1
|
Wang J, Liu Z, Cao D, Liu J, Li F, Han H, Han H, Lei Q, Liu W, Li D, Wang J, Zhou Y. Elucidation of the genetic determination of clutch traits in Chinese local chickens of the Laiwu Black breed. BMC Genomics 2023; 24:686. [PMID: 37968610 PMCID: PMC10652520 DOI: 10.1186/s12864-023-09798-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Egg laying rate (LR) is associated with a clutch, which is defined as consecutive days of oviposition. The clutch trait can be used as a selection indicator to improve egg production in poultry breeding. However, little is known about the genetic basis of clutch traits. In this study, our aim was to estimate genetic parameters and identify quantitative trait single nucleotide polymorphisms for clutch traits in 399 purebred Laiwu Black chickens (a native Chinese breed) using a genome-wide association study (GWAS). METHODS In this work, after estimating the genetic parameters of age at first egg, body weight at first egg, LR, longest clutch until 52 week of age, first week when the longest clutch starts, last week when the longest clutch ends, number of clutches, and longest number of days without egg-laying until 52 week of age, we identified single nucleotide polymorphisms (SNPs) and potential candidate genes associated with clutch traits in Laiwu Black chickens. The restricted maximum likelihood method was used to estimate genetic parameters of clutch pattern in 399 Laiwu Black hens, using the GCTA software. RESULTS The results showed that SNP-based heritability estimates of clutch traits ranged from 0.06 to 0.59. Genotyping data were obtained from whole genome re-sequencing data. After quality control, a total of 10,810,544 SNPs remained to be analyzed. The GWAS revealed that 421 significant SNPs responsible for clutch traits were scattered on chicken chromosomes 1-14, 17-19, 21-25, 28 and Z. Among the annotated genes, NELL2, SMYD9, SPTLC2, SMYD3 and PLCL1 were the most promising candidates for clutch traits in Laiwu Black chickens. CONCLUSION The findings of this research provide critical insight into the genetic basis of clutch traits. These results contribute to the identification of candidate genes and variants. Genes and SNPs potentially provide new avenues for further research and would help to establish a framework for new methods of genomic prediction, and increase the accuracy of estimated genetic merit for egg production and clutch traits.
Collapse
Affiliation(s)
- Jie Wang
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Zhansheng Liu
- Shandong Animal Husbandry General Station, Jinan, 250023, China
| | - Dingguo Cao
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Jie Liu
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Fuwei Li
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Heguo Han
- Lijin County Center for Animal Disease Control, Lijin, 257400, China
| | - Haixia Han
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Qiuxia Lei
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Wei Liu
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Dapeng Li
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Jianxia Wang
- Administrative Examination and Approval Service Bureau of Lijin County, Lijin, 257400, China
| | - Yan Zhou
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China.
| |
Collapse
|
2
|
A Novel Splice-Site Deletion in the POU1F1 Gene Causes Combined Pituitary Hormone Deficiency in Multiple Sudanese Pedigrees. Genes (Basel) 2022; 13:genes13040657. [PMID: 35456463 PMCID: PMC9032872 DOI: 10.3390/genes13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Pathogenic variants within the gene encoding the pituitary-specific transcription factor, POU class 1 homeobox 1 (POU1F1), are associated with combined pituitary hormone deficiency (CPHD), including growth hormone, prolactin, and thyrotropin stimulating hormone deficiencies. The aim of the study was to identify genetic aetiology in 10 subjects with CPHD from four consanguineous Sudanese families. Medical history, as well as hormonal and radiological information, was obtained from participants’ medical records. Targeted genetic analysis of the POU1F1 gene was performed in two pedigrees with a typical combination of pituitary deficiencies, using Sanger sequencing, and whole-exome sequencing was performed in the other two pedigrees, where hypocortisolism and additional neurologic phenotypes were also initially diagnosed. In POU1F1 gene (NM_001122757.2) a novel homozygous splice-site deletion—namely, c.744-5_749del—was identified in all 10 tested affected family members as a cause of CPHD. Apart from typical pituitary hormonal deficiencies, most patients had delayed but spontaneous puberty; however, one female had precocious puberty. Severe post-meningitis neurologic impairment was observed in three patients, of whom two siblings had Dyke–Davidoff–Masson syndrome, and an additional distantly related patient suffered from cerebral infarction. Our report adds to the previously reported POU1F1 gene variants causing CPHD and emphasises the importance of genetic testing in countries with high rates of consanguineous marriage such as Sudan. Genetic diagnostics elucidated that the aetiologies of hypopituitarism and brain abnormalities, identified in a subset of affected members, were separate. Additionally, as central hypocortisolism is not characteristic of POU1F1 deficiency, hydrocortisone replacement therapy could be discontinued. Elucidation of a genetic cause, therefore, contributed to the more rational clinical management of hypopituitarism in affected family members.
