1
|
Das L, Dutta P. Association of primary hyperparathyroidism with pituitary adenoma and management issues. Best Pract Res Clin Endocrinol Metab 2025; 39:101978. [PMID: 39915142 DOI: 10.1016/j.beem.2025.101978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The co-occurrence of primary hyperparathyroidism (PHPT) and pituitary adenomas (PAs) is often indicative of underlying genetic syndromes such as Multiple Endocrine Neoplasia type 1 (MEN1) and, less commonly, MEN4. Although both conditions can occur sporadically, their simultaneous presence warrants evaluation for genetic mutations, with MEN1 mutations being the most frequent cause. The management of concurrent PHPT and PAs, especially in MEN1 patients, presents unique challenges. Management complexities arise from the syndromic nature, involving both surgical and medical interventions tailored to each condition. PHPT often manifests earlier and more aggressively in MEN1, requiring surgical intervention. However, recurrence rates remain high due to multiglandular involvement. Pituitary adenomas in MEN1 are primarily prolactinomas, and treatment with dopamine agonists results in significant tumour control in most cases. Overall, PAs associated with MEN1 are generally responsive to medical therapy, but careful long-term monitoring is essential. The utility of genetic screening cannot be overstated, as it aids in early detection, risk stratification, and management of both the index case and affected family members by cascade screening. A multidisciplinary approach is crucial for optimizing outcomes, with ongoing surveillance to manage recurrence and associated complications. In summary, the co-occurrence of PHPT and PAs, particularly in the context of MEN1, necessitates an integrated management strategy. Genetic testing is key in confirming diagnosis and guiding treatment, while surgical and medical interventions should be tailored to the extent and nature of glandular involvement. Close monitoring for recurrence and proactive family screening are essential components of long-term care.
Collapse
Affiliation(s)
- Liza Das
- Department of Telemedicine, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| | - Pinaki Dutta
- Department of Endocrinology, PGIMER, Chandigarh, India.
| |
Collapse
|
2
|
Worthy CC, Tora R, Uttarkar CN, Welch JM, Bliss L, Cochran C, Ninan A, Kumar S, Wank S, Auh S, Weinstein LS, Simonds WF, Agarwal SK, Blau JE, Jha S. Genotype-phenotype correlation in multiple endocrine neoplasia type 1. JCI Insight 2025; 10:e176993. [PMID: 39946193 PMCID: PMC11949022 DOI: 10.1172/jci.insight.176993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUNDAmong patients with multiple endocrine neoplasia type 1 (MEN1), 80% develop duodenopancreatic neuroendocrine tumors (dpNETs), of whom 15%-25% die of metastasis. There is a need to identify biomarkers to predict aggressive disease. MEN1 genotype affords an attractive possibility as a biomarker, as it remains constant during life. Currently, patients are clinically diagnosed with MEN1 by the presence of ≥2 primary endocrine tumors (pituitary, parathyroid, and pancreas) or ≥1 primary endocrine tumor with a positive family history. From 10% to 30% of patients diagnosed clinically with MEN1 have no pathogenic germline MEN1 variants.METHODSThis was a retrospective study of 162 index patients or probands with genotype-positive and 47 with genotype-negative MEN1 enrolled from 1977 to 2022.RESULTSCompared with patients with genotype-negative disease, patients with genotype-positive disease were younger at diagnosis and had an increased frequency of recurrent parathyroid tumors, dpNETs, and angiofibromas or collagenomas. We propose a weighted scoring system to diagnose genotype-positive MEN1 based on clinical characteristics. No evidence of MEN1 mosaicism was seen in 30 tumors from 17 patients with genotype-negative MEN1. Patients with germline MEN1 variants in exons 2 and 3 had a reduced risk of distant metastases.CONCLUSIONThe clinical course of genotype-negative MEN1 is distinct from genotype-positive disease, raising uncertainty about the benefits of lifetime surveillance in patients with genotype-negative disease. MEN1 mosaicism is rare.TRIAL REGISTRATION ClinicalTrials.gov NCT04969926FUNDINGIntramural Research Program of National Institute of Diabetes and Digestive and Kidney Diseases, NIH (ZIA DK043006-46).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sungyoung Auh
