1
|
Cannarella R, Rando OJ, Condorelli RA, Chamayou S, Romano S, Guglielmino A, Yin Q, Hans TG, Mancuso F, Arato I, Bellucci C, Luca G, Lundy SD, La Vignera S, Calogero AE. Sperm-carried IGF2: towards the discovery of a spark contributing to embryo growth and development. Mol Hum Reprod 2024; 30:gaae034. [PMID: 39312692 PMCID: PMC11975288 DOI: 10.1093/molehr/gaae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Spermatozoa have been shown to carry key RNAs which, according to animal evidence, seem to play a role in early embryo development. In this context, a potential key growth regulator is insulin-like growth factor 2 (IGF2), a highly conserved paternally expressed imprinted gene involved in cell growth and proliferation which, recent observations indicate, is expressed in human spermatozoa. We herein hypothesized that sperm IGF2 gene expression and transmission at fertilization is required to support early embryo development. To test this hypothesis, we analyzed sperm IGF2 mRNA levels in the same semen aliquot used for homologous assisted reproductive technique (ART) in infertile couples and correlated these levels with embryo morphokinetics. To find a mechanistic explanation for the observed results, the transcriptomes of blastocysts obtained after injection of Igf2 mRNA in mouse parthenotes were analyzed. Sperm IGF2 mRNA negatively correlated with time of 2-cell stage (t2), t3, t4, t5, and time of expanded blastocyst (tEB), independently of maternal age, body mass index, anti-Müllerian hormone levels, and oocyte quality. An IGF2 mRNA index >4.9 predicted the ability of the embryos to reach the blastocyst stage on Day 5, with a sensitivity of 100% and a specificity of 71.6% (AUC 0.845; P < 0.001). In the animal study, transcriptome analysis demonstrated that 65 and 36 genes were, respectively, up- and down-regulated in the experimental group compared to the control group. These genes belong to pathways that regulate early embryo development, thus supporting the findings found in humans. This study has the potential to challenge the longstanding tenet that spermatozoa are simply vehicles carrying paternal DNA. Instead, it suggests that IGF2 mRNA in healthy spermatozoa provides critical support for early embryo development. Pre-ART sperm-carried IGF2 mRNA levels may be used as a marker to predict the chances of obtaining blastocysts to be transferred for infertile couples undergoing ART.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Simona Romano
- Centro HERA—Unità di Medicina della Riproduzione, Catania, Italy
| | | | - Qiangzong Yin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Tobias Gustafsson Hans
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Scott D Lundy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Zhong K, Luo YX, Li D, Min ZY, Fan Y, Yu Y. Generation of blastoids from human parthenogenetic stem cells. LIFE MEDICINE 2023; 2:lnad006. [PMID: 39872951 PMCID: PMC11748981 DOI: 10.1093/lifemedi/lnad006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/17/2023] [Indexed: 01/30/2025]
Abstract
Parthenogenetic embryos derive their genomes entirely from the maternal genome and lack paternal imprint patterns. Many achievements have been made in the study of genomic imprinting using human parthenogenetic embryonic stem cells (hPg-ESCs). However, due to developmental defects and ethical limits, a comprehensive understanding of parthenogenetic embryonic development is still lacking. Here, we generated parthenogenetic blastoids (hPg-EPSCs blastoids) from hPg-ESC-derived extended pluripotent stem cells (hPg-EPSCs) using our previously published two-step induction protocol. Morphology, specific marker expression and single-cell transcriptome analysis showed that hPg-EPSCs blastoids contain crucial cell lineages similar to blastoids (hBp-EPSCs blastoids) generated from human biparental EPSCs (hBp-EPSCs). Single-cell RNA-seq compared the expression of genes related to imprinting and X chromosome inactivation in hPg-EPSCs blastoids and hBp-EPSCs blastoids. In conclusion, we generated parthenogenetic blastoids, which will potentially promote the study of genomic imprinting in embryonic development and uncover the influence of parental origin bias on human development and pathological mechanisms.
Collapse
Affiliation(s)
- Ke Zhong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yu-Xin Luo
- Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Dan Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Zhe-Ying Min
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
3
|
Tiwari M, Rawat N, Sharma A, Bhardwaj P, Roshan M, Nagoorvali D, Singh MK, Chauhan M. Methylation status of imprinted gene IGF2/ H19 DMR3 region in Goat (Capra hircus) blastocysts produced through parthenogenesis and in vitro fertilization. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Li X, Zou C, Li M, Fang C, Li K, Liu Z, Li C. Transcriptome Analysis of In Vitro Fertilization and Parthenogenesis Activation during Early Embryonic Development in Pigs. Genes (Basel) 2021; 12:genes12101461. [PMID: 34680856 PMCID: PMC8535918 DOI: 10.3390/genes12101461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Parthenogenesis activation (PA), as an important artificial breeding method, can stably preserve the dominant genotype of a species. However, the delayed development of PA embryos is still overly severe and largely leads to pre-implantation failure in pigs. The mechanisms underlying the deficiencies of PA embryos have not been completely understood. For further understanding of the molecular mechanism behind PA embryo failure, we performed transcriptome analysis among pig oocytes (meiosis II, MII) and early embryos at three developmental stages (zygote, morula, and blastocyst) in vitro fertilization (IVF) and PA group. Totally, 11,110 differentially expressed genes (DEGs), 4694 differentially expressed lincRNAs (DELs) were identified, and most DEGs enriched the regulation of apoptotic processes. Through cis- and trans-manner functional prediction, we found that hub lincRNAs were mostly involved in abnormal parthenogenesis embryonic development. In addition, twenty DE imprinted genes showed that some paternally imprinted genes in IVF displayed higher expression than that in PA. Notably, we identified that three DELs of imprinted genes (MEST, PLAGL1, and DIRAS3) were up regulated in IVF, and there was no significant change in PA group. Disordered expression of key genes for embryonic development might play key roles in abnormal parthenogenesis embryonic development. Our study indicates that embryos derived from different production techniques have varied in vitro development to the blastocyst stage, and they also affect the transcription level of corresponding genes, such as imprinted genes. This work will help future research on these genes and molecular-assisted breeding for pig parthenotes.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Cheng Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Mengxun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chengchi Fang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Kui Li
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiguo Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Z.L.); (C.L.)
