since 2019, DPD deficiency testing, based on uracilemia, is mandatory in France and recommended in Europe before initiating fluoropyrimidine-based regimens. However, it has been recently shown that renal impairment may impact uracil concentration and thus DPD phenotyping. PATIENTS AND METHODS The impact of renal function on uracilemia and DPD phenotype was studied on 3039 samples obtained from three French centers. We also explored the influence of dialysis and measured glomerular filtration rate (mGFR) on both parameters. Finally, using patients as their own controls, we assessed as to what extent modifications in renal function impacted uracilemia and DPD phenotyping. RESULTS We observed that uracilemia and DPD-deficient phenotypes increased concomitantly to the severity of renal impairment based on the estimated GFR, independently and more critically than hepatic function. This observation was confirmed with the mGFR. The risk of being classified 'DPD deficient' based on uracilemia was statistically higher in patients with renal impairment or dialyzed if uracilemia was measured before dialysis but not after. Indeed, the rate of DPD deficiency decreased from 86.4% before dialysis to 13.7% after. Moreover, for patients with transient renal impairment, the rate of DPD deficiency dropped dramatically from 83.3% to 16.7% when patients restored their renal function, especially in patients with an uracilemia close to 16 ng/ml. CONCLUSIONS DPD deficiency testing using uracilemia could be misleading in patients with renal impairment. When possible, uracilemia should be reassessed in case of transient renal impairment. For patients under dialysis, testing of DPD deficiency should be carried out on samples taken after dialysis. Hence, 5-FU therapeutic drug monitoring would be particularly helpful to guide dose adjustments in patients with elevated uracil and renal impairment.
Collapse
Affiliation(s)
- B Royer
- Laboratoire de Pharmacologie Clinique et Toxicologie, CHU Besançon, Besançon; Univ. Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon.
| | - M Launay
- Pôle de Biologie-Pathologie, Hôpital Nord-CHU Saint Etienne, Saint Etienne
| | - J Ciccolini
- SMARTc Unit, Centre de Recherche en Cancérologie de Marseille Inserm U1068 Aix Marseille Université and Assistance Publique Hôpitaux de Marseille, Marseille
| | - L Derain
- Service de Néphrologie, Dialyse, Hypertension et Exploration Fonctionnelle Rénale, Hospices Civils de Lyon, Hôpital E. Herriot, Lyon F-69003; University of Lyon 1; CNRS UMR 5305, Lyon
| | - F Parant
- Laboratoire de Biochimie et Toxicologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite
| | - F Thomas
- Laboratoire de Pharmacologie, Institut Claudius Regaud, Inserm CRCT, Université de Toulouse, Toulouse Cedex 9
| | - J Guitton
- Laboratoire de Biochimie et Toxicologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite; Laboratoire de Toxicologie, ISPB, Faculté de Pharmacie, Université Lyon 1, Université de Lyon, Lyon; Inserm U1052, CNRS UMR5286 Centre de Recherche en Cancérologie de Lyon, Lyon, France
| |
Collapse
|
5
|
Sivamani P, Eriyat V, Mathew SK, Singh A, Aaron R, Chacko RT, Joel A, Prabha R, Mathew BS. Identification of DPYD variants and estimation of uracil and dihydrouracil in a healthy Indian population. Per Med 2022; 20:39-53. [DOI: 10.2217/pme-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aim: This study aimed to identify DPYD variants and the related but previously unexplored phenotype (plasma uracil, dihydrouracil [DHU], and the DHU-to-uracil ratio) in a healthy adult Indian population. Methods: Healthy adult volunteers (n = 100) had their uracil and DHU levels measured and were genotyped for selected variants. Results: Among the nine variants studied, c.1906-14763G>A and c.85T>C were the most prevalent. Participants with any of the variants except for c.85T>C and c.1627A>G had a significantly lower DHU-to-uracil ratio and those with c.1905+1G>A variant had significantly increased uracil concentration compared with wild type. Conclusion: Participants with five variants were identified as having altered phenotypic measures, and 40% of the intermediate metabolizers had their phenotype in the terminal population percentiles.