- Biostatistics Program, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
3
|
Hernández-Ramírez LC, Perez-Rivas LG, Theodoropoulou M, Korbonits M. An Update on the Genetic Drivers of Corticotroph Tumorigenesis. Exp Clin Endocrinol Diabetes 2024; 132:678-696. [PMID: 38830604 DOI: 10.1055/a-2337-2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The genetic landscape of corticotroph tumours of the pituitary gland has dramatically changed over the last 10 years. Somatic changes in the USP8 gene account for the most common genetic defect in corticotrophinomas, especially in females, while variants in TP53 or ATRX are associated with a subset of aggressive tumours. Germline defects have also been identified in patients with Cushing's disease: some are well-established (MEN1, CDKN1B, DICER1), while others are rare and could represent coincidences. In this review, we summarise the current knowledge on the genetic drivers of corticotroph tumorigenesis, their molecular consequences, and their impact on the clinical presentation and prognosis.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
4
|
Chevalier B, Coppin L, Romanet P, Cuny T, Maïza JC, Abeillon J, Forestier J, Walter T, Gilly O, Le Bras M, Smati S, Nunes ML, Geslot A, Grunenwald S, Mouly C, Arnault G, Wagner K, Koumakis E, Cortet-Rudelli C, Merlen É, Jannin A, Espiard S, Morange I, Baudin É, Cavaille M, Tauveron I, Teissier MP, Borson-Chazot F, Mirebeau-Prunier D, Savagner F, Pasmant É, Giraud S, Vantyghem MC, Goudet P, Barlier A, Cardot-Bauters C, Odou MF. Beyond MEN1, When to Think About MEN4? Retrospective Study on 5600 Patients in the French Population and Literature Review. J Clin Endocrinol Metab 2024; 109:e1482-e1493. [PMID: 38288531 DOI: 10.1210/clinem/dgae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
CONTEXT Germline CDKN1B variants predispose patients to multiple endocrine neoplasia type 4 (MEN4), a rare MEN1-like syndrome, with <100 reported cases since its discovery in 2006. Although CDKN1B mutations are frequently suggested to explain cases of genetically negative MEN1, the prevalence and phenotype of MEN4 patients is poorly known, and genetic counseling is unclear. OBJECTIVE To evaluate the prevalence of MEN4 in MEN1-suspected patients and characterize the phenotype of MEN4 patients. DESIGN Retrospective observational nationwide study. Narrative review of literature and variant class reassessment. PATIENTS We included all adult patients with class 3/4/5 CDKN1B variants identified by the laboratories from the French Oncogenetic Network on Neuroendocrine Tumors network between 2015 and 2022 through germline genetic testing for MEN1 suspicion. After class reassessment, we compared the phenotype of symptomatic patients with class 4/5 CDKN1B variants (ie, with genetically confirmed MEN4 diagnosis) in our series and in literature with 66 matched MEN1 patients from the UMD-MEN1 database. RESULTS From 5600 MEN1-suspected patients analyzed, 4 with class 4/5 CDKN1B variant were found (0.07%). They presented with multiple duodenal NET, primary hyperparathyroidism (PHPT) and adrenal nodule, isolated PHPT, PHPT, and pancreatic neuroendocrine tumor. We listed 29 patients with CDKN1B class 4/5 variants from the literature. Compared with matched MEN1 patients, MEN4 patients presented lower NET incidence and older age at PHPT diagnosis. CONCLUSION The prevalence of MEN4 is low. PHPT and pituitary adenoma represent the main associated lesions, NETs are rare. Our results suggest a milder and later phenotype than in MEN1. Our observations will help to improve genetic counseling and management of MEN4 families.
