1
|
Bone marrow microenvironment of MPN cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 34756245 DOI: 10.1016/bs.ircmb.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
In this chapter, we will discuss the current knowledge concerning the alterations of the cellular components in the bone marrow niche in Myeloproliferative Neoplasms (MPNs), highlighting the central role of the megakaryocytes in MPN progression, and the extracellular matrix components characterizing the fibrotic bone marrow.
Collapse
|
2
|
Shahrabi S, Ehsanpour A, Heidary S, Shahjahani M, Behzad MM. Expression of CD markers in JAK2 V617F positive myeloproliferative neoplasms: Prognostic significance. Oncol Rev 2018; 12:373. [PMID: 30405895 PMCID: PMC6199554 DOI: 10.4081/oncol.2018.373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal stem cell disorders characterized by the presence of JAK2V617F mutation. Thrombohemorrhagic as well as autoimmune or inflammatory phenomena are common clinical outcomes of these disorders. Recent studies have shown that abnormality in frequency and function of blood cells manifested by an alteration in CD markers' expression patterns play a key role in these complications. So, there may be a relationship between CD markers' expressions and prognosis of JAK2V617F positive MPNs. Therefore, in this review, we have focused on these abnormalities from the perspective of changing expressions of CD markers and assessment of the relationship between these changes with prognosis of JAK2V617F positive MPNs. It can be stated that the abnormal expression of a large number of CD markers can be used as a prognostic biomarker for clinical outcomes including thrombohememorrhagic events, as well as autoimmune and leukemic transformation in JAK2V617F positive MPNs. Considering the possible role of CD markers' expressions in JAK2V617F MPNs prognosis, further studies are needed to confirm the relationship between the expression of CD markers with prognosis to be able to find an appropriate therapeutic approach via targeting CD markers.
Collapse
Affiliation(s)
- Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan
| | - Ali Ehsanpour
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayyeh Heidary
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahjahani
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masumeh Maleki Behzad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Profile of fibrosis-related gene transcripts and megakaryocytic changes in the bone marrow of myelodysplastic syndromes with fibrosis. Ann Hematol 2018; 97:2099-2106. [DOI: 10.1007/s00277-018-3411-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/21/2018] [Indexed: 11/26/2022]
|
4
|
Hussein K, Stucki-Koch A, Alchalby H, Triviai I, Kröger N, Kreipe H. Cytokine Expression Pattern in Bone Marrow Microenvironment after Allogeneic Stem Cell Transplantation in Primary Myelofibrosis. Biol Blood Marrow Transplant 2015; 22:644-650. [PMID: 26708839 DOI: 10.1016/j.bbmt.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/07/2015] [Indexed: 02/03/2023]
Abstract
The only curative therapy for primary myelofibrosis (PMF) is allogeneic stem cell transplantation (ASCT). However, although we know that patients can benefit from ASCT, we do not know the extent of the changes of the expression profile of cytokines and matrix modulation factors. In this first systematic analysis, we evaluated the expression profile of 103 factors before and after transplantation to identify potential biomarkers. The expression of fibrosis-, inflammation-, and angiogenesis-associated genes was analyzed in a total of 52 bone marrow biopsies: PMF patients (n = 14) before and after ASCT and, for control purposes, post-ASCT multiple myeloma patients (n = 14) and non-neoplastic hematopoiesis (n = 10). In post-ASCT PMF cases, decreased expression of tissue inhibitor of metalloproteinases (TIMP) and platelet-derived growth factor alpha (PDGFA) correlated with bone marrow remodeling and hematological remission. Expression of several other matrix factors remained at high levels and may contribute to post-ASCT remodeling. This is the first systematic analysis of cytokine expression in post-ASCT PMF bone marrow that shows that normalization of bone marrow microenvironment is paralleled by decreased expression of TIMP and PDGFA.