Collapse
|
3
|
Chen WY, Niu DM, Chen LZ, Yang CF. Congenital hypopituitarism due to novel compound heterozygous POU1F1 gene mutation: A case report and review of the literature. Mol Genet Metab Rep 2021; 29:100819. [PMID: 34815942 PMCID: PMC8593650 DOI: 10.1016/j.ymgmr.2021.100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 01/15/2023] Open
Abstract
Failure to thrive is one of the most common complaints in the endocrinology and genetics clinic. An 8-month-old girl with presentation of motor developmental delay, failure to thrive, and midline facial defects, with history of hypoglycemia at birth and central congenital hypothyroidism (CCH), was brought to our genetic clinic. Hormone test demonstrated combined pituitary hormone deficiency with growth hormone deficiency (GHD), central hypothyroidism, and hypoprolactinemia. Brain magnetic resonance imaging (MRI) showed anterior pituitary hypoplasia (APH), abnormal pituitary stalk, and preserved posterior pituitary lobe. Whole exome sequence (WES) identified a compound heterozygous mutation of the POU1F1 gene: c.649C>T (p.Arg217Ter) and c.662T>C (p.Ile221Thr), which are de novo mutation and inherited from mother, respectively. The patient's phenotype was consistent clinically with congenital hypopituitarism due to the POU1F1 gene mutation. Based on our literature review, this is the first report of the c.662T>C mutation, to the best of our knowledge. Our study demonstrates the power of WES for early diagnosis of congenital hypopituitarism with its relative phenotype for improving prognosis and preventing irreversible deficit.
Collapse
Affiliation(s)
- Wei-Yu Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Dau-Ming Niu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Zhen Chen
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Feng Yang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Firouzi M, Sherkatolabbasieh H, Shafizadeh S. Genetic Anomalies of Growth Hormone Deficiency in Pediatrics. Endocr Metab Immune Disord Drug Targets 2020; 21:288-297. [PMID: 32621723 DOI: 10.2174/1871530320666200704144912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/27/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022]
Abstract
Several different proteins regulate, directly or indirectly, the production of growth hormones from the pituitary gland, thereby complex genetics is involved. Defects in these genes are related to the deficiency of growth hormones solely, or deficiency of other hormones, secreted from the pituitary gland including growth hormones. These studies can aid clinicians to trace the pattern of the disease between the families, start early treatment and predict possible future consequences. This paper highlights some of the most common and novel genetic anomalies concerning growth hormones, which are responsible for various genetic defects in isolated growth and combined pituitary hormone deficiency disease.