Collapse
Affiliation(s)
- Poornima Sivamani
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vishnu Eriyat
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sumith K Mathew
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Ashish Singh
- Department of Medical Oncology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rekha Aaron
- Department of Clinical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | - Raju Titus Chacko
- Department of Medical Oncology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anjana Joel
- Department of Medical Oncology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Ratna Prabha
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Binu Susan Mathew
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
Carriat L, Quaranta S, Solas C, Rony M, Ciccolini J. Renal impairment and DPD testing: watch out for false-positive results! Br J Clin Pharmacol 2022; 88:4928-4932. [PMID: 35939355 DOI: 10.1111/bcp.15482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Measuring uracil (U) levels in plasma is a convenient surrogate to establish DPD status in patients scheduled with 5-fluorouracil (5-FU) or capecitabine. To what extent renal impairment could impact on U levels and thus be a confounding factor is a rising concern. Here, we report the case of a cancer patient with severe renal impairment scheduled for 5-FU-based regimen. Determination of his DPD status was complicated because of his condition and the influence of intermittent hemodialysis when monitoring U levels. The patient was initially identified as markedly DPD-deficient upon U measurement (i.e., U = 40 ng/ml), but further monitoring between and immediately after dialysis showed mild deficiency only (i.e., U = 34 and U = 19 ng/ml, respectively). Despite this discrepancy, starting dose of 5-FU was cut by 50% upon treatment initiation. Tolerance was good and 5-FU dosing was next shifted to 25% reduction, then further shifted to normal dosing at the 5th course, with still no sign for drug-related toxicities. Further DPYD genotyping showed none of the 4 allelic variants usually associated with loss of DPD activity. Of note, the excellent tolerance upon standard dosing strongly suggests that this patient was actually not DPD-deficient, despite U values always above normal concentrations. This case report highlights how critical is the information regarding the renal function of patients with cancer when phenotyping DPD using U plasma as a surrogate, and that U accumulation in patients with such condition is likely to yield false-positive results.
Collapse
Affiliation(s)
- Laure Carriat
- Laboratoire de Pharmacocinétique et Toxicologie, CHU Timone, APHM, Marseille, France.,SMARTc unit, Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France
| | - Sylvie Quaranta
- Laboratoire de Pharmacocinétique et Toxicologie, CHU Timone, APHM, Marseille, France
| | - Caroline Solas
- Laboratoire de Pharmacocinétique et Toxicologie, CHU Timone, APHM, Marseille, France
| | - Maelle Rony
- Oncologie Digestive, CHU Timone, APHM, Marseille, France
| | - Joseph Ciccolini
- Laboratoire de Pharmacocinétique et Toxicologie, CHU Timone, APHM, Marseille, France.,SMARTc unit, Centre de Recherche en Cancérologie de Marseille, Inserm, Marseille, France
| |
Collapse
|
7
|
Araki H, Takenaka T, Takahashi K, Yamashita F, Matsuoka K, Yoshisue K, Ieiri I. A semimechanistic population pharmacokinetic and pharmacodynamic model incorporating autoinduction for the dose justification of TAS-114. CPT Pharmacometrics Syst Pharmacol 2022; 11:604-615. [PMID: 34951129 PMCID: PMC9124359 DOI: 10.1002/psp4.12747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
TAS-114 is a dual deoxyuridine triphosphatase (dUTPase) and dihydropyrimidine dehydrogenase (DPD) inhibitor expected to widen the therapeutic index of capecitabine. Its maximum tolerated dose (MTD) was determined from a safety perspective in a combination study with capecitabine; however, its inhibitory effects on DPD activity were not assessed in the study. The dose justification to select its MTD as the recommended dose in terms of DPD inhibition has been required, but the autoinduction profile of TAS-114 made it difficult. To this end, an approach using a population pharmacokinetic (PPK)/pharmacodynamic (PD) model incorporating autoinduction was planned; however, the utility of this approach in the dose justification has not been reported. Thus, the aim of this study was to demonstrate the utility of a PPK/PD model incorporating autoinduction in the dose justification via a case study of TAS-114. Plasma concentrations of TAS-114 from 185 subjects and those of the endogenous DPD substrate uracil from 24 subjects were used. A two-compartment model with first-order absorption with lag time and an enzyme turnover model were selected for the pharmacokinetic (PK) model. Moreover, an indirect response model was selected for the PD model to capture the changes in plasma uracil concentrations. Model-based simulations provided the dose justification that DPD inhibition by TAS-114 reached a plateau level at the MTD, whereas exposures of TAS-114 increased dose dependently. Thus, the utility of a PPK/PD model incorporating autoinduction in the dose justification was demonstrated via this case study of TAS-114.