Collapse
Affiliation(s)
- Kais Hussein
- Institute of Pathology, Hannover Medical School, Hannover, Germany.
| | | | - Haefaa Alchalby
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ioanna Triviai
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Stucki-Koch A, Hauck G, Kreipe H, Hussein K. MicroRNA expression profiles in BCR-ABL-negative primary myelofibrosis with chromosome 7q defects. J Hematop 2015. [DOI: 10.1007/s12308-015-0258-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
6
|
Mondet J, Hussein K, Mossuz P. Circulating Cytokine Levels as Markers of Inflammation in Philadelphia Negative Myeloproliferative Neoplasms: Diagnostic and Prognostic Interest. Mediators Inflamm 2015; 2015:670580. [PMID: 26525644 PMCID: PMC4617441 DOI: 10.1155/2015/670580] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/06/2015] [Indexed: 01/14/2023] Open
Abstract
Cytokines are well known mediators of numerous physiological and pathological processes. They contribute to the regulation of normal hematopoiesis but increasing data suggest that they also have a clinical impact in some hematopoietic malignancies. In particular, there is evidence that cytokines are implicated in the functional symptoms of Philadelphia negative myeloproliferative neoplasms (Ph- MPNs), suggesting that evaluation of circulating levels of cytokines could be of clinical interest for the characterization of patients at the time of diagnosis and for disease prognosis. In this review, we present the current knowledge on alteration of circulating cytokine profiles in MPNs and their role in myelofibrosis pathogenesis. Phenotypic correlation, prognostic value of cytokines, and impact of JAK inhibitors are also discussed.
Collapse
Affiliation(s)
- Julie Mondet
- UF de Pathologie Moléculaire, Département d'Anatomie et Cytologie Pathologiques, CHU Grenoble, 38043 Grenoble Cedex 09, France
- Equipe TheRex Laboratoire TIMC-IMAG-UMR5525 CNRS, Université Grenoble Alpes, France
| | - Kais Hussein
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Pascal Mossuz
- Equipe TheRex Laboratoire TIMC-IMAG-UMR5525 CNRS, Université Grenoble Alpes, France
- Laboratoire d'Hématologie Cellulaire, Institut de Biologie et Pathologie, CHU Grenoble, 38043 Grenoble Cedex 09, France
| |
Collapse
|
7
|
Desterke C, Martinaud C, Guerton B, Pieri L, Bogani C, Clay D, Torossian F, Lataillade JJ, Hasselbach HC, Gisslinger H, Demory JL, Dupriez B, Boucheix C, Rubinstein E, Amsellem S, Vannucchi AM, Le Bousse-Kerdilès MC. Tetraspanin CD9 participates in dysmegakaryopoiesis and stromal interactions in primary myelofibrosis. Haematologica 2015; 100:757-67. [PMID: 25840601 DOI: 10.3324/haematol.2014.118497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/23/2015] [Indexed: 12/11/2022] Open
Abstract
Primary myelofibrosis is characterized by clonal myeloproliferation, dysmegakaryopoiesis, extramedullary hematopoiesis associated with myelofibrosis and altered stroma in the bone marrow and spleen. The expression of CD9, a tetraspanin known to participate in megakaryopoiesis, platelet formation, cell migration and interaction with stroma, is deregulated in patients with primary myelofibrosis and is correlated with stage of myelofibrosis. We investigated whether CD9 participates in the dysmegakaryopoiesis observed in patients and whether it is involved in the altered interplay between megakaryocytes and stromal cells. We found that CD9 expression was modulated during megakaryocyte differentiation in primary myelofibrosis and that cell surface CD9 engagement by antibody ligation improved the dysmegakaryopoiesis by restoring the balance of MAPK and PI3K signaling. When co-cultured on bone marrow mesenchymal stromal cells from patients, megakaryocytes from patients with primary myelofibrosis displayed modified behaviors in terms of adhesion, cell survival and proliferation as compared to megakaryocytes from healthy donors. These modifications were reversed after antibody ligation of cell surface CD9, suggesting the participation of CD9 in the abnormal interplay between primary myelofibrosis megakaryocytes and stroma. Furthermore, silencing of CD9 reduced CXCL12 and CXCR4 expression in primary myelofibrosis megakaryocytes as well as their CXCL12-dependent migration. Collectively, our results indicate that CD9 plays a role in the dysmegakaryopoiesis that occurs in primary myelofibrosis and affects interactions between megakaryocytes and bone marrow stromal cells. These results strengthen the "bad seed in bad soil" hypothesis that we have previously proposed, in which alterations of reciprocal interactions between hematopoietic and stromal cells participate in the pathogenesis of primary myelofibrosis.