Collapse
Affiliation(s)
- Majid Firouzi
- Department of Pediatrics, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Shiva Shafizadeh
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
5
|
Chen J, Zhang XX, Wu XC, Li J. [Clinical and genetic characteristics of a young child with combined pituitary hormone deficiency type I caused by POU1F1 gene variation]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:685-689. [PMID: 31315769 PMCID: PMC7389113 DOI: 10.7499/j.issn.1008-8830.2019.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/30/2019] [Indexed: 06/10/2023]
Abstract
This paper reports the clinical and genetic characteristics of a case of combined pituitary hormone deficiency type I (CPHD1) caused by POU domain, class 1, transcription factor 1 (POU1F1) gene variation. A 2 years and 3 months old girl mainly presented with short stature, special facial features of prominent forehead, enophthalmos, and short mandible, loose skin, central hypothyroidism, complete growth hormone deficiency, and anterior pituitary hypoplasia. Gene analysis identified a novel heterozygous mutation, c.889C>T (p.R297W), in POU1F1 gene, and this locus of her parents was wild-type. This mutation was analyzed as a possible pathogenic variant according to the guidelines of the American College of Medical Genetics and Genomics, which has not been previously reported in the literature and conforms to the autosomal dominant inheritance. This child was diagnosed with CPHD1. Her height increased by 19.8 cm and showed a catch-up growth trend after one year of combined treatment with growth hormone and euthyrox. This study enriches the mutation spectrum of POU1F1 gene and has important significance for the diagnosis and classification of combined pituitary hormone deficiency.
Collapse
Affiliation(s)
- Jie Chen
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | | | | | | |
Collapse
|
6
|
Gergics P. Pituitary Transcription Factor Mutations Leading to Hypopituitarism. EXPERIENTIA SUPPLEMENTUM (2012) 2019; 111:263-298. [PMID: 31588536 DOI: 10.1007/978-3-030-25905-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Congenital pituitary hormone deficiency is a disabling condition. It is part of a spectrum of disorders including craniofacial midline developmental defects ranging from holoprosencephaly through septo-optic dysplasia to combined and isolated pituitary hormone deficiency. The first genes discovered in the human disease were based on mouse models of dwarfism due to mutations in transcription factor genes. High-throughput DNA sequencing technologies enabled clinicians and researchers to find novel genetic causes of hypopituitarism for the more than three quarters of patients without a known genetic diagnosis to date. Transcription factor (TF) genes are at the forefront of the functional analysis of novel variants of unknown significance due to the relative ease in in vitro testing in a research lab. Genetic testing in hypopituitarism is of high importance to the individual and their family to predict phenotype composition, disease progression and to avoid life-threatening complications such as secondary adrenal insufficiency.This chapter aims to highlight our current understanding about (1) the contribution of TF genes to pituitary development (2) the diversity of inheritance and phenotype features in combined and select isolated pituitary hormone deficiency and (3) provide an initial assessment on how to approach variants of unknown significance in human hypopituitarism. Our better understanding on how transcription factor gene variants lead to hypopituitarism is a meaningful step to plan advanced therapies to specific genetic changes in the future.
Collapse
Affiliation(s)
- Peter Gergics
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Pérez Millán MI, Vishnopolska SA, Daly AZ, Bustamante JP, Seilicovich A, Bergadá I, Braslavsky D, Keselman AC, Lemons RM, Mortensen AH, Marti MA, Camper SA, Kitzman JO. Next generation sequencing panel based on single molecule molecular inversion probes for detecting genetic variants in children with hypopituitarism. Mol Genet Genomic Med 2018; 6:514-525. [PMID: 29739035 PMCID: PMC6081231 DOI: 10.1002/mgg3.395] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Congenital Hypopituitarism is caused by genetic and environmental factors. Over 30 genes have been implicated in isolated and/or combined pituitary hormone deficiency. The etiology remains unknown for up to 80% of the patients, but most cases have been analyzed by limited candidate gene screening. Mutations in the PROP1 gene are the most common known cause, and the frequency of mutations in this gene varies greatly by ethnicity. We designed a custom array to assess the frequency of mutations in known hypopituitarism genes and new candidates, using single molecule molecular inversion probes sequencing (smMIPS). METHODS We used this panel for the first systematic screening for causes of hypopituitarism in children. Molecular inversion probes were designed to capture 693 coding exons of 30 known genes and 37 candidate genes. We captured genomic DNA from 51 pediatric patients with CPHD (n = 43) or isolated GH deficiency (IGHD) (n = 8) and their parents and conducted next generation sequencing. RESULTS We obtained deep coverage over targeted regions and demonstrated accurate variant detection by comparison to whole-genome sequencing in a control individual. We found a dominant mutation GH1, p.R209H, in a three-generation pedigree with IGHD. CONCLUSIONS smMIPS is an efficient and inexpensive method to detect mutations in patients with hypopituitarism, drastically limiting the need for screening individual genes by Sanger sequencing.
