1
|
Szunerits S, Melinte S, Barras A, Pagneux Q, Voronova A, Abderrahmani A, Boukherroub R. The impact of chemical engineering and technological advances on managing diabetes: present and future concepts. Chem Soc Rev 2021; 50:2102-2146. [PMID: 33325917 DOI: 10.1039/c9cs00886a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monitoring blood glucose levels for diabetic patients is critical to achieve tight glycaemic control. As none of the current antidiabetic treatments restore lost functional β-cell mass in diabetic patients, insulin injections and the use of insulin pumps are most widely used in the management of glycaemia. The use of advanced and intelligent chemical engineering, together with the incorporation of micro- and nanotechnological-based processes have lately revolutionized diabetic management. The start of this concept goes back to 1974 with the description of an electrode that repeatedly measures the level of blood glucose and triggers insulin release from an infusion pump to enter the blood stream from a small reservoir upon need. Next to the insulin pumps, other drug delivery routes, including nasal, transdermal and buccal, are currently investigated. These processes necessitate competences from chemists, engineers-alike and innovative views of pharmacologists and diabetologists. Engineered micro and nanostructures hold a unique potential when it comes to drug delivery applications required for the treatment of diabetic patients. As the technical aspects of chemistry, biology and informatics on medicine are expanding fast, time has come to step back and to evaluate the impact of technology-driven chemistry on diabetics and how the bridges from research laboratories to market products are established. In this review, the large variety of therapeutic approaches proposed in the last five years for diabetic patients are discussed in an applied context. A survey of the state of the art of closed-loop insulin delivery strategies in response to blood glucose level fluctuation is provided together with insights into the emerging key technologies for diagnosis and drug development. Chemical engineering strategies centered on preserving and regenerating functional pancreatic β-cell mass are evoked in addition as they represent a permanent solution for diabetic patients.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Anna Voronova
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| |
Collapse
|
2
|
Liimatainen S, Honnorat J, Pittock SJ, McKeon A, Manto M, Radtke JR, Hampe CS. GAD65 autoantibody characteristics in patients with co-occurring type 1 diabetes and epilepsy may help identify underlying epilepsy etiologies. Orphanet J Rare Dis 2018; 13:55. [PMID: 29636076 PMCID: PMC5892043 DOI: 10.1186/s13023-018-0787-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/16/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Autoantibodies against the smaller isoform of glutamate decarboxylase (GAD65Ab) reflect autoimmune etiologies in Type 1 diabetes (T1D) and several neurological disorders, including Stiff Person Syndrome (SPS). GAD65Ab are also reported in cases of epilepsy, indicating an autoimmune component. GAD65Ab in patients with co-occurring T1D, epilepsy or SPS may be part of either autoimmune pathogenesis. To dissect the etiologies associated with GAD65Ab, we analyzed GAD65Ab titer, epitope specificity and enzyme inhibition in GAD65Ab-positive patients diagnosed with epilepsy (n = 28), patients with epilepsy and T1D (n = 10), patients with SPS (n = 20), and patients with T1D (n = 42). RESULTS GAD65Ab epitope pattern in epilepsy differed from T1D and SPS patients. Four of 10 patients with co-occurring T1D and epilepsy showed GAD65Ab profiles similar to T1D patients, while lacking GAD65Ab characteristics found in GAD65Ab-positive epilepsy patients. One of these patients responded well to anti-epileptic drugs (AEDs), while another patient did not require medication for seizure control. The third patient was refractory due to a diagnosis of meningioma. The response of the remaining patient to AEDs was unknown. GAD65Ab in the remaining six patients with T1D and epilepsy showed profiles similar to those in epilepsy patients. CONCLUSIONS Different autoimmune responses associated with T1D, epilepsy and SPS are reflected by disease-specific GAD65Ab patterns. Moreover, the epileptic etiology in patients diagnosed with both T1D and epilepsy may present two different etiologies regarding their epileptic condition. In one group T1D co-occurs with non-autoimmune epilepsy. In the other group GAD65Ab are part of an autoimmune epileptic condition.