Collapse
Affiliation(s)
- Christophe Desterke
- INSERM UMR-S1197, Paul Brousse Hospital, Paris-Sud University, Villejuif, France INSERM UMS33, Paul Brousse Hospital, Paris-Sud University, Villejuif, France
| | - Christophe Martinaud
- INSERM UMR-S1197, Paul Brousse Hospital, Paris-Sud University, Villejuif, France CTS of Army, Percy Hospital, Clamart, France
| | - Bernadette Guerton
- INSERM UMR-S1197, Paul Brousse Hospital, Paris-Sud University, Villejuif, France
| | - Lisa Pieri
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Costanza Bogani
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Denis Clay
- INSERM UMR-S1197, Paul Brousse Hospital, Paris-Sud University, Villejuif, France INSERM UMS33, Paul Brousse Hospital, Paris-Sud University, Villejuif, France
| | - Frederic Torossian
- INSERM UMR-S1197, Paul Brousse Hospital, Paris-Sud University, Villejuif, France INSERM UMS33, Paul Brousse Hospital, Paris-Sud University, Villejuif, France
| | - Jean-Jacques Lataillade
- INSERM UMR-S1197, Paul Brousse Hospital, Paris-Sud University, Villejuif, France Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Hans C Hasselbach
- Department of Hematology, Herlev University Hospital, Copenhagen, Denmark
| | - Heinz Gisslinger
- Department of Hematology, University Klinik Fur Innere Medizin, Vienna, Austria
| | - Jean-Loup Demory
- Université Catholique de Lille, France French Intergroup on Myeloproliferative Neoplasms (FIM), France
| | - Brigitte Dupriez
- French Intergroup on Myeloproliferative Neoplasms (FIM), France Department of Hematology, Dr Schaffner Hospital, Lens, France
| | - Claude Boucheix
- INSERM UMS33, Paul Brousse Hospital, Paris-Sud University, Villejuif, France Inserm U935, Paul Brousse Hospital, Paris-Sud University, Villejuif, France
| | - Eric Rubinstein
- INSERM UMS33, Paul Brousse Hospital, Paris-Sud University, Villejuif, France Inserm U935, Paul Brousse Hospital, Paris-Sud University, Villejuif, France
| | - Sophie Amsellem
- Department of Hematology, Gustave Roussy Institute, Villejuif, France
| | | | - Marie-Caroline Le Bousse-Kerdilès
- INSERM UMR-S1197, Paul Brousse Hospital, Paris-Sud University, Villejuif, France INSERM UMS33, Paul Brousse Hospital, Paris-Sud University, Villejuif, France French Intergroup on Myeloproliferative Neoplasms (FIM), France
| |
Collapse
|
8
|
Hussein K, Büsche G, Schlue J, Lehmann U, Kreipe H. [Myeloproliferative neoplasms: histopathological and molecular pathological diagnosis]. DER PATHOLOGE 2013; 33:508-17. [PMID: 23085694 DOI: 10.1007/s00292-012-1651-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Myeloproliferative neoplasms (chronic myeloproliferative disorders according to former nomenclature) comprise chronic myeloid leukemia, polycythemia vera, essential thrombocythemia, primary myelofibrosis, chronic eosinophilic leukemia, chronic neutrophilic leukemia and systemic mastocytosis. All disorders have excessive proliferation of one or more hematopoietic lineages in common and progress with different probability to blast crisis or fibrosis. A further common feature is provided by the activating mutation of tyrosin kinases and associated pathways of signal transduction (BCR-ABL, JAK2(V617F), MPL(W515L/K), KIT(D816V) and FIP1L1-PDGFRA) causative for the abnormal proliferation. With regard to diagnosis and therapy these mutations are of utmost importance because they enable the exclusion of reactive processes, contribute with varying specificity to subtyping of MPN and are at least partly sensitive to targeted therapy. The molecular mechanisms of blastic and fibrotic progression are not yet understood.