Collapse
Affiliation(s)
- María I. Pérez Millán
- Institute of Biomedical Investigations (INBIOMED‐UBA‐CONICET)University of Buenos AiresBuenos AiresArgentina
| | - Sebastian A. Vishnopolska
- Department of Biological Chemistry (IQUIBICEN‐UBA‐CONICET)Faculty of Exact and Natural SciencesUniversity of Buenos AiresBuenos AiresArgentina
| | | | - Juan P. Bustamante
- Department of Biological Chemistry (IQUIBICEN‐UBA‐CONICET)Faculty of Exact and Natural SciencesUniversity of Buenos AiresBuenos AiresArgentina
| | - Adriana Seilicovich
- Institute of Biomedical Investigations (INBIOMED‐UBA‐CONICET)University of Buenos AiresBuenos AiresArgentina
| | - Ignacio Bergadá
- División de EndocrinologíaHospital de Niños Ricardo GutiérrezCentro de Investigaciones Endocrinológicas ‘Dr César Bergadá’ (CEDIE) CONICET – FEIBuenos AiresArgentina
| | - Débora Braslavsky
- División de EndocrinologíaHospital de Niños Ricardo GutiérrezCentro de Investigaciones Endocrinológicas ‘Dr César Bergadá’ (CEDIE) CONICET – FEIBuenos AiresArgentina
| | - Ana C. Keselman
- División de EndocrinologíaHospital de Niños Ricardo GutiérrezCentro de Investigaciones Endocrinológicas ‘Dr César Bergadá’ (CEDIE) CONICET – FEIBuenos AiresArgentina
| | | | | | - Marcelo A. Marti
- Department of Biological Chemistry (IQUIBICEN‐UBA‐CONICET)Faculty of Exact and Natural SciencesUniversity of Buenos AiresBuenos AiresArgentina
| | - Sally A. Camper
- Department of Human GeneticsUniversity of MichiganAnn ArborMIUSA
| | - Jacob O. Kitzman
- Department of Human GeneticsUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
8
|
Cheung LYM, Okano H, Camper SA. Sox21 deletion in mice causes postnatal growth deficiency without physiological disruption of hypothalamic-pituitary endocrine axes. Mol Cell Endocrinol 2017; 439:213-223. [PMID: 27616671 PMCID: PMC5123967 DOI: 10.1016/j.mce.2016.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/23/2022]
Abstract
The hypothalamic-pituitary axes are the coordinating centers for multiple endocrine gland functions and physiological processes. Defects in the hypothalamus or pituitary gland can cause reduced growth and severe short stature, affecting approximately 1 in 4000 children, and a large percentage of cases of pituitary hormone deficiencies do not have an identified genetic cause. SOX21 is a protein that regulates hair, neural, and trophoblast stem cell differentiation. Mice lacking Sox21 have reduced growth, but the etiology of this growth defect has not been described. We studied the expression of Sox21 in hypothalamic-pituitary development and examined multiple endocrine axes in these mice. We find no evidence of reduced intrauterine growth, food intake, or physical activity, but there is evidence for increased energy expenditure in mutants. In addition, despite changes in pituitary hormone expression, hypothalamic-pituitary axes appear to be functional. Therefore, SOX21 variants may be a cause of non-endocrine short stature in humans.
