1
|
Choi S, Han S, Jeon S, Yim DS. Quantitative Prediction of Human Pharmacokinetics and Pharmacodynamics of CKD519, a Potent Inhibitor of Cholesteryl Ester Transfer Protein (CETP). Pharmaceutics 2019; 11:pharmaceutics11070336. [PMID: 31311144 PMCID: PMC6680430 DOI: 10.3390/pharmaceutics11070336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023] Open
Abstract
CKD519, a selective inhibitor of cholesteryl ester transfer protein(CETP), is undergoing development as an oral agent for the treatment of primary hypercholesterolemia and mixed hyperlipidemia. The aim of this study was to predict the appropriate efficacious dose of CKD519 for humans in terms of the inhibition of CETP activity by developing a CKD519 pharmacokinetic/pharmacodynamic (PK/PD) model based on data from preclinical studies. CKD519 was intravenously and orally administered to hamsters, rats, and monkeys for PK assessment. Animal PK models of all dose levels in each species were developed using mixed effect modeling analysis for exploration, and an interspecies model where allometric scaling was applied was developed based on the integrated animal PK data to predict the human PK profile. PD parameters and profile were predicted using in vitro potency and same-in-class drug information. The two-compartment first-order elimination model with Weibull-type absorption and bioavailability following the sigmoid Emax model was selected as the final PK model. The PK/PD model was developed by linking the interspecies PK model with the Emax model of the same-in-class drug. The predicted PK/PD profile and parameters were used to simulate the human PK/PD profiles for different dose levels, and based on the simulation result, the appropriate efficacious dose was estimated as 25 mg in a 60 kg human. However, there were some discrepancies between the predicted and observed human PK/PD profiles compared to the phase I clinical data. The huge difference between the observed and predicted bioavailability suggests that there is a hurdle in predicting the absorption parameter only from animal PK data.
Collapse
Affiliation(s)
- Suein Choi
- PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Pharmacology, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea
| | - Seunghoon Han
- PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Pharmacology, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea
- Q-fitter, Inc., Seoul 06199, Korea
| | | | - Dong-Seok Yim
- PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Department of Pharmacology, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea.
- Q-fitter, Inc., Seoul 06199, Korea.
| |
Collapse
|
2
|
Yang F, Wang B, Liu Z, Xia X, Wang W, Yin D, Sheng L, Li Y. Prediction of a Therapeutic Dose for Buagafuran, a Potent Anxiolytic Agent by Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling Starting from Pharmacokinetics in Rats and Human. Front Pharmacol 2017; 8:683. [PMID: 29066968 PMCID: PMC5641330 DOI: 10.3389/fphar.2017.00683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/13/2017] [Indexed: 01/29/2023] Open
Abstract
Physiologically based pharmacokinetic (PBPK)/pharmacodynamic (PD) models can contribute to animal-to-human extrapolation and therapeutic dose predictions. Buagafuran is a novel anxiolytic agent and phase I clinical trials of buagafuran have been completed. In this paper, a potentially effective dose for buagafuran of 30 mg t.i.d. in human was estimated based on the human brain concentration predicted by a PBPK/PD modeling. The software GastroPlusTM was used to build the PBPK/PD model for buagafuran in rat which related the brain tissue concentrations of buagafuran and the times of animals entering the open arms in the pharmacological model of elevated plus-maze. Buagafuran concentrations in human plasma were fitted and brain tissue concentrations were predicted by using a human PBPK model in which the predicted plasma profiles were in good agreement with observations. The results provided supportive data for the rational use of buagafuran in clinic.