Collapse
Affiliation(s)
- Hikari Araki
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Toru Takenaka
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Koichi Takahashi
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Fumiaki Yamashita
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Kazuaki Matsuoka
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Kunihiro Yoshisue
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Ichiro Ieiri
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
- Department of PharmacyKyushu University HospitalFukuokaJapan
| |
Collapse
|
8
|
Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br J Cancer 2017; 116:1415-1424. [PMID: 28427087 PMCID: PMC5520099 DOI: 10.1038/bjc.2017.94] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Background: We investigated the predictive value of dihydropyrimidine dehydrogenase (DPD) phenotype, measured as pretreatment serum uracil and dihydrouracil concentrations, for severe as well as fatal fluoropyrimidine-associated toxicity in 550 patients treated previously with fluoropyrimidines during a prospective multicenter study. Methods: Pretreatment serum concentrations of uracil and dihydrouracil were measured using a validated LC-MS/MS method. The primary endpoint of this analysis was global (any) severe fluoropyrimidine-associated toxicity, that is, grade ⩾3 toxicity according to the NCI CTC-AE v3.0, occurring during the first cycle of treatment. The predictive value of uracil and the uracil/dihydrouracil ratio for early severe fluoropyrimidine-associated toxicity were compared. Pharmacogenetic variants in DPYD (c.2846A>T, c.1679T>G, c.1129-5923C>G, and c.1601G>A) and TYMS (TYMS 5′-UTR VNTR and TYMS 3′-UTR 6-bp ins/del) were measured and tested for associations with severe fluoropyrimidine-associated toxicity to compare predictive value with DPD phenotype. The Benjamini-Hochberg false discovery rate method was used to control for type I errors at level q<0.050 (corresponding to P<0.010). Results: Uracil was superior to the dihydrouracil/uracil ratio as a predictor of severe toxicity. High pretreatment uracil concentrations (>16 ng ml−1) were strongly associated with global severe toxicity (OR 5.3, P=0.009), severe gastrointestinal toxicity (OR 33.7, P<0.0001), toxicity-related hospitalisation (OR 16.9, P<0.0001), as well as fatal treatment-related toxicity (OR 44.8, P=0.001). None of the DPYD variants alone, or TYMS variants alone, were associated with severe toxicity. Conclusions: High pretreatment uracil concentration was strongly predictive of severe, including fatal, fluoropyrimidine-associated toxicity, and is a highly promising phenotypic marker to identify patients at risk of severe fluoropyrimidine-associated toxicity.
Collapse
|
9
|
Meulendijks D, Cats A, Beijnen JH, Schellens JHM. Improving safety of fluoropyrimidine chemotherapy by individualizing treatment based on dihydropyrimidine dehydrogenase activity - Ready for clinical practice? Cancer Treat Rev 2016; 50:23-34. [PMID: 27589829 DOI: 10.1016/j.ctrv.2016.08.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023]
Abstract
Fluoropyrimidines remain the cornerstone of treatment for different types of cancer, and are used by an estimated two million patients annually. The toxicity associated with fluoropyrimidine therapy is substantial, however, and affects around 30% of the patients, with 0.5-1% suffering fatal toxicity. Activity of the main 5-fluorouracil (5-FU) metabolic enzyme, dihydropyrimidine dehydrogenase (DPD), is the key determinant of 5-FU pharmacology, and accounts for around 80% of 5-FU catabolism. There is a consistent relationship between DPD activity and 5-FU exposure on the one hand, and risk of severe and potentially lethal fluoropyrimidine-associated toxicity on the other hand. Therefore, there is a sound rationale for individualizing treatment with fluoropyrimidines based on DPD status in order to improve patient safety. The field of individualized treatment with fluoropyrimidines is now rapidly developing. The main strategies that are available, are based on genotyping of the gene encoding DPD (DPYD) and measuring of pretreatment DPD phenotype. Clinical validity of additional approaches, including genotyping of MIR27A has also recently been demonstrated. Here, we critically review the evidence on clinical validity and utility of strategies available to clinicians to identify patients at risk of developing severe and potentially fatal toxicity as a result of DPD deficiency. We evaluate the advantages and limitations of these methods when used in clinical practice, and discuss for which strategies clinical implementation is currently justified based on the available evidence and, in addition, which additional data will be required before implementing other, as yet less developed strategies.