Collapse
Affiliation(s)
- Leonard Y M Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Shamseldin HE, Maddirevula S, Nabil A, Al-Fadhil S, Al Tala S, Alkuraya FS. Joint laxity in homozygotes for severePOU1F1mutations. Am J Med Genet A 2016; 170:3356-3358. [DOI: 10.1002/ajmg.a.37941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/08/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Hanan E. Shamseldin
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - Amira Nabil
- Department of Human Genetics; Medical Research Institute; Alexandria University; Alexandria Egypt
| | - Saeed Al-Fadhil
- Department of Pediatrics; Armed Forces Hospitals Southern Region; Khamis Mushayt Saudi Arabia
| | - Saeed Al Tala
- Department of Pediatrics; Armed Forces Hospitals Southern Region; Khamis Mushayt Saudi Arabia
| | - Fowzan S. Alkuraya
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
- Department of Anatomy and Cell Biology; College of Medicine; Alfaisal University; Riyadh Saudi Arabia
| |
Collapse
|
10
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
11
|
Sobrier ML, Tsai YC, Pérez C, Leheup B, Bouceba T, Duquesnoy P, Copin B, Sizova D, Penzo A, Stanger BZ, Cooke NE, Liebhaber SA, Amselem S. Functional characterization of a human POU1F1 mutation associated with isolated growth hormone deficiency: a novel etiology for IGHD. Hum Mol Genet 2015; 25:472-83. [PMID: 26612202 DOI: 10.1093/hmg/ddv486] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/19/2015] [Indexed: 12/11/2022] Open
Abstract
POU1F1, a pituitary-specific POU-homeo domain transcription factor, plays an essential role in the specification of the somatotroph, lactotroph and thyrotroph lineages and in the activation of GH1, PRL and TSHβ transcription. Individuals with mutations in POU1F1 present with combined deficiency of GH, PRL and TSH. Here, we identified a heterozygous missense mutation with evidence of pathogenicity, at the POU1F1 locus, in a large family in which an isolated growth hormone deficiency segregates as an autosomal dominant trait. The corresponding p.Pro76Leu mutation maps to a conserved site within the POU1F1 transactivation domain. Bandshift assays revealed that the mutation alters wild-type POU1F1 binding to cognate sites within the hGH-LCR and hGH1 promoter, but not to sites within the PRL promoter, and it selectively increases binding affinity to sites within the hGH-LCR. Co-immunoprecipitation studies reveal that this substitution enhances interactions of POU1F1 with three of its cofactors, PITX1, LHX3a and ELK1, and that residue 76 plays a critical role in these interactions. The insertion of the mutation at the mouse Pou1f1 locus results in a dramatic loss of protein expression despite normal mRNA concentrations. Mice heterozygous for the p.Pro76Leu mutation were phenotypically normal while homozygotes demonstrated a dwarf phenotype. Overall, this study unveils the involvement of POU1F1 in dominantly inherited isolated GH deficiency and demonstrates a significant impact of the Pro76Leu mutation on DNA-binding activities, alterations in transactivating functions and interactions with cofactors. Our data further highlight difficulties in modeling human genetic disorders in the mouse despite apparent conservation of gene expression pathways and physiologic functions.
Collapse
Affiliation(s)
- Marie-Laure Sobrier
- Inserm UMRS933, Hôpital Trousseau, Sorbonne Universités, UPMC Univ Paris, 26 Avenue du Dr Netter, Paris 75012, France,
| | | | - Christelle Pérez
- Inserm UMRS933, Hôpital Trousseau, Sorbonne Universités, UPMC Univ Paris, 26 Avenue du Dr Netter, Paris 75012, France
| | - Bruno Leheup
- Service de Génétique Clinique Pédiatrique, Hôpital d'enfants, CHU Nancy, Vandoeuvre-Lès-Nancy, France
| | - Tahar Bouceba
- Institut de Biologie Paris-Seine, Plateforme d'Intéractions Moléculaires Fr 3631, UPMC, Paris, France and
| | - Philippe Duquesnoy
- Inserm UMRS933, Hôpital Trousseau, Sorbonne Universités, UPMC Univ Paris, 26 Avenue du Dr Netter, Paris 75012, France
| | - Bruno Copin
- Service de Génétique et d'Embryologie Médicales, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | | | - Alfredo Penzo
- Gastroenterology Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ben Z Stanger
- Gastroenterology Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | | | | | - Serge Amselem
- Inserm UMRS933, Hôpital Trousseau, Sorbonne Universités, UPMC Univ Paris, 26 Avenue du Dr Netter, Paris 75012, France, Service de Génétique et d'Embryologie Médicales, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| |