Collapse
Affiliation(s)
- Benjamin Chevalier
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
- University of Lille, 59000 Lille, France
- Department of Nuclear Medicine, Lille University Hospital, 59000 Lille, France
| | - Lucie Coppin
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer-Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
- CHU Lille, Service de Biochimie et Biologie moléculaire « Hormonologie, Métabolisme-Nutrition, Oncologie, 59000 Lille, France
| | - Pauline Romanet
- Laboratory of Molecular Biology GEnOPé, Biogénopôle, Aix Marseille Univ, APHM, INSERM, UMR1251 MMG, Hôpital de la Timone, 13005 Marseille, France
| | - Thomas Cuny
- Department of Endocrinology, Aix Marseille Univ, APHM, INSERM, UMR1251 MMG, MARMARA Institute, CRMR HYPO, Hôpital de la Conception, 13005 Marseille, France
| | - Jean-Christophe Maïza
- Department of Endocrinology, Diabetes, and Nutrition, GHSR, Centre Hospitalo-Universitaire de la Réunion, 97448 Saint-Pierre, La Réunion, France
| | - Juliette Abeillon
- Hospices Civils de Lyon, Fédération d'Endocrinologie, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Julien Forestier
- Service d'Oncologie Médicale et Hépatogastroentérologie, Hospices Civil de Lyon, 69003 Lyon, France
| | - Thomas Walter
- Service d'Oncologie Médicale et Hépatogastroentérologie, Hospices Civil de Lyon, 69003 Lyon, France
- Université de Lyon, 69003 Lyon, France
| | - Olivier Gilly
- Department of Metabolic and Endocrine Disease, CHU Nîmes, Université Montpellier, 30900 Nîmes, France
| | - Maëlle Le Bras
- Service d'endocrinologie, diabétologie, nutrition, Nantes Université, CHU Nantes, l'institut du thorax, F-44000 Nantes, France
| | - Sarra Smati
- Service d'endocrinologie, diabétologie, nutrition, Nantes Université, CHU Nantes, l'institut du thorax, F-44000 Nantes, France
| | - Marie Laure Nunes
- Department of Endocrinology, Diabetes and Nutrition, University Hospital (CHU) and University of Bordeaux, 33404 Bordeaux, France
| | - Aurore Geslot
- Service d'endocrinologie, maladies métaboliques et nutrition, pôle cardio-vasculaire et métabolique, CHU Larrey, 31059 Toulouse cedex, France
| | - Solange Grunenwald
- Service d'endocrinologie, maladies métaboliques et nutrition, pôle cardio-vasculaire et métabolique, CHU Larrey, 31059 Toulouse cedex, France
| | - Céline Mouly
- Service d'endocrinologie, maladies métaboliques et nutrition, pôle cardio-vasculaire et métabolique, CHU Larrey, 31059 Toulouse cedex, France
| | | | - Kathy Wagner
- Department of Pediatrics, CHU-Lenval, 06200 Nice, France
| | - Eugénie Koumakis
- Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Reference Center for Rare Genetic Bone Disorders, OSCAR Filière, Rheumatology Department, Cochin Hospital, AP-HP Centre-Paris University, INSERM U1160, Institut Imagine, 75014 Paris, France
| | - Christine Cortet-Rudelli
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
| | - Émilie Merlen
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
| | - Arnaud Jannin
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
- University of Lille, 59000 Lille, France
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer-Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Stéphanie Espiard
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
- University of Lille, 59000 Lille, France
| | - Isabelle Morange
- Department of Endocrinology, Aix Marseille Univ, APHM, INSERM, UMR1251 MMG, MARMARA Institute, CRMR HYPO, Hôpital de la Conception, 13005 Marseille, France
| | - Éric Baudin
- Department of Endocrine Oncology and Imaging, Gustave Roussy Cancer Campus Grand, 94800 Villejuif, France
| | - Mathias Cavaille
- U1240 Imagerie Moléculaire et Stratégies Théranostiques, INSERM, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, 63000 Clermont Ferrand, France
| | - Igor Tauveron
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
- Laboratoire GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Marie-Pierre Teissier
- Unité INSERM 1094 & IRD, Université de Limoges, 87025 Limoges, France
- Service d'Endocrinologie-Diabétologie et Maladies métaboliques, Centre hospitalier universitaire Dupuytren 2, 87042 Limoges, France
| | - Françoise Borson-Chazot
- Hospices Civils de Lyon, Fédération d'Endocrinologie, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Delphine Mirebeau-Prunier
- Unité Mixte de Recherche (UMR) MITOVASC, Laboratoire de Biochimie et Biologie Moléculaire, INSERM U1083, CNRS 6015, Université d'Angers, Centre Hospitalier Universitaire d'Angers, Angers 49933, France
| | - Frédérique Savagner
- Laboratory of Biochemistry and Molecular Biology, IFB-CHU, 31000 Toulouse, France
| | - Éric Pasmant