Collapse
Affiliation(s)
- Didier Meulendijks
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Dutch Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands.
| | - Annemieke Cats
- Department of Gastroenterology & Hepatology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Faculty of Science, Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
van Staveren MC, van Kuilenburg ABP, Guchelaar HJ, Meijer J, Punt CJA, de Jong RS, Gelderblom H, Maring JG. Evaluation of an oral uracil loading test to identify DPD-deficient patients using a limited sampling strategy. Br J Clin Pharmacol 2016; 81:553-61. [PMID: 26551538 DOI: 10.1111/bcp.12821] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/27/2015] [Accepted: 11/02/2015] [Indexed: 11/27/2022] Open
Abstract
AIM Dihydropyrimidine dehydrogenase (DPD) deficiency can lead to severe toxicity following 5-fluorouracil (5FU) or capecitabine (CAP) treatment. Uracil (U) can be used as a probe to determine systemic DPD activity. The present study was performed to assess the sensitivity and specificity of a U loading dose for detecting DPD deficiency. METHODS Cancer patients with Common Toxicity Score (CTC) grade III or IV toxicity after the first or second cycle of 5-FU or CAP treatment were asked to participate. Based on DPD activity in PBMCs, patients were divided into two groups: DPD activity in peripheral blood mononuclear cells (PBMCs) <5 nmol mg(-1) *h(-1) (deficient group) and ≥ 5 nmol mg(-1) *h(-1) . U 500 mg m(-2) was administered orally and plasma concentrations of U and dihydrouracil (DHU) were determined. In the deficient group, polymerase chain reaction amplification of all 23 coding exons and flanking intronic regions of DPYD was performed. A U pharmacokinetic model was developed and used to determine the maximum enzymatic conversion capacity (Vmax ) of the DPD enzyme for each patient. The sensitivity and specificity of Vmax, U concentration and the U/DHU concentration ratio were determined. RESULTS A total of 47 patients were included (19 DPD deficient, 28 DPD normal). Of the pharmacokinetic parameters investigated, a sensitivity and specificity of 80% and 98%, respectively, was obtained for the U/DHU ratio at t = 120 min. CONCLUSIONS The high sensitivity of the U/DHU ratio at t = 120 min for detecting DPD deficiency, as defined by DPD activity in PBMCs, showed that the oral U loading dose can effectively identify patients with reduced DPD activity.
Collapse
Affiliation(s)
- Maurice C van Staveren
- Department of Clinical Pharmacy, Treant Healthgroup, Scheper Hospital, Emmen, The Netherlands
| | | | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith Meijer
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Cornelis J A Punt
- Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Robert S de Jong
- Department of Oncology, Martini Hospital, Groningen, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, University Hospital of Leiden, Leiden, The Netherlands
| | - Jan Gerard Maring
- Department of Pharmacy, Isala Diaconessen Hospital, Meppel and Bethesda Hospital,Hoogeveen, The Netherlands
| |
Collapse
|
11
|
Phenotyping drug disposition in oncology. Cancer Treat Rev 2012; 38:715-25. [DOI: 10.1016/j.ctrv.2011.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 12/11/2022]
|
12
|
Sugiyama E, Kikuchi A, Inada M, Sato H. The use of 13C-erythromycin as an in vivo probe to evaluate CYP3A-mediated drug interactions in rats. J Pharm Sci 2011; 100:3995-4005. [PMID: 21618542 DOI: 10.1002/jps.22616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/16/2011] [Accepted: 04/21/2011] [Indexed: 11/05/2022]
Abstract
(14)C-erythromycin breath test has been utilized to evaluate the extent of CYP3A activity in vivo. However, its radioactivity sometimes impedes its clinical application. In this study, we employed erythromycin labeled with (13)C ((13)C-EM), a nonradioactive stable isotope, as an in vivo probe of breath test to evaluate CYP3A-mediated drug interactions in rats. A physiologically based pharmacokinetic (PBPK) model to describe (13)CO(2) exhalation altered by drug interactions was newly constructed. Rats received an intravenous or oral administration of (13)C-EM with or without a CYP3A inhibitor or inducer, that is, ketoconazole (KCZ) or dexamethasone (DEX), respectively. Breath samples were taken at designated times, measured with an infrared spectrophotometer, and the Δ(13) CO(2) value (‰) in each sample was obtained. The C(max) and AUC(0-t) of Δ(13) CO(2) were significantly decreased with KCZ and increased with DEX. The PBPK model in this study successfully described the (13)CO(2) exhalation after (13)C-EM administration in the absence and presence of drug interactions. In conclusion, this study proposed a simple and rapid in vivo methodology to utilize (13)C-EM for the quantitative analysis of CYP3A inhibition and induction. This method using small animals may be useful in early drug development processes.