Collapse
Affiliation(s)
- K Hussein
- Institut für Pathologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str 1, 30625 Hannover, Deutschland
| | | | | | | | | |
Collapse
|
9
|
Kreipe H, Büsche G, Bock O, Hussein K. Myelofibrosis: molecular and cell biological aspects. FIBROGENESIS & TISSUE REPAIR 2012; 5:S21. [PMID: 23259436 PMCID: PMC3368793 DOI: 10.1186/1755-1536-5-s1-s21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A subset of myeloproliferative disorders (MPN) and myelodyplastic syndromes (MDS) evolves to fibrosis of the bone marrow associated with haematopoietic insufficiency. We have been interested in chemokines involved in fibrogenesis within the bone marrow. Besides TGFβ we could identify a number of additional mediators including osteoprotegerin and bone morphogenic proteins. In MPN JAK2 or MPL mutation are not linked to the propensity for bone marrow fibrosis. The hypothesis that an increased intramedullary decay of megakaryocytes undergoing appotosis takes place within the marrow, thus liberating fibrogenic cytokines, could not be confirmed. On the contrary, megakaryocytes in primary fibrosis revealed low expression of proapoptotic genes such as BNIP3. Interestingly, BNIP 3 expression was down regulated in megakaryocytic cell lines kept in hypoxic conditions. Furthermore, expression arrays revealed hypoxia inducible genes to be up-regulated in primary myelofibrosis. Fibrotic MPN are characterized by aberrant proplatelet formation which represent cytoplasmic pseudopodia and normally extend into the sinus. In fibrotic MPN orientation of proplatelet growth appears to be disturbed, which could lead to an aberrant deposition of platelets in the marrow with consecutive liberation of fibrogenic cytokines.
Collapse
Affiliation(s)
- Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Oliver Bock
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Kais Hussein
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Kolquist KA, Schultz RA, Furrow A, Brown TC, Han JY, Campbell LJ, Wall M, Slovak ML, Shaffer LG, Ballif BC. Microarray-based comparative genomic hybridization of cancer targets reveals novel, recurrent genetic aberrations in the myelodysplastic syndromes. Cancer Genet 2012; 204:603-28. [PMID: 22200086 DOI: 10.1016/j.cancergen.2011.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/12/2011] [Indexed: 01/20/2023]
Abstract
The myelodysplastic syndromes (MDS) are a heterogeneous group of clonal disorders characterized by ineffective hematopoiesis, cytopenias, and a risk of transformation to acute myeloid leukemia (AML). However, only approximately 50% of primary MDS patients show clonal cytogenetic aberrations. To determine whether high-resolution microarray analysis would reveal new or additional aberrations, we analyzed 35 samples derived from patients with a diagnosis or suspicion of MDS and abnormal karyotypes. We used a whole-genome oligonucleotide microarray with targeted coverage of approximately 1900 genes associated with hematologic and other cancers. Clinically relevant copy number aberrations (CNAs) were identified by microarray-based comparative genomic hybridization (aCGH) in all samples (range 1-31, median 5). In 28 of 35 samples (80%), aCGH revealed new cytogenetic aberrations not seen by karyotype or fluorescence in situ hybridization (FISH). Furthermore, 132 cryptic aberrations (≤5 Mb) were identified in 25 cases (71.4%) including deletions of NF1, RUNX1, RASSF1, CCND1, TET2, DNMT3A, HRAS, PDGFRA and FIP1L1. Additionally, aCGH clarified known complex aberrations in 17 of 35 samples (48.6%). Finally, our results using whole-genome arrays with higher density coverage targeted to cancer features demonstrate the usefulness of arrays to identify rare and cryptic recurring imbalances that may prove to be significant in disease progression or transformation to AML and may improve the suitability or efficacy of molecularly targeted therapy.