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université de Paris, 75014 Paris, France
- Institut Cochin, Cancer Department, Inserm U1016, CNRS UMR8104, Université de Paris, CARPEM, 75014 Paris, France
| | - Sophie Giraud
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Pathology Center, 69029 Bron Cedex, France
| | - Marie-Christine Vantyghem
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
- University of Lille, 59000 Lille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), European Genomic Institute for Diabetes (EGID), CHU Lille, 59000 Lille, France
| | - Pierre Goudet
- Service de Chirurgie Viscérale et Endocrinienne, Centre Hospitalier Universitaire François Mitterand, 21000 Dijon, France
| | - Anne Barlier
- Laboratory of Molecular Biology GEnOPé, Biogénopôle, Aix Marseille Univ, APHM, INSERM, UMR1251 MMG, Hôpital de la Timone, 13005 Marseille, France
| | - Catherine Cardot-Bauters
- Department of Endocrinology, Diabetology and Metabolism, Lille University Hospital, 59000 Lille, France
| | - Marie Françoise Odou
- CHU Lille, Service de Biochimie et Biologie moléculaire « Hormonologie, Métabolisme-Nutrition, Oncologie, 59000 Lille, France
- University of Lille, Inserm, CHU Lille, U1286-Infinite-Institute for Translational Research in Inflammation, 59000 Lille, France
| |
Collapse
|
5
|
Ramírez-Rentería C, Hernández-Ramírez LC. Genetic diagnosis in acromegaly and gigantism: From research to clinical practice. Best Pract Res Clin Endocrinol Metab 2024; 38:101892. [PMID: 38521632 DOI: 10.1016/j.beem.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
It is usually considered that only 5% of all pituitary neuroendocrine tumours are due to inheritable causes. Since this estimate was reported, however, multiple genetic defects driving syndromic and nonsyndromic somatotrophinomas have been unveiled. This heterogeneous genetic background results in overlapping phenotypes of GH excess. Genetic tests should be part of the approach to patients with acromegaly and gigantism because they can refine the clinical diagnoses, opening the possibility to tailor the clinical conduct to each patient. Even more, genetic testing and clinical screening of at-risk individuals have a positive impact on disease outcomes, by allowing for the timely detection and treatment of somatotrophinomas at early stages. Future research should focus on determining the actual frequency of novel genetic drivers of somatotrophinomas in the general population, developing up-to-date disease-specific multi-gene panels for clinical use, and finding strategies to improve access to modern genetic testing worldwide.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
6
|
Mazarico-Altisent I, Capel I, Baena N, Bella-Cueto MR, Barcons S, Guirao X, Albert L, Cano A, Pareja R, Caixàs A, Rigla M. Novel germline variants of CDKN1B and CDKN2C identified during screening for familial primary hyperparathyroidism. J Endocrinol Invest 2023; 46:829-840. [PMID: 36334246 PMCID: PMC10023768 DOI: 10.1007/s40618-022-01948-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE CDKN1B mutations were established as a cause of multiple endocrine neoplasia 4 (MEN4) syndrome in patients with MEN1 phenotype without a mutation in the MEN1 gene. In addition, variants in other cyclin-dependent kinase inhibitors (CDKIs) were found in some MEN1-like cases without the MEN1 mutation. We aimed to describe novel germline mutations of these genes in patients with primary hyperparathyroidism (PHPT). METHODS During genetic screening for familial hyperparathyroidism, three novel CDKIs germline mutations in three unrelated cases between January 2019 and November 2021 were identified. In this report, we describe clinical features, DNA sequence analysis, and familial segregation studies based on these patients and their relatives. Genome-wide DNA study of loss of heterozygosity (LOH), copy number variation (CNV), and p27/kip immunohistochemistry was performed on tumour samples. RESULTS DNA screening was performed for atypical parathyroid adenomas in cases 1 and 2 and for cystic parathyroid adenoma and young age at diagnosis of PHPT in case 3. Genetic analysis identified likely pathogenic variants of CDKN1B in cases 1 and 2 and a variant of the uncertain significance of CDKN2C, with uniparental disomy in the tumour sample, in case 3. Neoplasm screening of probands showed other non-endocrine tumours in case 1 (colon adenoma with dysplasia and atypical lipomas) and case 2 (aberrant T-cell population) and a non-functional pituitary adenoma in case 3. CONCLUSION Germline mutations in CDKIs should be included in gene panels for genetic testing of primary hyperparathyroidism. New germline variants here described can be added to the current knowledge.