Collapse
Affiliation(s)
- Erika Sugiyama
- Department of Clinical and Molecular Pharmacokinetics/Pharmacodynamics, Faculty of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | | | | | |
Collapse
|
13
|
van Staveren MC, Theeuwes-Oonk B, Guchelaar HJ, van Kuilenburg ABP, Maring JG. Pharmacokinetics of orally administered uracil in healthy volunteers and in DPD-deficient patients, a possible tool for screening of DPD deficiency. Cancer Chemother Pharmacol 2011; 68:1611-7. [PMID: 21590448 PMCID: PMC3220818 DOI: 10.1007/s00280-011-1661-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/16/2011] [Indexed: 01/12/2023]
Abstract
Purpose Dihydropyrimidine dehydrogenase (DPD) deficiency can lead to severe toxicity in patients treated with standard doses of 5-fluorouracil (5-FU). Oral uracil administration and subsequent measurement of uracil and dihydrouracil (DHU) plasma concentrations might detect patients with DPD deficiency. This study compares the pharmacokinetics of uracil and DHU after oral uracil administration in subjects with normal and deficient DPD status. Methods Five hundred milligrams of uracil per metre square was administered orally to 11 subjects with normal DPD status and to 10 subjects with reduced DPD activity. Repeated administration (n = 3) of this dose was performed in 4 subjects, and 1,000 mg uracil/m2 was administered to 4 subjects to assess intra-individual variation and linearity of pharmacokinetics. Results In subjects with normal DPD status, 500 mg/m2 uracil resulted in uracil Cmax levels of 14.4 ± 4.7 mg/L at Tmax = 30.0 ± 11.6 min, and in DPD-deficient subjects, 20.0 ± 4.5 mg/L at 31.5 ± 1.1 min. The uracil AUC0>180 was 31.2 ± 5.1 mg L/h in DPD-deficient subjects, which was significantly higher (P < 0.05) than in the subjects with normal DPD status (13.8 ± 3.9 mg L/h). Repeated uracil dosing showed reproducible uracil PK in subjects with normal DPD status, and dose elevation of uracil suggested linear pharmacokinetics. Conclusion The pharmacokinetics of uracil differs significantly between subjects with a normal DPD activity and those with a deficient DPD status. The AUC and Cmax of uracil can be useful as a diagnostic tool to differentiate patients with regard to DPD status.