Collapse
|
11
|
Kreipe H, Büsche G, Bock O, Hussein K. Myelofibrosis: molecular and cell biological aspects. FIBROGENESIS & TISSUE REPAIR 2012. [PMID: 23259436 DOI: 10.1186/1755-1536-5-s1-s21.pmid:23259436;pmcid:pmc3368793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A subset of myeloproliferative disorders (MPN) and myelodyplastic syndromes (MDS) evolves to fibrosis of the bone marrow associated with haematopoietic insufficiency. We have been interested in chemokines involved in fibrogenesis within the bone marrow. Besides TGFβ we could identify a number of additional mediators including osteoprotegerin and bone morphogenic proteins. In MPN JAK2 or MPL mutation are not linked to the propensity for bone marrow fibrosis. The hypothesis that an increased intramedullary decay of megakaryocytes undergoing appotosis takes place within the marrow, thus liberating fibrogenic cytokines, could not be confirmed. On the contrary, megakaryocytes in primary fibrosis revealed low expression of proapoptotic genes such as BNIP3. Interestingly, BNIP 3 expression was down regulated in megakaryocytic cell lines kept in hypoxic conditions. Furthermore, expression arrays revealed hypoxia inducible genes to be up-regulated in primary myelofibrosis. Fibrotic MPN are characterized by aberrant proplatelet formation which represent cytoplasmic pseudopodia and normally extend into the sinus. In fibrotic MPN orientation of proplatelet growth appears to be disturbed, which could lead to an aberrant deposition of platelets in the marrow with consecutive liberation of fibrogenic cytokines.
Collapse
Affiliation(s)
- Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Oliver Bock
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Kais Hussein
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Jonigk D, Merk M, Hussein K, Maegel L, Theophile K, Muth M, Lehmann U, Bockmeyer CL, Mengel M, Gottlieb J, Welte T, Haverich A, Golpon H, Kreipe H, Laenger F. Obliterative airway remodeling: molecular evidence for shared pathways in transplanted and native lungs. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:599-608. [PMID: 21281792 DOI: 10.1016/j.ajpath.2010.10.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/12/2010] [Accepted: 10/21/2010] [Indexed: 02/06/2023]
Abstract
Obliteration of the small airways is a largely unresolved challenge in pulmonary medicine. It represents either the irreversible cause of functional impairment or a morphologic disorder of limited importance in a multitude of diseases. Bronchiolitis obliterans is a key complication of lung transplantation. No predictive markers for the onset of obliterative remodeling are currently available. To further elucidate the molecular mechanisms of airway remodeling, compartment-specific expression patterns were analyzed in patients. For this purpose, remodeled and nonremodeled bronchioli were isolated from transplanted and nontransplanted lung explants using laser-assisted microdissection (n = 24). mRNA expression of 45 fibrosis-associated genes was measured using quantitative real-time RT-PCR. For 20 genes, protein expression was also analyzed by immunohistochemistry. Infiltrating cells were characterized at conventional histology and immunohistochemistry. Obliterative remodeling of the small airways in transplanted and nontransplanted lungs shared similar grades of chronic inflammation and pivotal fibrotic pathways such as transforming growth factor β signaling and increased collagen expression. Bone morphogenetic protein and thrombospondin signaling, and also matrix metalloproteinases and tissue inhibitor of metalloproteinases, were primarily up-regulated in obliterative airway remodeling in nontransplanted lungs. In transplanted lungs, clinical remodeled bone morphogenetic protein but nonremodeled bronchioli were characterized by a concordant up-regulation of matrix metalloproteinase-9, RANTES, and tissue inhibitor of metalloproteinase-1. These distinct expression patterns warrant further investigation as potential markers of impending airway remodeling, especially for prospective longitudinal molecular profiling.
Collapse
Affiliation(s)
- Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Gene expression analysis of the megakaryocytic lineage requires isolation of megakaryocytes from their bone marrow microenvironment. Laser microdissection of megakaryocytes from diagnostic bone marrow biopsies allows analysis of standardised formalin-fixed samples that reflect the in situ grown status quo of a physiological or pathological condition. Taking into account that in neoplastic proliferation, e.g. myeloproliferative neoplasms, non-neoplastic haematopoietic clones proliferate in parallel, this morphology-based isolation enables selective analysis of the aberrant megakaryocytic population. Two different laser microdissection devices are presented, and the details of RNA extraction and subsequent real-time qPCR gene expression analysis of mRNA and microRNA are provided.