Collapse
Affiliation(s)
- Suvi Liimatainen
- Department of Neurology and Rehabilitation, Tampere University Hospital, Tampere, Finland
- Division 7, Tampere University Hospital, Tampere, Finland
| | - Jerome Honnorat
- University of Lyon - University Claude Bernard Lyon, Lyon, France
| | - Sean J Pittock
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine & Pathology College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrew McKeon
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine & Pathology College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mario Manto
- Unité d'Etude du Mouvement, Université Libre De Bruxelles, Brussels, Belgium
| | - Jared R Radtke
- Department of Medicine, School of Medicine, University of Washington, 850 Republican, Seattle, WA, 98109, USA
| | - Christiane S Hampe
- Department of Medicine, School of Medicine, University of Washington, 850 Republican, Seattle, WA, 98109, USA.
| |
Collapse
|
3
|
Chéramy M, Hampe CS, Ludvigsson J, Casas R. Characteristics of in-vitro phenotypes of glutamic acid decarboxylase 65 autoantibodies in high-titre individuals. Clin Exp Immunol 2013; 171:247-54. [PMID: 23379430 DOI: 10.1111/cei.12026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2012] [Indexed: 01/29/2023] Open
Abstract
Previous studies have indicated phenotypical differences in glutamic acid decarboxylase 65 autoantibodies (GADA) found in type 1 diabetes (T1D) patients, individuals at risk of developing T1D and stiff-person syndrome (SPS) patients. In a Phase II trial using aluminium-formulated GAD(65) (GAD-alum) as an immunomodulator in T1D, several patients responded with high GADA titres after treatment, raising concerns as to whether GAD-alum could induce GADA with SPS-associated phenotypes. This study aimed to analyse GADA levels, immunoglobulin (Ig)G1-4 subclass frequencies, b78- and b96·11-defined epitope distribution and GAD(65) enzyme activity in sera from four cohorts with very high GADA titres: T1D patients (n = 7), GAD-alum-treated T1D patients (n = 9), T1D high-risk individuals (n = 6) and SPS patients (n = 12). SPS patients showed significantly higher GADA levels and inhibited the in-vitro GAD(65) enzyme activity more strongly compared to the other groups. A higher binding frequency to the b78-defined epitope was found in the SPS group compared to T1D and GAD-alum individuals, whereas no differences were detected for the b96·11-defined epitope. GADA IgG1-4 subclass levels did not differ between the groups, but SPS patients had higher IgG2 and lower IgG4 distribution more frequently. In conclusion, the in-vitro GADA phenotypes from SPS patients differed from the T1D- and high-risk groups, and GAD-alum treatment did not induce SPS-associated phenotypes. However, occasional overlap between the groups exists, and caution is indicated when drawing conclusions to health or disease status.
Collapse
Affiliation(s)
- M Chéramy
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
4
|
Skoglund C, Chéramy M, Casas R, Ludvigsson J, Hampe CS. GAD autoantibody epitope pattern after GAD-alum treatment in children and adolescents with type 1 diabetes. Pediatr Diabetes 2012; 13:244-50. [PMID: 21848927 PMCID: PMC3903414 DOI: 10.1111/j.1399-5448.2011.00802.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AIMS We have previously shown that two injections of glutamic acid decarboxylase formulated in alum (GAD-alum) preserved residual insulin secretion in children and adolescents with recent onset type 1 diabetes (T1D), and was accompanied by increased GAD autoantibody (GADA) titers. The aim of this study was to investigate whether GAD-alum treatment affected the GADA epitope pattern. METHODS Serum samples from patients treated with GAD-alum (n = 33) or placebo (n = 27), at baseline, 1, 3, 9, and 15 months after the initial injection, were tested for their binding capacity to specific GADA epitopes in an epitope-specific radioligand binding assay with six recombinant Fab (rFab) (b96.11, DPA, DPD, MICA3, b78, and N-GAD(65) mAb). RESULTS No significant differences in variability of binding to any of the tested rFab were observed from baseline to 15 months. There was a sustained low binding of GADA to the b78- and N-GAD(65) mAb-defined epitopes, often recognized by GADA in patients with stiff person syndrome (SPS) and seldom in T1D patients. However, binding of GADA to the T1D-associated b96.11-defined epitope increased between baseline and 3 months in GAD-alum (-8.1%, min -72.4%, max 39.6%) compared to placebo patients (1.5%, min -28.3%, max 28.6%) (p = 0.02). Subsequently, the b96.11-defined epitope recognition returned to levels similar to that observed at baseline. CONCLUSIONS GAD-alum injections did not affect binding of GADA to SPS-related epitopes, further supporting the safety of the treatment. There were no changes in GADA epitope specificity to the T1D-related epitopes, except for a temporarily increased binding to one of the tested epitopes.