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (C.Z.); (M.L.); (C.F.)
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (Z.L.); (C.L.)
| |
Collapse
|
5
|
Bridi A, Bertolin K, Rissi VB, Mujica LKS, Glanzner WG, de Macedo MP, Comim FV, Gonçalves PBD, Antoniazzi AQ. Parthenogenetic bovine embryos secrete type I interferon capable of stimulating ISG15 in luteal cell culture. Anim Reprod 2018; 15:1268-1277. [PMID: 34221141 PMCID: PMC8203113 DOI: 10.21451/1984-3143-ar2018-0095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Interferon tau (IFNT) is the pregnancy recognition signal in ruminants and is secreted by
trophoblast cells. Paracrine action in the endometrium is well established by inhibiting
luteolytic pulses of prostaglandin F2 alpha. Recently, endocrine action was documented
in the corpus luteum, blood cell and liver. It was hypothesized that conditioned medium (CM)
obtained from days 7, 9 and 12 parthenogenetic embryos alters luteal cell gene expression.
The aim was to establish a bovine mixed luteal cell culture to evaluate cellular response associated
to interferon stimulated genes, steroidogenesis and apoptosis. Conditioned medium was
obtained from Days 7, 9 and 12 parthenogenetic (PA) embryos culture. Moreover, antiviral
assay was performed on CM from Days 7, 9 and 12 to verify Type I interferon activity. Luteal cell
culture was validated by steroidogenic and apoptotic genes (CYP11A1
, HSD3B1, BAX, BCL2, AKT and
XIAP mRNA expression), and concentration of progesterone as endpoint. Luteal
cell culture was treated with interferon alpha (IFNA) and CM from parthenogenetic embryos.
Antiviral assay revealed Type I interferon activity on CM from embryos increasing on Days
9 and 12. ISG15 mRNA was greater in the mixed luteal cells culture treated
with 1, 10 and 100ng/ml of interferon alpha (IFNA) and also on Days 7, 9 and 12 CM treatments.
Concentration of progesterone was not altered in luteal cell culture regardless of treatments.
Steroidogenic and apoptotic genes were similar among groups in luteal cell culture treated
with different doses of IFNA or CM from PA embryos. In conclusion, parthenogenetic embryo-derived
CM has antiviral activity, luteal cell culture respond to Type I interferon by expressing
IGS15. These data indicate this model can be used for IFNT endocrine signaling studies.
Collapse
Affiliation(s)
- Alessandra Bridi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Department of Large Animal Clinical Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Kalyne Bertolin
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Department of Large Animal Clinical Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vitor B Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Department of Large Animal Clinical Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lady K S Mujica
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Department of Large Animal Clinical Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Werner G Glanzner
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Department of Large Animal Clinical Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mariana P de Macedo
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Department of Large Animal Clinical Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Fabio V Comim
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Department of Large Animal Clinical Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Paulo B D Gonçalves
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Department of Large Animal Clinical Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Alfredo Q Antoniazzi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Department of Large Animal Clinical Science, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
6
|
Cheng H, Wang Y, Zhang J, Zhang S, Ma X, An X, Man X, Zhang X, Li Z, Tang B. Effects of PRDM14 Silencing on Parthenogenetically Activated Porcine Embryos. Cell Reprogram 2018; 20:382-388. [PMID: 30325654 DOI: 10.1089/cell.2018.0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hui Cheng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yutian Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jian Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sheng Zhang
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Xiaoling Ma
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Xinglan An
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Xiaxia Man
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ziyi Li
- Academy of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
7
|
Stem cells in regenerative medicine - from laboratory to clinical application - the eye. Cent Eur J Immunol 2017; 42:173-180. [PMID: 28860936 PMCID: PMC5573891 DOI: 10.5114/ceji.2017.69360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/25/2016] [Indexed: 12/18/2022] Open
Abstract
Stem cells are currently one of the most researched and explored subject in science. They consstitue a very promising part of regenerative medicine and have many potential clinical applications. Harnessing their ability to replicate and differentiate into many cell types can enable successful treatment of diseases that were incurable until now. There are numerous types of stem cells (e.g. ESCs, FSCs, ASCs, iPSCs) and many different methods of deriving and cultivating them in order to obtain viable material. The eye is one of the most interesting targets for stem cell therapies. In this article we summarise different aspects of stem cells, discussing their characteristics, sources and methods of culture. We also demonstrate the most recent clinical applications in ophthalmology based on an extensive current literature review. Tissue engineering techniques developed for corneal limbal stem cell deficiency, age-related macular degeneration (AMD) and glaucoma are among those presented. Both laboratory and clinical aspects of stem cells are discussed.