Collapse
Affiliation(s)
- I Mazarico-Altisent
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain.
| | - I Capel
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - N Baena
- Genetic Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - M R Bella-Cueto
- Pathology Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - S Barcons
- Surgery Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - X Guirao
- Surgery Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - L Albert
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - A Cano
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - R Pareja
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - A Caixàs
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| | - M Rigla
- Endocrinology and Nutrition Department, Parc Taulí University Hospital, Institut d'Investigació i Innovació Parc Taulí (I3PT), Medicine Department, Universitat Autònoma de Barcelona, Parc Taulí 1, 08208, Sabadell, Barcelona, Spain
| |
Collapse
|
7
|
Halperin R, Arnon L, Nasirov S, Friedensohn L, Gershinsky M, Telerman A, Friedman E, Bernstein-Molho R, Tirosh A. Germline CDKN1B variant type and site are associated with phenotype in MEN4. Endocr Relat Cancer 2023; 30:ERC-22-0174. [PMID: 36256846 DOI: 10.1530/erc-22-0174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Multiple endocrine neoplasia 4 (MEN4) is a rare multiglandular endocrine neoplasia syndrome clinically hallmarked by primary hyperparathyroidism (PHPT), pituitary adenoma (PitAd), and neuroendocrine tumors (NET), clinically overlapping MEN1. The underlying mutated gene - CDKN1B, encodes for the cell-cycle regulator p27. Possible genotype-phenotype correlations in MEN4 have not been thoroughly assessed. Prompted by the findings in three Israeli MEN4 kindreds, we performed a literature review on published and unpublished data from previously reported MEN4/CDKN1B cases. Univariate analysis analyzed time-dependent risks for developing PHPT, PitAd, or NET by variant type and position along the gene. Overall, 74 MEN4 cases were analyzed. PHPT risk was 53.4% by age 60 years (mean age at diagnosis age 50.6 ± 13.9 years), risk for PitAd was 23.2% and risk for NET was 16.2% (34.4 ± 21.4 and 52.9 ± 13.9 years, respectively). The frameshift variant p.Q107fs was the most common variant identified (4/41 (9.7%) kindreds). Patients with indels had higher risk for PHPT vs point mutations (log-rank, P = 0.029). Variants in codons 94-96 were associated with higher risk for PHPT (P < 0.001) and PitAd (P = 0.031). To conclude, MEN4 is clinically distinct from MEN1, with lower risk and older age for PHPT diagnosis. We report recurrent CDKN1B frameshift variants and possible genotype-phenotype correlations.
Collapse
Affiliation(s)
- Reut Halperin
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| | - Liat Arnon
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sapir Nasirov
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| | - Limor Friedensohn
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Gershinsky
- Department of Endocrinology and Diabetes, Lady Davis Carmel Medical Center and Linn Medical Center and Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alona Telerman
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Eitan Friedman
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
- Personalized Preventive Genetics Center, Assuta Medical Center, Tel-Aviv, Israel
| | - Rinat Bernstein-Molho
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
- The Susanne Levy Gertner Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - Amit Tirosh
- ENTIRE Endocrine Neoplasia Translational Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| |
Collapse
|
8
|
Seabrook A, Wijewardene A, De Sousa S, Wong T, Sheriff N, Gill AJ, Iyer R, Field M, Luxford C, Clifton-Bligh R, McCormack A, Tucker K. MEN4, the MEN1 Mimicker: A Case Series of three Phenotypically Heterogenous Patients With Unique CDKN1B Mutations. J Clin Endocrinol Metab 2022; 107:2339-2349. [PMID: 35323929 PMCID: PMC9282358 DOI: 10.1210/clinem/dgac162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 12/29/2022]
Abstract