Collapse
Affiliation(s)
- Fen Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Center of Drug Clinical Trial, Peking University Cancer Hospital and Institute, Beijing, China.,Clinical Pharmacology Research Center, Peking Union Medical College Hospital and Chinese Academy of Medical Sciences, Beijing, China
| | - Baolian Wang
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihao Liu
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuejun Xia
- Department of Drug Delivery System, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weijun Wang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dali Yin
- Department of Synthetic Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Sheng
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
|
4
|
Doler C, Schweiger M, Zimmermann R, Breinbauer R. Chemical Genetic Approaches for the Investigation of Neutral Lipid Metabolism. Chembiochem 2016; 17:358-77. [DOI: 10.1002/cbic.201500501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Carina Doler
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences; University of Graz; Heinrichstrasse 31/II 8010 Graz Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences; University of Graz; Heinrichstrasse 31/II 8010 Graz Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| |
Collapse
|
5
|
Block M. Physiologically based pharmacokinetic and pharmacodynamic modeling in cancer drug development: status, potential and gaps. Expert Opin Drug Metab Toxicol 2016; 11:743-56. [PMID: 25940026 DOI: 10.1517/17425255.2015.1037276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Modeling and simulation have become important means of answering questions relevant to the development of a drug, making it possible to assess risks early and to reduce costs. Physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) models contribute to a comprehensive understanding of the drug, covering specific questions from early discovery through lifecycle management stages. As for other disease areas, in oncology, PBPK and PD models are important topics that remain to be addressed. AREAS COVERED This review describes current PBPK and PD approaches, their applicability in drug development in general and specifically in the area of oncology. It discusses the current status and then focuses on key challenges and the potential for future use. It provides cases in which modeling currently cannot answer the questions and assesses the requirements to close gaps for PBPK/PD in oncology. EXPERT OPINION PBPK/PD models have led to improvements in identifying risks and reducing costs during the drug development process. Nevertheless, there is a lot of potential, where more rigorous integration of biological knowledge and specific experimental design would result in a more comprehensive biological picture. Ideally, such approaches would reveal the extent to which preclinical work can be extrapolated to clinical settings, thus enabling reliable prediction and, ultimately, reducing failed trials in clinical oncology.
Collapse
Affiliation(s)
- Michael Block
- Bayer Technology Services GmbH - Systems Pharmacology ONC , Building B106 Leverkusen , Germany
| |
Collapse
|
6
|
Cohen AF, Burggraaf J, van Gerven JMA, Moerland M, Groeneveld GJ. The use of biomarkers in human pharmacology (Phase I) studies. Annu Rev Pharmacol Toxicol 2014; 55:55-74. [PMID: 25292425 DOI: 10.1146/annurev-pharmtox-011613-135918] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of a new medicine is a risky and costly undertaking that requires careful planning. This planning is largely applied to the operational aspects of the development and less so to the scientific objectives and methodology. The drugs that will be developed in the future will increasingly affect pathophysiological pathways that have been largely unexplored. Such drug prototypes cannot be immediately introduced in large clinical trials. The effects of the drug on normal physiology, pathophysiology, and eventually the desired clinical effects will need to be evaluated in a structured approach, based on the definition of drug development as providing answers to important questions by appropriate clinical studies. This review describes the selection process for biomarkers that are fit-for-purpose for the stage of drug development in which they are used. This structured and practical approach is widely applicable and particularly useful for the early stages of innovative drug development.
Collapse
Affiliation(s)
- A F Cohen
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands;
| | | | | | | | | |
Collapse
|
7
|
Mohammadpour AH, Akhlaghi F. Future of cholesteryl ester transfer protein (CETP) inhibitors: a pharmacological perspective. Clin Pharmacokinet 2014; 52:615-26. [PMID: 23658137 DOI: 10.1007/s40262-013-0071-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In almost 30 years since the introduction of HMG-CoA reductase inhibitors (statins), no other class of lipid modulators has entered the market. Elevation of high-density lipoprotein-cholesterol (HDL-C) via inhibiting cholesteryl ester transfer protein (CETP) is an attractive strategy for reducing the risk of cardiovascular events in high-risk patients. Transfer of triglyceride and cholesteryl ester (CE) between lipoproteins is mediated by CETP; thus inhibition of this pathway can increase the concentration of HDL-C. Torcetrapib was the first CETP inhibitor evaluated in phase III clinical trials. Because of off-target effects, torcetrapib raised blood pressure and increased the concentration of serum aldosterone, leading to higher cardiovascular events and mortality. Torcetrapib showed positive effects on cardiovascular risk especially in patients with a greater increase in HDL-C and apolipoprotein A-1 (apoA-1) levels. The phase III clinical trial of dalcetrapib, the second CETP inhibitor that has entered clinical development, was terminated because of ineffectiveness. Dalcetrapib is a CETP modulator that elevated HDL-C levels but did not reduce the concentration of low-density lipoprotein cholesterol (LDL-C). Both heterotypic and homotypic CE transfer between lipoproteins are mediated by some CETP inhibitors, including torcetrapib, anacetrapib, and evacetrapib, while dalcetrapib only affects the heterotypic CE transfer. Dalcetrapib has a chemical structure that is distinct from other CETP inhibitors, with a smaller molecular weight and a lack of trifluoride moieties. Moreover, dalcetrapib is a pro-drug that must be hydrolyzed to a pharmacologically active thiol form. Two other CETP inhibitors, anacetrapib and evacetrapib, are currently undergoing evaluation in phase III clinical trials. Both molecules have shown beneficial effects by increasing HDL-C and decreasing LDL-C concentration. The success of anacetrapib and evacetrapib remains to be confirmed upon the completion of phase III clinical trials in 2017 and 2015, respectively. Generally, the concentration of HDL-C has been considered a biomarker for the activity of CETP inhibitors. However, it is not clear whether a fundamental relationship exists between HDL-C levels and the risk of coronary artery diseases. The most crucial role for HDL is cholesterol efflux capacity in which HDL can reverse transport cholesterol from foam cells in atherosclerotic plaques. In view of the heterogeneity in HDL particle size, charge, and composition, the mere concentration of HDL-C may not be a good surrogate marker for HDL functionality. Recent clinical studies have reported that increased HDL functionality inversely correlates with the development of atherosclerotic plaque. Future development of CETP inhibitors may therefore benefit from the use of biomarkers of HDL functionality.