Collapse
|
8
|
Hou X, Liu J, Zhang Z, Zhai Y, Wang Y, Wang Z, Tang B, Zhang X, Sun L, Li Z. Effects of cytochalasin B on DNA methylation and histone modification in parthenogenetically activated porcine embryos. Reproduction 2016; 152:519-27. [PMID: 27581081 DOI: 10.1530/rep-16-0280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/31/2016] [Indexed: 12/16/2023]
Abstract
DNA methylation and histone modification play important roles in the development of mammalian embryos. Cytochalasin B (CB) is an actin polymerization inhibitor that can significantly affect cell activity and is often used in studies concerning cytology. In recent years, CB is also commonly being used in in vitro experiments on mammalian embryos, but few studies have addressed the effect of CB on the epigenetic modification of embryonic development, and the mechanism underlying this process is also unknown. This study was conducted to investigate the effects of CB on DNA methylation and histone modification in the development of parthenogenetically activated porcine embryos. Treatment with 5 μg/mL CB for 4 h significantly increased the cleavage rate, blastocyst rate and total cell number of blastocysts. However, the percentage of apoptotic cells and the expression levels of the apoptosis-related genes BCL-XL, BAX and CASP3 were significantly decreased. Treatment with CB significantly decreased the expression levels of DNMT1, DNMT3a, DNMT3b, HAT1 and HDAC1 at the pronuclear stage and promoted the conversion of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). After CB treatment, the level of AcH3K9 was upregulated and the level of H3K9me3 was downregulated. When combined with Scriptaid and 5-Aza-Cdr, CB further improved the embryonic development competence and decreased the expression of BCL-XL, BAX and CASP3 In conclusion, these results suggest that CB could improve embryonic development and the quality of the blastocyst by improving the epigenetic modification during the development of parthenogenetically activated embryos.
Collapse
Affiliation(s)
- Xiaoxiao Hou
- State and Local Joint Engineering Laboratory for Animal Models of Human DiseasesAcademy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China College of Animal ScienceJilin University, Changchun, Jilin, China
| | - Jun Liu
- Second HospitalJilin University, Changchun, Jilin, China
| | - Zhiren Zhang
- College of Animal ScienceJilin University, Changchun, Jilin, China
| | - Yanhui Zhai
- College of Veterinary MedicineJilin University, Changchun, Jilin, China
| | - Yutian Wang
- College of Veterinary MedicineJilin University, Changchun, Jilin, China
| | - Zhengzhu Wang
- College of Veterinary MedicineJilin University, Changchun, Jilin, China
| | - Bo Tang
- College of Veterinary MedicineJilin University, Changchun, Jilin, China
| | - Xueming Zhang
- College of Veterinary MedicineJilin University, Changchun, Jilin, China
| | - Liguang Sun
- State and Local Joint Engineering Laboratory for Animal Models of Human DiseasesAcademy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Ziyi Li
- State and Local Joint Engineering Laboratory for Animal Models of Human DiseasesAcademy of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Parthenogenesis and Human Assisted Reproduction. Stem Cells Int 2015; 2016:1970843. [PMID: 26635881 PMCID: PMC4655294 DOI: 10.1155/2016/1970843] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/20/2015] [Accepted: 06/24/2015] [Indexed: 11/17/2022] Open
Abstract
Parthenogenetic activation of human oocytes obtained from infertility treatments has gained new interest in recent years as an alternative approach to create embryos with no reproductive purpose for research in areas such as assisted reproduction technologies itself, somatic cell, and nuclear transfer experiments and for derivation of clinical grade pluripotent embryonic stem cells for regenerative medicine. Different activating methods have been tested on human and nonhuman oocytes, with varying degrees of success in terms of parthenote generation rates, embryo development stem cell derivation rates. Success in achieving a standardized artificial activation methodology for human oocytes and the subsequent potential therapeutic gain obtained from these embryos depends mainly on the availability of gametes donated from infertility treatments. This review will focus on the creation of parthenotes from clinically unusable oocytes for derivation and establishment of human parthenogenetic stem cell lines and their potential applications in regenerative medicine.
Collapse
|
10
|
Mehta RH. Sourcing human embryos for embryonic stem cell lines: problems & perspectives. Indian J Med Res 2014; 140 Suppl:S106-11. [PMID: 25673530 PMCID: PMC4345740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The ability to successfully derive human embryonic stem cells (hESC) lines from human embryos following in vitro fertilization (IVF) opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been 'discarded' or 'spare' fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART) and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. in case a couple does not desire to 'cryopreserve' their embryos then all the embryos remaining following embryo transfer can be considered 'spare' or if a couple is no longer in need of the 'cryopreserved' embryos then these also can be considered as 'spare'. But, the question raised by the ethicists is, "what about 'slightly' over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to 'discarded' embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of 'discarding' embryos. What would be the criteria for discarding embryos and the potential 'use' of ESC derived from the 'abnormal appearing' embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.
Collapse
Affiliation(s)
- Rajvi H. Mehta
- Trivector Embryology Support Academy, Mumbai, India,Reprint requests: Dr Rajvi H. Mehta, 111-115, Marathon Max, Hedgewar Chowk, L.B.S. Marg, Mulund (West), Mumbai 400 080, Maharashtra, India e-mail:
| |
Collapse
|
11
|
Li J, He J, Lin G, Lu G. Inducing human parthenogenetic embryonic stem cells into islet‑like clusters. Mol Med Rep 2014; 10:2882-90. [PMID: 25241773 PMCID: PMC4227434 DOI: 10.3892/mmr.2014.2588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/09/2014] [Indexed: 11/05/2022] Open
Abstract
In order to determine whether human parthenogenetic embryonic stem (hpES) cells have the potential to differentiate into functional cells, a modified four-step protocol was used to induce the hpES cells into islet-like clusters (ILCs) in vitro. Growth factors activin A, retinoic acid, nicotinamide, Exendin-4 and betacellulin were added sequentially to the hpES cells at each step. The terminally differentiated cells were shown to gather into ILCs. Immunohistochemistry and semi quantitative polymerase chain reaction analyses demonstrated that the ILCs expressed islet specific hormones and functional markers. Furthermore, an insulin release test indicated that the clusters had the same physiological function as islets. The ILCs derived from hpES cells shared similar characteristics with islets. These results indicate that hpES cell-derived ILCs may be used as reliable material for the treatment of type I diabetes mellitus.