Collapse
Affiliation(s)
- Maurice C van Staveren
- Department of Pharmacy, Scheper Hospital Emmen and Röpcke Zweers Hospital Hardenberg, Boermarkeweg 60, 7824 AA Emmen, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Dobrowolski JC, Rode JE, Sadlej J. Ab initio simulations of the NMR spectra of β-alanine conformers. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2010.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Sugiyama E, Inada M, Kunizaki JI, Tobita K, Yoshida T, Kashimoto M, Hirao Y, Sato H. Desirable pharmacokinetic properties of (13)C-uracil as a breath test probe of gastric emptying in comparison with (13)C-acetate and (13)C-octanoate in rats. Scand J Gastroenterol 2010; 44:1067-75. [PMID: 19585373 DOI: 10.1080/00365520903114904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the possible use of a (13)C-uracil breath test for gastric emptying by evaluating the pharmacokinetic properties of (13)C-uracil in a breath test in rats, in comparison with (13)C-acetate and (13)C-octanoate, traditional (13)C-probes for gastric emptying. MATERIAL AND METHODS Absorption of the (13)C-probes from different parts of the gastrointestinal tract was evaluated in fasted rats. (13)C-Uracil breath tests for gastric emptying were carried out in conditions where delayed gastric emptying was induced by clonidine, quinpirole, and propantheline, and in a postoperative ileus model. Following oral administration, we measured residual (13)C-uracil in the stomach and correlated the amount with the breath response. RESULTS All the (13)C-probes employed were well absorbed from the intestine after intraduodenal administration. After intragastric administration, (13)C-uracil was not absorbed from the stomach, but (13)C-acetate and (13)C-octanoate were partly absorbed from the stomach. The cumulative (14)C-uracil recovery (%) at 168 h was 92.3, 6.3, or 0.5%, from expired gases, urine, and feces, respectively. Delta(13)C values in (13)C-uracil breath tests were decreased in conditions characterized by delayed gastric emptying. A highly negative correlation was observed between the breath response and the residual ratio of (13)C-uracil in the stomach after oral administration of (13)C-uracil, indicating that (13)C-uracil can be used as an in vivo probe for evaluating gastric emptying in a quantitative manner. CONCLUSIONS This study showed that (13)C-uracil has desirable pharmacokinetic properties as an in vivo probe of gastric emptying. It is thus suggested that the (13)C-uracil breath test may be useful for the measurement of gastric emptying in humans.
Collapse
Affiliation(s)
- Erika Sugiyama
- Department of Clinical and Molecular Pharmacokinetics/Pharmacodynamics, Faculty of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Shimoyama S. Pharmacogenetics of fluoropyrimidine and cisplatin. A future application to gastric cancer treatment. J Gastroenterol Hepatol 2009; 24:970-81. [PMID: 19638079 DOI: 10.1111/j.1440-1746.2009.05856.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemotherapy plays an important role in the treatment of gastric cancer both in adjuvant or advanced settings. Recent randomized trials in Japan have proved that S-1, a novel fluoropyrimidine derivative, and cisplatin are the most promising agents. However, both the efficacy and toxicity of a given regimen vary widely among patients due to the inherited variability of genes that involve drug anabolism and catabolism. A narrow therapeutic index of antitumor agents, i.e. a given regimen being too toxic and/or less effective to some segment of patients, prevents the overall improvement of treatment outcomes. Pharmacogenetics, a research field elucidating genetic polymorphism in drug metabolizing enzymes, may contribute to identifying patients who benefit from chemotherapy or who will experience life-threatening toxicity. There are several crucial enzymes identified involving anabolism and the catabolism of fluoropyrimidine and cisplatin, including dihydropyrimidine dehydrogenase, thymidylate synthase, orotate phosphoribosyl transferase, glutathione S transferase, and excision repair cross complementary group. Various polymorphisms and ethnic variabilities of these genes have been elucidated. This review highlights variations within biological functions, detection systems, and possible clinical applications of these enzymatic polymorphisms. This knowledge provides a tool to determine an optimum regimen according to the patient's drug metabolizing characteristics. This stance will contribute to establishing individualized therapies for gastric cancer, which offers superior efficacy with a minimal chance of severe toxicity.
Collapse
Affiliation(s)
- Shouji Shimoyama
- Gastrointestinal Unit, Settlement Clinic, Towa, Adachi-ku, Tokyo, Japan.
| |
Collapse
|
17
|
Dobrowolski JC, Jamróz MH, Kołos R, Rode JE, Sadlej J. IR Low-Temperature Matrix and ab Initio Study on β-Alanine Conformers. Chemphyschem 2008; 9:2042-51. [DOI: 10.1002/cphc.200800383] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
|
19
|
Aarons L. Physiologically based pharmacokinetic modelling: a sound mechanistic basis is needed. Br J Clin Pharmacol 2006; 60:581-3. [PMID: 16305581 PMCID: PMC1884881 DOI: 10.1111/j.1365-2125.2005.02560.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|