Collapse
|
8
|
Kostewicz ES, Aarons L, Bergstrand M, Bolger MB, Galetin A, Hatley O, Jamei M, Lloyd R, Pepin X, Rostami-Hodjegan A, Sjögren E, Tannergren C, Turner DB, Wagner C, Weitschies W, Dressman J. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci 2013; 57:300-21. [PMID: 24060672 DOI: 10.1016/j.ejps.2013.09.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/27/2013] [Accepted: 09/11/2013] [Indexed: 02/07/2023]
Abstract
Drug absorption from the gastrointestinal (GI) tract is a highly complex process dependent upon numerous factors including the physicochemical properties of the drug, characteristics of the formulation and interplay with the underlying physiological properties of the GI tract. The ability to accurately predict oral drug absorption during drug product development is becoming more relevant given the current challenges facing the pharmaceutical industry. Physiologically-based pharmacokinetic (PBPK) modeling provides an approach that enables the plasma concentration-time profiles to be predicted from preclinical in vitro and in vivo data and can thus provide a valuable resource to support decisions at various stages of the drug development process. Whilst there have been quite a few successes with PBPK models identifying key issues in the development of new drugs in vivo, there are still many aspects that need to be addressed in order to maximize the utility of the PBPK models to predict drug absorption, including improving our understanding of conditions in the lower small intestine and colon, taking the influence of disease on GI physiology into account and further exploring the reasons behind population variability. Importantly, there is also a need to create more appropriate in vitro models for testing dosage form performance and to streamline data input from these into the PBPK models. As part of the Oral Biopharmaceutical Tools (OrBiTo) project, this review provides a summary of the current status of PBPK models available. The current challenges in PBPK set-ups for oral drug absorption including the composition of GI luminal contents, transit and hydrodynamics, permeability and intestinal wall metabolism are discussed in detail. Further, the challenges regarding the appropriate integration of results from in vitro models, such as consideration of appropriate integration/estimation of solubility and the complexity of the in vitro release and precipitation data, are also highlighted as important steps to advancing the application of PBPK models in drug development. It is expected that the "innovative" integration of in vitro data from more appropriate in vitro models and the enhancement of the GI physiology component of PBPK models, arising from the OrBiTo project, will lead to a significant enhancement in the ability of PBPK models to successfully predict oral drug absorption and advance their role in preclinical and clinical development, as well as for regulatory applications.
Collapse
Affiliation(s)
- Edmund S Kostewicz
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany.