Collapse
Affiliation(s)
- Jin Li
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan 410078, P.R. China
| | - Jingjing He
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan 410078, P.R. China
| | - Guangxiu Lu
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
12
|
Lundy SD, Gantz JA, Pagan CM, Filice D, Laflamme MA. Pluripotent stem cell derived cardiomyocytes for cardiac repair. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2014; 16:319. [PMID: 24838687 DOI: 10.1007/s11936-014-0319-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OPINION STATEMENT The adult mammalian heart has limited capacity for regeneration, and any major injury such as a myocardial infarction results in the permanent loss of up to 1 billion cardiomyocytes. The field of cardiac cell therapy aims to replace these lost contractile units with de novo cardiomyocytes to restore lost systolic function and prevent progression to heart failure. Arguably, the ideal cell for this application is the human cardiomyocyte itself, which can electromechanically couple with host myocardium and contribute active systolic force. Pluripotent stem cells from human embryonic or induced pluripotent lineages are attractive sources for cardiomyocytes, and preclinical investigation of these cells is in progress. Recent work has focused on the efficient generation and purification of cardiomyocytes, tissue engineering efforts, and examining the consequences of cell transplantation from mechanical, vascular, and electrical standpoints. Here we discuss historical and contemporary aspects of pluripotent stem cell-based cardiac cell therapy, with an emphasis on recent preclinical studies with translational goals.
Collapse
Affiliation(s)
- Scott D Lundy
- Department of Bioengineering, University of Washington, Box 358050, 850 Republican St., Seattle, WA, 98195, USA
| | | | | | | | | |
Collapse
|
13
|
Zhou C, Dobrinsky J, Tsoi S, Foxcroft GR, Dixon WT, Stothard P, Verstegen J, Dyck MK. Characterization of the altered gene expression profile in early porcine embryos generated from parthenogenesis and somatic cell chromatin transfer. PLoS One 2014; 9:e91728. [PMID: 24633136 PMCID: PMC3954727 DOI: 10.1371/journal.pone.0091728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/13/2014] [Indexed: 12/30/2022] Open
Abstract
The in vitro production of early porcine embryos is of particular scientific and economic interest. In general, embryos produced from in vitro Assisted Reproductive Technologies (ART) manipulations, such as somatic cell chromatin transfer (CT) and parthenogenetic activation (PA), are less developmentally competent than in vivo–derived embryos. The mechanisms underlying the deficiencies of embryos generated from PA and CT have not been completely understood. To characterize the altered genes and gene networks in embryos generated from CT and PA, comparative transcriptomic analyses of in vivo (IVV) expanded blastocysts (XB), IVV hatched blastocyst (HB), PA XB, PA HB, and CT HB were performed using a custom microarray platform enriched for genes expressed during early embryonic development. Differential expressions of 1492 and 103 genes were identified in PA and CT HB, respectively, in comparison with IVV HB. The “eIF2 signalling”, “mitochondrial dysfunction”, “regulation of eIF4 and p70S6K signalling”, “protein ubiquitination”, and “mTOR signalling” pathways were down-regulated in PA HB. Dysregulation of notch signalling–associated genes were observed in both PA and CT HB. TP53 was predicted to be activated in both PA and CT HB, as 136 and 23 regulation targets of TP53 showed significant differential expression in PA and CT HB, respectively, in comparison with IVV HB. In addition, dysregulations of several critical pluripotency, trophoblast development, and implantation-associated genes (NANOG, GATA2, KRT8, LGMN, and DPP4) were observed in PA HB during the blastocyst hatching process. The critical genes that were observed to be dysregulated in CT and PA embryos could be indicative of underlying developmental deficiencies of embryos produced from these technologies.
Collapse
Affiliation(s)
- Chi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - John Dobrinsky
- International Center for Biotechnology, Minitube of America, Mount Horeb, Wisconsin, United States of America
| | - Stephen Tsoi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - George R. Foxcroft
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Walter T. Dixon
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - John Verstegen
- International Center for Biotechnology, Minitube of America, Mount Horeb, Wisconsin, United States of America
| | - Michael K. Dyck
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
14
|
Ratajczak MZ, Suszyńska M. Quo Vadis medycyno regeneracyjna?: Quo Vadis Regenerative Medicine? ACTA ACUST UNITED AC 2013; 44:161-170. [PMID: 24068834 DOI: 10.1016/j.achaem.2013.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There are presented the most important sources of pluripotent stem cells for potential application in the regenerative medicine. This review summarizes also advantages and disadvantages for potential application of these cells in clinical medicine.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Katedra i Zakład Fizjologii Pomorskiego Uniwersytetu Medycznego, Kierownik: prof. dr hab. n. med. Mariusz Z. Ratajczak, Szczecin, Polska
| | | |
Collapse
|
15
|
Muñoz M, Penarossa G, Caamaño JN, Díez C, Brevini TAL, Gómez E. Research with parthenogenetic stem cells will help decide whether a safer clinical use is possible. J Tissue Eng Regen Med 2013; 9:325-31. [PMID: 23798507 DOI: 10.1002/term.1779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/08/2013] [Accepted: 04/22/2013] [Indexed: 01/07/2023]
Abstract
The derivation and use of parthenogenetic stem cells (pESCs) are envisaged as a reliable alternative to conventional embryonic stem cells. Similar to embryonic stem cells in their proliferation, expression of pluripotency markers and capacity to multilineage differentiation, pESCs are at a lower risk of immune rejection within stem cell-based therapeutics. Moreover, pESCs represent an important model system to study the effect of paternally imprinted genes on cell differentiation. However, currently available information about the genetic and epigenetic behaviour of pESCs is limited. Thus, a detailed look at the biology of parthenogenetic (PG) embryos and PG-derived cell lines would allow gaining insight into the full potential of pESC in biotechnology. In this commentary article we review some features related to the biology of PG embryos and pESCs. In addition, novel traits on bovine pESCs (bpESCs) are discussed.