Collapse
Affiliation(s)
- Camilla Skoglund
- Division of Pediatrics & Diabetes Research Centre, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Mikael Chéramy
- Division of Pediatrics & Diabetes Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Rosaura Casas
- Division of Pediatrics & Diabetes Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics & Diabetes Research Centre, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | |
Collapse
|
5
|
Detection of autoantibodies against reactive oxygen species modified glutamic acid decarboxylase-65 in type 1 diabetes associated complications. BMC Immunol 2011; 12:19. [PMID: 21385406 PMCID: PMC3063234 DOI: 10.1186/1471-2172-12-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 03/08/2011] [Indexed: 02/02/2023] Open
Abstract
Background Autoantibodies against glutamate decarboxylase-65 (GAD65Abs) are thought to be a major immunological tool involved in pathogenic autoimmunity development in various diseases. GAD65Abs are a sensitive and specific marker for type 1 diabetes (T1D). These autoantibodies can also be found in 6-10% of patients classified with type 2 diabetes (T2D), as well as in 1-2% of the healthy population. The latter individuals are at low risk of developing T1D because the prevalence rate of GAD65Abs is only about 0.3%. It has, therefore, been suggested that the antibody binding to GAD65 in these three different GAD65Ab-positive phenotypes differ with respect to epitope specificity. The specificity of reactive oxygen species modified GAD65 (ROS-GAD65) is already well established in the T1D. However, its association in secondary complications of T1D has not yet been ascertained. Hence this study focuses on identification of autoantibodies against ROS-GAD65 (ROS-GAD65Abs) and quantitative assays in T1D associated complications. Results From the cohort of samples, serum autoantibodies from T1D retinopathic and nephropathic patients showed high recognition of ROS-GAD65 as compared to native GAD65 (N-GAD65). Uncomplicated T1D subjects also exhibited reactivity towards ROS-GAD65. However, this was found to be less as compared to the binding recorded from complicated subjects. These results were further proven by competitive ELISA estimations. The apparent association constants (AAC) indicate greater affinity of IgG from retinopathic T1D patients (1.90 × 10-6 M) followed by nephropathic (1.81 × 10-6 M) and uncomplicated (3.11 × 10-7 M) T1D patients for ROS-GAD65 compared to N-GAD65. Conclusion Increased oxidative stress and blood glucose levels with extended duration of disease in complicated T1D could be responsible for the gradual formation and/or exposing cryptic epitopes on GAD65 that induce increased production of ROS-GAD65Abs. Hence regulation of ROS-GAD65Abs could offer novel tools for analysing and possibly treating T1D complications.