Collapse
|
12
|
Wang W, Xu Z, Fu L, Liu W, Li X. Pathogenesis analysis of pituitary adenoma based on gene expression profiling. Oncol Lett 2014; 8:2423-2430. [PMID: 25360166 PMCID: PMC4214395 DOI: 10.3892/ol.2014.2613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/08/2014] [Indexed: 12/21/2022] Open
Abstract
The aim of the current study was to investigate the pathogenesis of pituitary adenoma through screening of the differentially-expressed genes (DEGs) and proteins in normal pituitary and pituitary adenoma tissues, and analyzing the interactions among them. Following the acquisition of gene expression profiling data from a public functional genomics data repository, Gene Expression Omnibus, DEGs were screened in normal pituitary and pituitary adenoma tissues. Upregulated and downregulated DEGs were further identified through gene ontology functional enrichment analysis. Subsequently, the DEGs were mapped to the Search Tool for the Retrieval of Interacting Genes database, and the protein-protein interaction (PPI) networks of the upregulated and downregulated DEGs were constructed. Finally, the functional modules of the PPI network of the downregulated DEGs were analyzed. In total, 211 upregulated and 413 downregulated DEGs were screened between the normal pituitary and pituitary adenoma samples. Downregulated DEGs were associated with certain functions, including the immune response, hormone regulation and cell proliferation. Upregulated genes were associated with cation transport functions. Five modules were acquired from the PPI network of the downregulated DEGs. Transcription factors, including signal transducer and activator of transcription 3 (STAT3), interleukin 6 (IL-6), B-cell lymphoma 6 protein, early growth response 1, POU1F1, jun B proto-oncogene and FOS were the core nodes in the functional modules. In summary, the DEGs and proteins were identified through screening gene expression profiling and PPI networks. The results of the present study indicated that low expression levels of hormone- and immune-related genes facilitated the occurrence of pituitary adenoma. Low expression levels of IL-6 and STAT3 were significant in the dysimmunity of pituitary adenoma. Furthermore, the low expression level of POU1F1 contributed to the reduction in pituitary hormone secretion.
Collapse
Affiliation(s)
- Weimin Wang
- School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China ; Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Zhiming Xu
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Li Fu
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Wei Liu
- Department of Neurosurgery, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Xingang Li
- School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China ; Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
13
|
Izumi Y, Suzuki E, Kanzaki S, Yatsuga S, Kinjo S, Igarashi M, Maruyama T, Sano S, Horikawa R, Sato N, Nakabayashi K, Hata K, Umezawa A, Ogata T, Yoshimura Y, Fukami M. Genome-wide copy number analysis and systematic mutation screening in 58 patients with hypogonadotropic hypogonadism. Fertil Steril 2014; 102:1130-1136.e3. [DOI: 10.1016/j.fertnstert.2014.06.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 06/11/2014] [Indexed: 11/15/2022]
|
14
|
de Moraes DC, Vaisman M, Conceição FL, Ortiga-Carvalho TM. Pituitary development: a complex, temporal regulated process dependent on specific transcriptional factors. J Endocrinol 2012; 215:239-45. [PMID: 22872762 DOI: 10.1530/joe-12-0229] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pituitary organogenesis is a highly complex and tightly regulated process that depends on several transcription factors (TFs), such as PROP1, PIT1 (POU1F1), HESX1, LHX3 and LHX4. Normal pituitary development requires the temporally and spatially organised expression of TFs and interactions between different TFs, DNA and TF co-activators. Mutations in these genes result in different combinations of hypopituitarism that can be associated with structural alterations of the central nervous system, causing the congenital form of panhypopituitarism. This review aims to elucidate the complex process of pituitary organogenesis, to clarify the role of the major TFs, and to compile the lessons learned from functional studies of TF mutations in panhypopituitarism patients and TF deletions or mutations in transgenic animals.
Collapse
Affiliation(s)
- Débora Cristina de Moraes
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Rio de Janeiro, Brasil.
| | | | | | | |
Collapse
|