Collapse
Affiliation(s)
- M Muñoz
- Centro de Biotecnología Animal - SERIDA, La Olla - Deva, Gijón, Asturias, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Han X, Ouyang H, Chen X, Huang Y, Song Y, Zhang M, Pang D, Lai L, Li Z. Aberrant expression of Igf2/H19 in porcine parthenogenetic fetuses and placentas. Anim Reprod Sci 2013; 139:101-8. [DOI: 10.1016/j.anireprosci.2013.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/02/2013] [Accepted: 04/14/2013] [Indexed: 11/25/2022]
|
17
|
Brevini TAL, Pennarossa G, Maffei S, Tettamanti G, Vanelli A, Isaac S, Eden A, Ledda S, de Eguileor M, Gandolfi F. Centrosome amplification and chromosomal instability in human and animal parthenogenetic cell lines. Stem Cell Rev Rep 2013; 8:1076-87. [PMID: 22661117 DOI: 10.1007/s12015-012-9379-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Parthenotes have been proposed as a source of embryonic stem cells but they lack the centriole which is inherited through the sperm in all mammalian species, except for rodents. We investigated the centrosome of parthenotes and parthenogenetic embryonic stem cells using parthenogenetic and biparental pig pre-implantation embryos, human and pig parthenogenetic and biparental embryonic stem cells, sheep fibroblasts derived from post implantation parthenogenetic and biparental embryos developed in vivo. We also determined the level of aneuploidy in parthenogenetic cells. Oocytes of all species were activated using ionomycin and 6-dimethylaminopurine (6-DMAP). Over 60% of parthenogenetic blastomeres were affected by an excessive number of centrioles. Centrosome amplification, was observed by microscopical and ultrastructural analysis also in parthenogenetic cell lines of all three species. Over expression of PLK2 and down regulation of CCNF, respectively involved in the stimulation and inhibition of centrosome duplication, were present in all species. We also detected down regulation of spindle assembly checkpoint components such as BUB1, CENPE and MAD2. Centrosome amplification was accompanied by multipolar mitotic spindles and all cell lines were affected by a high rate of aneuploidy. These observations indicate a link between centrosome amplification and the high incidence of aneuploidy and suggest that parthenogenetic stem cells may be a useful model to investigate how aneuploidy can be compatible with cell proliferation and differentiation.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research (UniStem), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Didié M, Christalla P, Rubart M, Muppala V, Döker S, Unsöld B, El-Armouche A, Rau T, Eschenhagen T, Schwoerer AP, Ehmke H, Schumacher U, Fuchs S, Lange C, Becker A, Tao W, Scherschel JA, Soonpaa MH, Yang T, Lin Q, Zenke M, Han DW, Schöler HR, Rudolph C, Steinemann D, Schlegelberger B, Kattman S, Witty A, Keller G, Field LJ, Zimmermann WH. Parthenogenetic stem cells for tissue-engineered heart repair. J Clin Invest 2013; 123:1285-98. [PMID: 23434590 DOI: 10.1172/jci66854] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/03/2013] [Indexed: 01/14/2023] Open
Abstract
Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized that nonembryonic parthenogenetic stem cells (PSCs) can be directed toward the cardiac lineage and applied to tissue-engineered heart repair. We first confirmed similar fundamental properties in murine PSCs and embryonic stem cells (ESCs), despite notable differences in genetic (allelic variability) and epigenetic (differential imprinting) characteristics. Haploidentity of major histocompatibility complexes (MHCs) in PSCs is particularly attractive for allogeneic cell-based therapies. Accordingly, we confirmed acceptance of PSCs in MHC-matched allotransplantation. Cardiomyocyte derivation from PSCs and ESCs was equally effective. The use of cardiomyocyte-restricted GFP enabled cell sorting and documentation of advanced structural and functional maturation in vitro and in vivo. This included seamless electrical integration of PSC-derived cardiomyocytes into recipient myocardium. Finally, we enriched cardiomyocytes to facilitate engineering of force-generating myocardium and demonstrated the utility of this technique in enhancing regional myocardial function after myocardial infarction. Collectively, our data demonstrate pluripotency, with unrestricted cardiogenicity in PSCs, and introduce this unique cell type as an attractive source for tissue-engineered heart repair.
Collapse
Affiliation(s)
- Michael Didié
- Institute of Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Naturil-Alfonso C, Saenz-de-Juano MDD, Peñaranda DS, Vicente JS, Marco-Jiménez F. Transcriptome profiling of rabbit parthenogenetic blastocysts developed under in vivo conditions. PLoS One 2012; 7:e51271. [PMID: 23251477 PMCID: PMC3522381 DOI: 10.1371/journal.pone.0051271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/30/2012] [Indexed: 11/29/2022] Open
Abstract
Parthenogenetic embryos are one attractive alternative as a source of embryonic stem cells, although many aspects related to the biology of parthenogenetic embryos and parthenogenetically derived cell lines still need to be elucidated. The present work was conducted to investigate the gene expression profile of rabbit parthenote embryos cultured under in vivo conditions using microarray analysis. Transcriptomic profiles indicate 2541 differentially expressed genes between parthenotes and normal in vivo fertilised blastocysts, of which 76 genes were upregulated and 16 genes downregulated in in vivo cultured parthenote blastocyst, using 3 fold-changes as a cut-off. While differentially upregulated expressed genes are related to transport and protein metabolic process, downregulated expressed genes are related to DNA and RNA binding. Using microarray data, 6 imprinted genes were identified as conserved among rabbits, humans and mice: GRB10, ATP10A, ZNF215, NDN, IMPACT and SFMBT2. We also found that 26 putative genes have at least one member of that gene family imprinted in other species. These data strengthen the view that a large fraction of genes is differentially expressed between parthenogenetic and normal embryos cultured under the same conditions and offer a new approach to the identification of imprinted genes in rabbit.
Collapse
Affiliation(s)
| | | | | | | | - Francisco Marco-Jiménez
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
20
|
Altered cell cycle gene expression and apoptosis in post-implantation dog parthenotes. PLoS One 2012; 7:e41256. [PMID: 22905100 PMCID: PMC3419697 DOI: 10.1371/journal.pone.0041256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Mature oocytes can be parthenogenetically activated by a variety of methods and the resulting embryos are valuable for studies of the respective roles of paternal and maternal genomes in early mammalian development. In the present study, we report the first successful development of parthenogenetic canine embryos to the post-implantation stage. Nine out of ten embryo transfer recipients became pregnant and successful in utero development of canine parthenotes was confirmed. For further evaluation of these parthenotes, their fetal development was compared with artificially inseminated controls and differentially expressed genes (DEGs) were compared using ACP RT-PCR, histological analysis and immunohistochemistry. We found formation of the limb-bud and no obvious differences in histological appearance of the canine parthenote recovered before degeneration occurred; however canine parthenotes were developmentally delayed with different cell cycle regulating-, mitochondria-related and apoptosis-related gene expression patterns compared with controls. In conclusion, our protocols were suitable for activating canine oocytes artificially and supported early fetal development. We demonstrated that the developmental abnormalities in canine parthenotes may result from defective regulation of apoptosis and aberrant gene expression patterns, and provided evidence that canine parthenotes can be a useful tool for screening and for comparative studies of imprinted genes.
Collapse
|
21
|
Maruotti J, Muñoz M, Degrelle SA, Gómez E, Louet C, Díez C, Monforte CD, de Longchamp PH, Brochard V, Hue I, Caamaño JN, Jouneau A. Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors. Mol Reprod Dev 2012; 79:461-77. [PMID: 22573702 DOI: 10.1002/mrd.22051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 05/01/2012] [Indexed: 12/20/2022]
Abstract
Pluripotency can be captured in vitro, providing that the culture environment meets the requirements that avoid differentiation while stimulating self-renewal. From studies in the mouse embryo, two kinds of pluripotent stem cells have been obtained from the early and late epiblast, embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs), representing the naive and primed states, respectively. All attempts to derive convincing ESCs in ungulates have been unsuccessful, although all attempts were based on the assumption that the conditions used to derive mouse ESCs or human ESC could be applied in other species. Pluripotent cells derived in primates, rabbit, and pig strongly indicate that the state of pluripotency of these cells is, in fact, closer to EpiSCs than to ESCs, and thus depend on fibroblast growth factor (FGF) and Activin signaling pathways. Based on this observation, we have tried to derive EpiSC from the epiblast of bovine elongated embryos as well as ESCs from Day-8 blastocysts. We here show that the core transcription factors Oct4/Sox2/Nanog can be used as markers of pluripotency in the bovine since their expression was restricted to the developing epiblast after Day 8, and disappeared following differentiation of both the ESC-like and EpiSC-like cultures. Although FGF and Activin pathways are indeed present and active in the bovine, it is not sufficient/enough to maintain a long-term pluripotency ex vivo, as was reported for mouse and pig EpiSCs.
Collapse
Affiliation(s)
- Julien Maruotti
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
AbstractEmbryonic stem cells (ESCs) represent a useful tool for cell therapy studies, however the use of embryos for their derivation give rise to ethical, religious and legal problems when applied to the human. During the last years parthenogenesis has been proposed as an alternative source to obtain ESCs. Based on the fact that parthenotes avoid many concerns surrounding the “ad hoc” in vitro production and following destruction of viable human embryos. Unfortunately many aspects related to parthenogenetic cell biology are not fully understood and still need to be elucidated. In this review we describe advantages and limits of these cells. We discuss their typical ESC morphology and high telomerase activity, which disappears after differentiation. We examine the pluripotency signature that they share with bi-parental ESCs. We review their high differentiation plasticity that allow for the derivation of several mature cell type populations when we expose these cells to adequate conditions. On the other hand, in-depth analysis demonstrated chromosome mal-segregation and altered mechanisms controlling centriole arrangement and mitotic spindle formation in these cells. We hypothesize their monoparental origin as one of the possible cause of these anomalies and suggest a great caution if a therapeutic use is considered.
Collapse
|
23
|
Hu Z, Wang L, Xie Z, Zhang X, Feng D, Wang F, Zuo B, Wang L, Liu Z, Chen Z, Yang F, Liu L. Quantitative proteomics analysis of parthenogenetically induced pluripotent stem cells. Protein Cell 2011; 2:631-46. [PMID: 21904979 DOI: 10.1007/s13238-011-1081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/30/2011] [Indexed: 10/17/2022] Open
Abstract
Parthenogenetic embryonic stem (pES) cells isolated from parthenogenetic activation of oocytes and embryos, also called parthenogenetically induced pluripotent stem cells, exhibit pluripotency evidenced by both in vitro and in vivo differentiation potential. Differential proteomic analysis was performed using differential in-gel electrophoresis and isotope-coded affinity tag-based quantitative proteomics to investigate the molecular mechanisms underlying the developmental pluripotency of pES cells and to compare the protein expression of pES cells generated from either the in vivo-matured ovulated (IVO) oocytes or from the in vitro-matured (IVM) oocytes with that of fertilized embryonic stem (fES) cells derived from fertilized embryos. A total of 76 proteins were upregulated and 16 proteins were downregulated in the IVM pES cells, whereas 91 proteins were upregulated and 9 were downregulated in the IVO pES cells based on a minimal 1.5-fold change as the cutoff value. No distinct pathways were found in the differentially expressed proteins except for those involved in metabolism and physiological processes. Notably, no differences were found in the protein expression of imprinted genes between the pES and fES cells, suggesting that genomic imprinting can be corrected in the pES cells at least at the early passages. The germline competent IVM pES cells may be applicable for germ cell renewal in aging ovaries if oocytes are retrieved at a younger age.
Collapse
Affiliation(s)
- Zhe Hu
- Department of Cell Biology and Genetics, Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Naturil-Alfonso C, Saenz-de-Juano MD, Peñaranda DS, Vicente JS, Marco-Jiménez F. Parthenogenic blastocysts cultured under in vivo conditions exhibit proliferation and differentiation expression genes similar to those of normal embryos. Anim Reprod Sci 2011; 127:222-8. [PMID: 21890291 DOI: 10.1016/j.anireprosci.2011.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 08/05/2011] [Accepted: 08/11/2011] [Indexed: 12/16/2022]
Abstract
Parthenote embryos offer multiple possibilities in biotechnological investigation, such as stem cell research. However, there is still a dearth of knowledge of this kind of embryo. In this study, development and ploidy were analysed in parthenotes under in vitro and in vivo culture conditions. Subsequently, using real-time PCR, the expressions of factor OCT-4, Vascular Endothelial Growth Factor, Epidermal Growth Factor Receptor 3 and Transforming Growth Factor β2 genes were analysed to compare the embryo types at the blastocyst stage. Development and implantation of parthenote embryos were described after transfer at day 10 of pregnancy. Parthenotes showed similar blastocyst development for both culture conditions and most of the parthenotes produced were diploid. However, parthenotes developed under in vivo conditions showed similar mRNA expression of OCT-4, VEGF and TGF-β2 to 5 and 6 day old blastocysts. In contrast, parthenotes developed under in vitro conditions had altered the expression pattern of these genes, except for erbB3 mRNA. Finally, transferred parthenotes had the ability to implant but showed severe growth retardation and lesser size. This is the first demonstration of the influence of culture conditions on parthenote mRNA expression. Our study highlights the importance of culture conditions in subsequent uses of parthenotes, such as the production of stem cell lines.
Collapse
Affiliation(s)
- C Naturil-Alfonso
- Instituto de Ciencia y Tecnología Animal, Universidad Politécnica de Valencia, Valencia 46022, Spain
| | | | | | | | | |
Collapse
|
25
|
Hsieh YC, Intawicha P, Lee KH, Chiu YT, Lo NW, Ju JC. LIF and FGF Cooperatively Support Stemness of Rabbit Embryonic Stem Cells Derived from Parthenogenetically Activated Embryos. Cell Reprogram 2011; 13:241-55. [DOI: 10.1089/cell.2010.0097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Ya-Chen Hsieh
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Payungsuk Intawicha
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Kun-Hsiung Lee
- Division of Biotechnology, Animal Technology Institute Taiwan, Chunan, Miaoli, Republic of China
| | - Yung-Tsung Chiu
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Republic of China
| | - Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan, Republic of China
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
26
|
Affiliation(s)
- J Suaudeau
- Pontifical Academy for Life, Rome, Italy.
| |
Collapse
|
27
|
McElroy SL, Byrne JA, Chavez SL, Behr B, Hsueh AJ, Westphal LM, Reijo Pera RA. Parthenogenic blastocysts derived from cumulus-free in vitro matured human oocytes. PLoS One 2010; 5:e10979. [PMID: 20539753 PMCID: PMC2881862 DOI: 10.1371/journal.pone.0010979] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 05/11/2010] [Indexed: 01/25/2023] Open
Abstract
Background Approximately 20% of oocytes are classified as immature and discarded following intracytoplasmic sperm injection (ICSI) procedures. These oocytes are obtained from gonadotropin-stimulated patients, and are routinely removed from the cumulus cells which normally would mature the oocytes. Given the ready access to these human oocytes, they represent a potential resource for both clinical and basic science application. However culture conditions for the maturation of cumulus-free oocytes have not been optimized. We aimed to improve maturation conditions for cumulus-free oocytes via culture with ovarian paracrine/autocrine factors identified by single cell analysis. Methodology/Principal Finding Immature human oocytes were matured in vitro via supplementation with ovarian paracrine/autocrine factors that were selected based on expression of ligands in the cumulus cells and their corresponding receptors in oocytes. Matured oocytes were artificially activated to assess developmental competence. Gene expression profiles of parthenotes were compared to IVF/ICSI embryos at morula and blastocyst stages. Following incubation in medium supplemented with ovarian factors (BDNF, IGF-I, estradiol, GDNF, FGF2 and leptin), a greater percentage of oocytes demonstrated nuclear maturation and subsequently, underwent parthenogenesis relative to control. Similarly, cytoplasmic maturation was also improved as indicated by development to blastocyst stage. Parthenogenic blastocysts exhibited mRNA expression profiles similar to those of blastocysts obtained after IVF/ICSI with the exception for MKLP2 and PEG1. Conclusions/Significance Human cumulus-free oocytes from hormone-stimulated cycles are capable of developing to blastocysts when cultured with ovarian factor supplementation. Our improved IVM culture conditions may be used for obtaining mature oocytes for clinical purposes and/or for derivation of embryonic stem cells following parthenogenesis or nuclear transfer.
Collapse
Affiliation(s)
- Sohyun L. McElroy
- Center for Human Embryonic Stem Cell Research and Education, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California, United States of America
- Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California, United States of America
| | - James A. Byrne
- Center for Human Embryonic Stem Cell Research and Education, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California, United States of America
- Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California, United States of America
| | - Shawn L. Chavez
- Center for Human Embryonic Stem Cell Research and Education, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California, United States of America
- Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California, United States of America
| | - Barry Behr
- Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California, United States of America
- Division of Reproductive Endocrinology and Infertility, Stanford Hospital and Clinics, Palo Alto, California, United States of America
| | - Aaron J. Hsueh
- Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California, United States of America
| | - Lynn M. Westphal
- Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California, United States of America
- Division of Reproductive Endocrinology and Infertility, Stanford Hospital and Clinics, Palo Alto, California, United States of America
| | - Renee A. Reijo Pera
- Center for Human Embryonic Stem Cell Research and Education, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Palo Alto, California, United States of America
- Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Gandolfi F, Brevini TAL. RFD Award Lecture 2009. In vitro maturation of farm animal oocytes: a useful tool for investigating the mechanisms leading to full-term development. Reprod Fertil Dev 2010; 22:495-507. [PMID: 20188022 DOI: 10.1071/rd09151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/11/2009] [Indexed: 01/24/2023] Open
Abstract
Due to logistical and economic reasons, assisted reproduction of domestic animals has been based mostly on the use of oocytes isolated from ovaries collected at the slaughterhouse. In order to propagate valuable or rare genetic material, perform somatic cell nuclear transfer or generate genetically modified animals, it is essential to obtain fully competent oocytes that will allow full-term development of the in vitro-produced embryos. Such a need makes clear the crucial role played by oocyte quality. In fact, it is easy to compromise the oocyte's developmental potential but it is impossible to restore once it has been lost. Almost three decades after the first cow, sheep, goat, horse and pig in vitro-generated offspring were born, a large body of information has accumulated on the mechanisms regulating oocyte competence and on how the latter may be preserved during all the required manipulations. The amount of knowledge is far from complete and many laboratories are actively working to further expand it. In this review we will highlight the aspects of the ongoing research in which we have been actively involved.
Collapse
Affiliation(s)
- Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Animal Sciences, Università degli Studi di Milano, via Celoria, 10-20133, Milano, Italy.
| | | |
Collapse
|
29
|
Wollert KC, Drexler H. Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nat Rev Cardiol 2010; 7:204-15. [DOI: 10.1038/nrcardio.2010.1] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Li C, Chen Z, Liu Z, Huang J, Zhang W, Zhou L, Keefe DL, Liu L. Correlation of expression and methylation of imprinted genes with pluripotency of parthenogenetic embryonic stem cells. Hum Mol Genet 2009; 18:2177-87. [PMID: 19324901 DOI: 10.1093/hmg/ddp150] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian parthenogenetic embryos (pE) are not viable due to placental deficiency, presumably resulting from lack of paternally expressed imprinted genes. Pluripotent parthenogenetic embryonic stem (pES) cells derived from pE could advance regenerative medicine by avoiding immuno-rejection and ethical roadblocks. We attempted to explore the epigenetic status of imprinted genes in the generation of pES cells from parthenogenetic blastocysts, and its relationship to pluripotency of pES cells. Pluripotency was evaluated for developmental and differentiation potential in vivo, based on contributions of pES cells to chimeras and development to day 9.5 of pES fetuses complemented by tetraploid embryos (TEC). Consistently, pE and fetuses failed to express paternally expressed imprinted genes, but pES cells expressed those genes in a pattern resembling that of fertilized embryos (fE) and fertilized embryonic stem (fES) cells derived from fE. Like fE and fES cells, but unlike pE or fetuses, pES cells and pES cell-fetuses complemented by TEC exhibited balanced methylation of Snrpn, Peg1 and U2af1-rs1. Coincidently, global methylation increased in pE but decreased in pES cells, further suggesting dramatic epigenetic reprogramming occurred during isolation and culture of pES cells. Moreover, we identified decreased methylation of Igf2r, Snrpn, and especially U2af1-rs1, in association with increased contributions of pES cells to chimeras. Our data show that in vitro culture changes epigenetic status of imprinted genes during isolation of pES cells from their progenitor embryos and that increased expression of U2af1-rs1 and Snrpn and decreased expression of Igf2r correlate with pluripotency of pES cells.
Collapse
Affiliation(s)
- Chao Li
- School of Life Science, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Parthenogenesis-derived multipotent stem cells adapted for tissue engineering applications. Methods 2008; 47:90-7. [PMID: 18799133 DOI: 10.1016/j.ymeth.2008.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 08/12/2008] [Indexed: 11/21/2022] Open
Abstract
Embryonic stem cells are envisioned as a viable source of pluripotent cells for use in regenerative medicine applications when donor tissue is not available. However, most current harvest techniques for embryonic stem cells require the destruction of embryos, which has led to significant political and ethical limitations on their usage. Parthenogenesis, the process by which an egg can develop into an embryo in the absence of sperm, may be a potential source of embryonic stem cells that may avoid some of the political and ethical concerns surrounding embryonic stem cells. Here we provide the technical aspects of embryonic stem cell isolation and expansion from the parthenogenetic activation of oocytes. These cells were characterized for their stem-cell properties. In addition, these cells were induced to differentiate to the myogenic, osteogenic, adipogenic, and endothelial lineages, and were able to form muscle-like and bony-like tissue in vivo. Furthermore, parthenogenetic stem cells were able to integrate into injured muscle tissue. Together, these results demonstrate that parthenogenetic stem cells can be successfully isolated and utilized for various tissue engineering applications.
Collapse
|
32
|
Parthenogenesis as an approach to pluripotency: advantages and limitations involved. ACTA ACUST UNITED AC 2008; 4:127-35. [PMID: 18548354 DOI: 10.1007/s12015-008-9027-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
Abstract
Embryonic stem cells (ESCs) are invaluable cells derived from the inner cell mass of the mammalian blastocyst. They have nearly indefinite self-renewal, retain their developmental potential after prolonged periods in culture and display great plasticity that allow them to differentiate into all cell types of the body. They provide exciting opportunities to develop unique models for developmental research and hold great potential for cell and tissue replacement therapy. However, these unique cells cannot be obtained without destroying an embryo and, despite the potential therapeutic usefulness, their derivation in the human raises substantial ethical as well as legal and political concerns because it unavoidably involves the destruction of viable embryos. In the recent years a number of scientific proposals that do not require the generation and subsequent destruction of human embryos have been put forward in an attempt to fill the gap between ethical questions and potential scientific and medical benefits. In this review we briefly summarize data obtained from the literature related to these different alternative approaches and focus in more details on our experience in the derivation of parthenothes, as a possible alternative source for pluripotent cells, discussing the advantages as well as the limits of these cell lines.
Collapse
|