| | - Leon Aarons
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, United Kingdom
| | - Martin Bergstrand
- Pharmacometrics Research Group, Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, United Kingdom
| | - Oliver Hatley
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, United Kingdom
| | - Masoud Jamei
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, United Kingdom
| | - Richard Lloyd
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Ware, Hertfordshire, United Kingdom
| | - Xavier Pepin
- Department of Biopharmaceutics, Pharmaceutical Sciences R&D, Sanofi, Vitry sur Seine Cedex, France
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, United Kingdom; Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, United Kingdom
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Christer Tannergren
- Medicines Evaluation CVGI, Pharmaceutical Development, AstraZeneca R&D Mölndal, Sweden
| | - David B Turner
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, United Kingdom
| | - Christian Wagner
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics, University of Greifswald, Greifswald, Germany
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
9
|
Lewis LD, Somogyi A, Loke YK, Ferro A, Cohen AF, Ritter JM. Editors' pick 2012. Br J Clin Pharmacol 2012; 75:1-6. [PMID: 23240642 DOI: 10.1111/bcp.12030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Krauss M, Schaller S, Borchers S, Findeisen R, Lippert J, Kuepfer L. Integrating cellular metabolism into a multiscale whole-body model. PLoS Comput Biol 2012; 8:e1002750. [PMID: 23133351 PMCID: PMC3486908 DOI: 10.1371/journal.pcbi.1002750] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/06/2012] [Indexed: 01/08/2023] Open
Abstract
Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. Cellular metabolism is a key element in human physiology. Ideally the metabolic network needs to be considered within the context of the surrounding tissue and organism since the various levels of biological organization are mutually influencing each other. To mechanistically describe the interplay between intracellular space and extracellular environment, we here integrate the genome-scale metabolic network model HepatoNet1 at the cellular scale into physiologically-based pharmacokinetic models at the whole-body level. The resulting multiscale model allows the quantitative description of metabolic behavior in the context of time-resolved metabolite concentration profiles in the body and the surrounding liver tissue. The model has been applied to three case studies covering fundamental aspects of medicine and pharmacology: drug administration, biomarker identification and drug-induced toxication. Most notably, our multiscale approach fosters an improved quantitative understanding of drug action and the impact of metabolic disorders at an organism level, based on a genome-scale representation of cellular metabolism. Computational models such as the one presented include various aspects of human physiology and may therefore significantly support rational approaches in medical diagnostics and pharmaceutical drug development in the future.
Collapse
Affiliation(s)
- Markus Krauss
- Bayer Technology Services GmbH, Computational Systems Biology, Leverkusen, Germany
- Aachen Institute for Advanced Study in Computational Engineering Sciences, RWTH Aachen, Aachen, Germany
| | - Stephan Schaller
- Bayer Technology Services GmbH, Computational Systems Biology, Leverkusen, Germany
- Aachen Institute for Advanced Study in Computational Engineering Sciences, RWTH Aachen, Aachen, Germany
| | - Steffen Borchers
- Laboratory for Systems Theory and Automatic Control, Institute for Automation Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Rolf Findeisen
- Laboratory for Systems Theory and Automatic Control, Institute for Automation Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Jörg Lippert
- Bayer Technology Services GmbH, Computational Systems Biology, Leverkusen, Germany
| | - Lars Kuepfer
- Bayer Technology Services GmbH, Computational Systems Biology, Leverkusen, Germany
- Institute of Applied Microbiology, RWTH Aachen, Aachen, Germany
- * E-mail:
| |
Collapse
|
11
|
Boettcher MF, Heinig R, Schmeck C, Kohlsdorfer C, Ludwig M, Schaefer A, Gelfert-Peukert S, Wensing G, Weber O. Single dose pharmacokinetics, pharmacodynamics, tolerability and safety of BAY 60-5521, a potent inhibitor of cholesteryl ester transfer protein. Br J Clin Pharmacol 2012; 73:210-8. [PMID: 21838789 DOI: 10.1111/j.1365-2125.2011.04083.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIMS To determine pharmacokinetics (PK), pharmacodynamics (PD), tolerability and safety of BAY 60-5521, a potent inhibitor of cholesteryl ester transfer protein (CETP). METHODS The first in man (FIM) study investigated the safety, tolerability, pharmacodynamics and pharmacokinetics in healthy male subjects following administration of single oral doses. The study was performed using a randomized, single-blind, placebo-controlled, single dose-escalation design. Thirty-eight young healthy male subjects (aged 20-45 years) received an oral dose of 5, 12.5, 25 or 50 mg BAY 60-5521 (n= 28) or were treated with a placebo (n= 10). RESULTS In all four dose steps, only one adverse event (25 mg; mild skin rash) was considered drug related. Clinical laboratory parameters showed no clinically relevant changes. A clear dose-dependent CETP inhibition could be demonstrated starting at a dose of 5 mg. At a dose of 25 mg, a CETP inhibition >50% over 18 h was observed. After 50 mg, CETP inhibition >50% lasted more than 50 h. Twenty-four h after administration mean HDL-C-values showed a nearly dose-proportional increase. Following administration of 50 mg, a significant HDL-C increase of about 30% relative to baseline values was found. BAY 60-5521 was slowly absorbed reaching maximum concentrations in plasma after 4 to 6 h. The disposition in plasma was multi-exponential with an estimated mean terminal half-life of 76 to 144 h. CONCLUSIONS BAY 60-5521 was clinically safe and well tolerated. No effects on heart rate, blood pressure and ECG recordings were observed during the study. A clear pharmacodynamic effect on CETP inhibition and HDL could be demonstrated.
Collapse
|