CONTEXT Germline CDKN1B pathogenic variants result in multiple endocrine neoplasia type 4 (MEN4), an autosomal dominant hereditary tumor syndrome variably associated with primary hyperparathyroidism, pituitary adenoma, and duodenopancreatic neuroendocrine tumors. OBJECTIVE To report the phenotype of 3 unrelated cases each with a unique germline CDKN1B variant (of which 2 are novel) and compare these cases with those described in the current literature. DESIGN/METHODS Three case studies, including clinical presentation, germline, and tumor genetic analysis and family history. SETTING Two tertiary University Hospitals in Sydney, New South Wales, and 1 tertiary University Hospital in Canberra, Australian Capital Territory, Australia. OUTCOME Phenotype of the 3 cases and their kindred; molecular analysis and tumor p27kip1 immunohistochemistry. RESULTS Family A: The proband developed multiglandular primary hyperparathyroidism, a microprolactinoma and a multifocal nonfunctioning duodenopancreatic neuroendocrine tumor. Family B: The proband was diagnosed with primary hyperparathyroidism from a single parathyroid adenoma. Family C: The proband was diagnosed with a nonfunctioning pituitary microadenoma and ectopic Cushing's syndrome from an atypical thymic carcinoid tumor. Germline sequencing in each patient identified a unique variant in CDKN1B, 2 of which are novel (c.179G > A, p.Trp60*; c.475G > A, p.Asp159Asn) and 1 previously reported (c.374_375delCT, p.Ser125*). CONCLUSIONS Germline CDKN1B pathogenic variants cause the syndrome MEN4. The phenotype resulting from the 3 pathogenic variants described in this series highlights the heterogenous nature of this syndrome, ranging from isolated primary hyperparathyroidism to the full spectrum of endocrine manifestations. We report the first described cases of a prolactinoma and an atypical thymic carcinoid tumor in MEN4.
Collapse
Affiliation(s)
- Amanda Seabrook
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ayanthi Wijewardene
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- The University of Sydney, Sydney, NSW, 2006, Australia
| | - Sunita De Sousa
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, 5000
- South Australian Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Tang Wong
- The University of New South Wales, Sydney, NSW, 2052, Australia
- The University of Western Sydney, Sydney, NSW, 2560, Australia
- Department of Endocrinology, Prince of Wales Hospital, Sydney, NSW, 2064, Australia
| | - Nisa Sheriff
- Department of Endocrinology, Hornsby Ku-ring-gai Hospital, Sydney, NSW, 2077, Australia
| | - Anthony J Gill
- The University of Sydney, Sydney, NSW, 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, 2064, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, 2064, Australia
| | - Rakesh Iyer
- Calvary Public Hospital, Canberra, ACT, 2617, Australia
| | - Michael Field
- Familial Cancer Service, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Catherine Luxford
- Cancer Genetics Laboratory, Kolling Institute, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- The University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | - Katherine Tucker
- Correspondence: Katherine Tucker, MBBS, FRACP, AO, Hereditary Cancer Service Nelune Comprehensive Cancer Centre (Bright Building), 64-66 High St, Randwick, NSW, 2031, Australia.
| |
Collapse
|
9
|
AKKUŞ G, ŞENGÖZ COŞKUN NS, KARAGÜN B, TETİKER BT. CDKN1B mutation analyses and biochemical characteristics in patients with symptomatic or asymptomatic primary hyperparathyroidism. CUKUROVA MEDICAL JOURNAL 2022. [DOI: 10.17826/cumj.1095425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Purpose: The aim of this study was to compare clinical, biochemical and treatment modalities of the patients with symptomatic and asymptomatic PHPT (primary hyperparathyroidism), and evaluate whether the CDKN1B mutation from these patients contributes to the pathogenesis of typical, sporadic parathyroid adenomas.
Materials and Methods: In this prospective study 80 patients (66 women and 14 men, mean age 50.8 ± 12.01 years) with PHPT were enrolled. Biochemical and clinical information were collected on patients’ sex, age, biochemical examination and radiological findings (nuclear 99 mTc sestamibi scans scintigraphy, cervical ultrasound). CDKN1B sequencing, and DNA isolation was performed by using GeneMATRIX Quick Blood DNA Purification Kit. Selected primer of CDKN1BF (rs786201010, c.-456_-453delCCTT) (CAGGTTTGTTGGCAGCAGTA) and CDKN1BR (rs786201010, c.-456_-453delCCTT) (GGAGCCAAAAGACACAGACC) were amplified by polymerase chain reaction (PCR) (Solis Biodyne, Estonia).