Collapse
|
14
|
Muth M, Engelhardt BM, Kröger N, Hussein K, Schlué J, Büsche G, Kreipe HH, Bock O. Thrombospondin-1 (TSP-1) in primary myelofibrosis (PMF) - a megakaryocyte-derived biomarker which largely discriminates PMF from essential thrombocythemia. Ann Hematol 2010; 90:33-40. [PMID: 20625903 DOI: 10.1007/s00277-010-1024-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/23/2010] [Indexed: 02/06/2023]
Abstract
Primary myelofibrosis (PMF) is a chronic myeloproliferative neoplasm showing aberrant bone marrow remodeling with increased angiogenesis, progressive matrix accumulation, and fibrosis development. Thrombospondins (TSP) are factors sharing pro-fibrotic and anti-angiogenic properties, and have not been addressed in PMF before. We investigated the expression of TSP-1 and TSP-2 in PMF related to the stage of myelofibrosis (n = 51) and in individual follow-up biopsies by real-time PCR, immunohistochemistry, and confocal laser scanning microscopy (CLSM). TSP-1 was significantly overexpressed (p < 0.05) in all stages of PMF when compared to controls. Individual follow-up biopsies showed involvement of TSP-1 during progressive myelofibrosis. TSP-2 was barely detectable but 40% of cases with advanced myelofibrosis showed a strong expression. Megakaryocytes and interstitial proplatelet formations were shown to be the relevant source for TSP-1 in PMF. Stroma cells like endothelial cells and fibroblasts showed no TSP-1 labeling when double-immunofluorescence staining and CLSM were applied. Based on its dual function, TSP-1 in PMF is likely to be a mediator within a pro-fibrotic environment which discriminates from ET cases. On the other hand, TSP-1 is a factor acting (ineffectively) against exaggerated angiogenesis. Both features suggest TSP-1 to be a biomarker for monitoring a PMF-targeted therapy.
Collapse
Affiliation(s)
- Michaela Muth
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Muth M, Theophile K, Hussein K, Jacobi C, Kreipe H, Bock O. "Hypoxia-induced down-regulation of microRNA-449a/b impairs control over targeted SERPINE1 (PAI-1) mRNA - a mechanism involved in SERPINE1 (PAI-1) overexpression". J Transl Med 2010; 8:33. [PMID: 20356416 PMCID: PMC2853517 DOI: 10.1186/1479-5876-8-33] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 04/01/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In damaged organs tissue repair and replacement of cells by connective tissue provokes a response of fibroblasts to cellular stress factors such as hypoxia.MicroRNAs (miRNA) are small non-coding RNA molecules which bind to their mRNA targets which eventually lead to repression of translation. Whether the response of fibroblasts to stress factors also involves the miRNA system is largely unknown. RESULTS By miRNA profiling we identified down-regulation of miRNA-449a/b expression in hypoxic fibroblasts. Specific miRNA inhibitors and mimics showed direct evidence for targeting the serine protease inhibitor (serpin) protein (SERPINE1; plasminogen activator inhibitor-1, PAI-1) by miRNA-449a/b leading to SERPINE1 mRNA and protein up- and down-regulation, respectively. SERPINE1 expression in vivo could be located predominantly in areas of fibrosis and remodeling. CONCLUSIONS Our study offers serious lines of evidence for a novel hypoxia-dependent mechanism involving hypoxia-induced decrease of clustered miRNA-449a/b, hypoxia-induced amplification of concomitant increase of targeted SERPINE1 (PAI-1) and its overexpression in tissues showing a hypoxic environment.
Collapse
Affiliation(s)
- Michaela Muth
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Katharina Theophile
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Kais Hussein
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Christoph Jacobi
- Department of Pediatric Nephrology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Oliver Bock
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|