Collapse
|
6
|
Hansson I, Lynch KF, Hallmans G, Lernmark Å, Rolandsson O. High-titer GAD65 autoantibodies detected in adult diabetes patients using a high efficiency expression vector and cold GAD65 displacement. Autoimmunity 2010; 44:129-36. [PMID: 20670115 DOI: 10.3109/08916934.2010.482117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adult type 2 diabetes patients with GAD65 autoantibodies (GADA) are known as latent autoimmune diabetes in adults (LADA). It has been suggested that GADA in LADA patients preferentially bind to the N-terminal end of GAD65. Using the N-terminal end extension of ³⁵S-GAD65 generated by the pEx9 plasmid, we tested the hypothesis that GADA in LADA patients preferentially react with ³⁵S-GAD65 from the pEx9 plasmid compared to the normal length pThGAD65 plasmid. Healthy control subjects (n = 250) were compared with type 1 (n = 23), type 2 (n = 290), and unspecified (n = 57) diabetes patients. In addition, radio-binding assays for GADA with ³⁵S-GAD65 generated from both the pEx9 and pThGAD65 plasmids were used in displacement assays with an excess of recombinant human GAD65 (2 μg/mL) to correct for non-specific binding. ³⁵S-GAD65 produced by either pEx9 or pThGAD65 did not differ in binding among the healthy controls and among the type 1 diabetes patients. Among the type 2 and unspecified patients, there were 4/290 and 3/57 patients, respectively, with binding to the pEx9 but not to the pThGAD65 generated ³⁵S-GAD65. In the displacement assay, we discovered 14 patients with very high-titer GADA among the type 1 (n = 3, 12,272-29,915 U/mL), type 2 (n = 7; 12,398-334,288 U/mL), and unspecified (n = 4; 20,773-4,053,580 U/mL) patients. All samples were fully displaced following appropriate dilution. We conclude that pThGAD65 is preferred for the coupled in vitro transcription translation of ³⁵S-GAD65 and that displacement with recombinant GAD65 may detect very high-titer GADA with possible clinical relevance.
Collapse
Affiliation(s)
- Ida Hansson
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital SUS, Malmö, Sweden.
| | | | | | | | | |
Collapse
|
7
|
Outschoorn IM, Hoffman WH, Rose NR, Burek CL. Heritability of levels of autoantibodies to thyroid antigens using the method of plotting regression of offspring on midparent (ROMP). Autoimmunity 2009; 40:366-71. [PMID: 17612898 DOI: 10.1080/08916930701394219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Only a few methods can be applied in a simple manner to estimate the genetic control of autoimmunity in humans. Here we examined the heritability of autoantibodies to two thyroid antigens; thyroglobulin (Tg) and thyroperoxidase (TPO, formerly known as thyroid microsomal antigen), using methods of regression of offspring on mid-parental values (ROMP). With the data sets available, affected and unaffected siblings were compared by this rapid screening method using results determined by hemagglutination (HA). The presence of both types of autoantibodies showed positive heritability in patients with Graves' thyrotoxicosis (TT), but it was not observed in chronic lymphocytic or Hashimoto's thyroiditis (CLT) patients. Since these assays have been extensively used over the years by most diagnostic and research laboratories, they should provide some insight as to which quantifiable parameters may be usefully accumulated to help select groups of patients and their families for further genetic study. ROMP may also be useful to determine the sequential appearance of different types of antibody in predicting disease onset in other family members, and in distinguishing maternal and paternal effects on imprinting. The method may be extended to study epitope spreading and other measures of disease progression.
Collapse
Affiliation(s)
- Ingrid M Outschoorn
- Unidad de Respuesta Inmune, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | |
Collapse
|
8
|
The lack of anti-idiotypic antibodies, not the presence of the corresponding autoantibodies to glutamate decarboxylase, defines type 1 diabetes. Proc Natl Acad Sci U S A 2008; 105:5471-6. [PMID: 18367670 DOI: 10.1073/pnas.0800578105] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autoantibodies to glutamate decarboxylase 65 (GAD65Ab) are commonly believed to be a major characteristic for type 1 diabetes (T1D). We investigated the presence of GAD65Ab in healthy individuals (n = 238) and first-degree relatives (FDRs) of T1D patients (n = 27) who tested negative for GAD65Ab in conventional RIAs. Sera were applied to affinity columns coated with GAD65-specific mAbs to absorb anti-idiotypic antibodies (anti-Ids). The absorbed sera were analyzed for binding to GAD65 by RIAs. Both healthy individuals and FDRs present GAD65Ab that are inhibited by anti-Id, masking them in conventional detection methods. The presence of GAD65Ab-specific anti-Ids was confirmed by competitive ELISA. Remarkably, T1D patients (n = 54) and Stiff Person Syndrome patients (n = 8) show a specific lack of anti-Ids to disease-associated GAD65Ab epitopes. Purified anti-Ids from healthy individuals and FDRs inhibited the binding of GAD65Ab from T1D patients to GAD65. We conclude that masked GAD65Ab are present in the healthy population and that a lack of particular anti-Ids, rather than GAD65Ab per se, is a characteristic of T1D. The lack of these inhibitory antibodies may contribute to T cell activation by GAD65Ab.