Results: A total of 80 patients diagnosed with PHPT were included, of which 22 were symptomatic. Serum calcium and 24-hour calcium excretion were significantly increased in patients with symptomatic PHTP. Serum PTH levels were similar between the two group. PHPT. CDKN1B mutation was not detected in any patients.
Conclusion: Symptomatic patients were found to have elevated levels of calcium levels (hypercalcaemic), 24-hour urine calcium excretion and target organ damage (bone disease and nephrolithiasis). Independent of PTH levels, clinical signs and symptoms could be related with serum calcium parameters in these patients.
Collapse
|
10
|
Damianse SSP, Nascimento GC, Rocha VCC, Nascimento AGPAC, Gaido NC, Azulay RSS, Dos Santos WC, Rodrigues VP, Quidute ARP, Magalhães M, Faria MDS. The Importance of Periodical Screening for Primary Hyperparathyroidism in a Pituitary Tumor Cohort in Searching Patients with MEN1 and its Genetic Profile. Endocr Pract 2022; 28:509-514. [PMID: 35247589 DOI: 10.1016/j.eprac.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Multiple endocrine neoplasia type 1 (MEN1) is a rare genetic syndrome characterized by parathyroid, anterior pituitary, and/or duodenopancreatic neuroendocrine tumors. Studies have indicated that investigating primary hyperparathyroidism (pHPT) with subsequent genetic screening may be an essential tool for the early diagnosis of MEN1 in patients with pituitary tumors (PTs). This study aimed to investigate the presence of pHPT in patients with PTs and, subsequently, to screen for genetic mutations and related tumors in those with MEN1 Syndrome. METHODS This study included 255 patients with PTs who were assessed for the presence of MEN1 from serum calcium and parathyroid hormone measurements. Mutation screening of the MEN1, CDKN1B, and AIP genes was performed in the index cases showing the MEN1 phenotype. RESULTS Five PT-evaluated patients presented a clinical condition compatible with MEN1. These patients had a younger age of onset and a more severe clinical condition. Genetic analysis identified a frameshift mutation in the MEN1 gene in one of the cases with the MEN1 phenotype, but point mutations in CDKN1B and AIP were not detected in any of these patients. CONCLUSION Our findings show that periodic screening for pHPT in patients with PTs may be useful to detect MEN1 syndrome; thus, it is recommended in those patients genetic analysis of MEN1 gene and an additional search of related tumors. By contrast, our results suggest that CDKN1B and AIP mutations do not seem to play a relevant role in the pathogenesis of MEN1.
Collapse
Affiliation(s)
- Sabrina S P Damianse
- Service of Endocrinology, Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil; Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil; Clinical Research Center (CEPEC), Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil; Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís, Brazil
| | - Gilvan C Nascimento
- Service of Endocrinology, Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil; Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil; Clinical Research Center (CEPEC), Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Viviane C C Rocha
- Service of Endocrinology, Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil; Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil; Clinical Research Center (CEPEC), Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Ana Gisélia P A C Nascimento
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil; Clinical Research Center (CEPEC), Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil; Pathology Unit, Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA), São Luís, Brazil
| | - Nadja C Gaido
- Pathology Unit, Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA), São Luís, Brazil
| | - Rossana S S Azulay
- Service of Endocrinology, Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil; Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil; Clinical Research Center (CEPEC), Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil
| | - Wellyandra C Dos Santos
- Clinical Research Center (CEPEC), Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil; Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís, Brazil
| | - Vandilson P Rodrigues
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil; Clinical Research Center (CEPEC), Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil; Department of Morphology, Federal University of Maranhão (UFMA), São Luís, Brazil
| | - Ana Rosa P Quidute
- Department of Physiology and Pharmacology, Federal University of Ceará (UFC), Fortaleza, Brazil
| | - Marcelo Magalhães
- Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil; Clinical Research Center (CEPEC), Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil; Research and Extension Nucleus (NUPE), UNDB University Center, São Luís, Brazil
| | - Manuel Dos S Faria
- Service of Endocrinology, