Barkhausen T, Hildebrand F, Krettek C, van Griensven M. DHEA-dependent and organ-specific regulation of TNF-alpha mRNA expression in a murine polymicrobial sepsis and trauma model.
CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009;
13:R114. [PMID:
19594900 PMCID:
PMC2750161 DOI:
10.1186/cc7963]
[Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/18/2009] [Accepted: 07/13/2009] [Indexed: 11/12/2022]
Abstract
Introduction
Dehydroepiandrosterone (DHEA) improves survival after trauma and sepsis, while mechanisms of action are not yet fully understood. Therefore, we investigated the influence of DHEA on local cytokine expression in a two-hit model.
Methods
Male NMRI mice were subjected to femur fracture/hemorrhagic shock and subsequent sepsis. Sham-operated animals were used as controls. DHEA (25 mg/kg) or vehicle was administered daily. Mortality rate, activity and body temperature were determined daily after sepsis induction. TNF-α, IL-1β and IL-10 mRNA expression pattern were investigated in lung and liver tissue after 48 and 96 hours.
Results
DHEA treatment resulted in a significantly reduced mortality rate and improvements in the clinical status. On cytokine level, only TNF-α was significantly reduced in the cecal ligation and puncture (CLP)-vehicle group in both tissues after 48 hours. This suppression could be restored by DHEA administration. In contrast, after 96 hours, TNF-α was up-regulated in the CLP-vehicle group while remaining moderate by DHEA treatment in liver tissue.
Conclusions
The improved outcome after DHEA treatment and trauma is coherent with restoration of TNF-α in liver and lung after 48 hours and a counter-regulatory attenuation of TNF-α in liver after 96 hours. Thus, DHEA seems to act, time and organ dependent, as a potent modulator of TNF-α expression.
Collapse