Collapse
|
9
|
Hall TR, Bogdani M, Leboeuf RC, Kirk EA, Maziarz M, Banga JP, Oak S, Pennington CA, Hampe CS. Modulation of diabetes in NOD mice by GAD65-specific monoclonal antibodies is epitope specific and accompanied by anti-idiotypic antibodies. Immunology 2007; 123:547-54. [PMID: 18005036 DOI: 10.1111/j.1365-2567.2007.02724.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Type 1 diabetes is caused by the autoimmune destruction of pancreatic beta cells. Here we show that administration of a human monoclonal antibody (b96.11) specific to the 65-kDa isoform of glutamate decarboxylase (GAD65) to prediabetic non-obese diabetic (NOD) mice significantly delays the onset of autoimmune diabetes. We found this effect to be epitope-specific, as only b96.11 showed this therapeutic property, while a GAD65-specific human monoclonal control antibody (b78) derived from the same patient, but specific to a different determinant of GAD65, had no significant effect on the progression of disease. Administration of b96.11 or b78 to NOD mice was accompanied by the generation of anti-idiotypic antibodies. Importantly, the induced anti-idiotypic antibodies were specific for the immunizing antibody and blocked the binding of GAD65 by the respective antibody. These findings suggest a potential role for the internal image of the GAD65 determinant recognized by b96.11 in the anti-idiotypic antibody, supporting an immunomodulatory role for GAD65-specific autoantibodies, as originally postulated by Jerne.
Collapse
Affiliation(s)
- Tyler R Hall
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hampe CS, Hall TR, Agren A, Rolandsson O. Longitudinal changes in epitope recognition of autoantibodies against glutamate decarboxylase 65 (GAD65Ab) in prediabetic adults developing diabetes. Clin Exp Immunol 2007; 148:72-8. [PMID: 17286757 PMCID: PMC1868852 DOI: 10.1111/j.1365-2249.2007.03334.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We analysed the beta cell-specific autoimmunity reflected in autoantibodies to the smaller isoform of glutamate decarboxylase (GAD65Ab) in the prediabetic period of GAD65Ab-positive healthy adults who developed Type 2 diabetes (T2D) during a follow-up period of 10 years. We found that of the adults that tested GAD65Ab-positive at baseline (n=25), six developed T2D and one developed Type 1 diabetes (T1D). Of the subjects that tested GAD65Ab-negative at baseline (n=2209), 81 developed T2D, one developed T1D and four developed unclassified diabetes, indicating that the risk for GAD65Ab-positive healthy adults to develop diabetes is increased sixfold. The GAD65Ab epitopes were characterized in a competition radioligand binding assay using recombinant Fab derived of GAD65-specific monoclonal antibodies. We observed that the GAD65Ab epitope specificities in the prediabetic period changed dynamically. Specifically, the binding to a middle and a C-terminal epitope increased during the follow-up period (P=0 x 03), causing a significant increase in the number of epitopes recognized (P=0 x 03). These findings are similar to previous observations of dynamic changes in the prediabetic period of schoolchildren at high risk for T1D development. However, the character of the epitopes differs between the two populations, suggesting differences in the beta cell-specific autoimmune response in the prediabetic period of patients with latent autoimmune diabetes in adults (LADA) and T1D.
Collapse
Affiliation(s)
- C S Hampe
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
11
|
Bekris LM, Jensen RA, Lagerquist E, Hall TR, Agardh CD, Cilio CM, Lethagen AL, Lernmark A, Robertson JA, Hampe CS. GAD65 autoantibody epitopes in adult patients with latent autoimmune diabetes following GAD65 vaccination. Diabet Med 2007; 24:521-6. [PMID: 17367313 DOI: 10.1111/j.1464-5491.2007.02091.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Subcutaneous injection of recombinant human GAD65 (rhGAD65) in patients with latent autoimmune diabetes in adults (LADA) correlates with an increase in C-peptide levels. In this study we analysed the effect of rhGAD65 administration on the GAD65-specific autoimmune response. METHODS Longitudinal serum samples obtained from LADA patients (n = 47) who received 4, 20, 100 or 500 microg alum-formulated rhGAD65 or placebo by subcutaneous injection twice (4 weeks apart) were analysed for their epitope recognition using GAD65-specific recombinant Fab and GAD65/67 fusion proteins. RESULTS Overall, minor changes in the epitope pattern were observed using either approach. Only in the 500-microg dosage group was an increase in GAD65Ab level associated with a significant increase in the binding to a conformational epitope located at the middle part of GAD65. CONCLUSIONS Our data suggest that the apparent beneficial effects of 20 microg alum-formulated recombinant human GAD65 is not explained by changes in the GAD65Ab epitope pattern.
Collapse
Affiliation(s)
- L M Bekris
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hall TR, Thomas JW, Padoa CJ, Torn C, Landin-Olsson M, Ortqvist E, Hampe CS. Longitudinal epitope analysis of insulin-binding antibodies in type 1 diabetes. Clin Exp Immunol 2006; 146:9-14. [PMID: 16968392 PMCID: PMC1809737 DOI: 10.1111/j.1365-2249.2006.03178.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autoantibodies to insulin (IAA) are one of the first markers of the autoimmune process leading to type 1 diabetes (T1D). While other autoantibodies in T1D have been studied extensively, relatively little is known about IAA and their binding specificities, especially after insulin treatment is initiated. We hypothesize that insulin antibodies (IA) that develop upon initiation of insulin treatment differ in their epitope specificities from IAA. We analysed insulin antibody binding specificities in longitudinal samples of T1D patients (n = 49). Samples were taken at clinical diagnosis of disease and after insulin treatment was initiated. The epitope specificities were analysed using recombinant Fab (rFab) derived from insulin-specific monoclonal antibodies AE9D6 and CG7C7. Binding of radiolabelled insulin by samples taken at onset of the disease was significantly reduced in the presence of rFab CG7C7 and AE9D6. rFab AE9D6 competed sera binding to insulin significantly better than rFab CG7C7 (P = 0.02). Binding to the AE9D6-defined epitope in the initial sample was correlated inversely with age at onset (P = 0.005). The binding to the AE9D6-defined epitope increased significantly (P < 0.0001) after 3 months of insulin treatment. Binding to the CG7C7-defined epitope did not change during the analysed period of 12 months. We conclude that epitopes recognized by insulin binding antibodies can be identified using monoclonal insulin-specific rFab as competitors. Using this approach we observed that insulin treatment is accompanied by a change in epitope specificities in the emerging IA.
Collapse
Affiliation(s)
- T R Hall
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Islet cell autoantibodies are strongly associated with the development of type 1 diabetes. The appearance of autoantibodies to one or several of the autoantigens-GAD65, IA-2, or insulin-signals an autoimmune pathogenesis of beta-cell killing. A beta-cell attack may be best reflected by the emergence of autoantibodies dependent on the genotype risk factors, isotype, and subtype of the autoantibodies as well as their epitope specificity. It is speculated that progression to beta-cell loss and clinical onset of type 1 diabetes is reflected in a developing pattern of epitope-specific autoantibodies. Although the appearance of autoantibodies does not follow a distinct pattern, the presence of multiple autoantibodies has the highest positive predictive value for type 1 diabetes. In the absence of reliable T-cell tests, dissection of autoantibody responses in subjects of genetic risk should prove useful in identifying triggers of islet autoimmunity by examining seroconversion and maturation of the autoantibody response that may mark time to onset of type 1 diabetes. The complexity of the disease process is exemplified by multiple clinical phenotypes, including autoimmune diabetes masquerading as type 2 diabetes in youth and adults. Autoantibodies may also provide prognostic information in clinically heterogeneous patient populations when examined longitudinally.
Collapse
Affiliation(s)
- Catherine Pihoker
- Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|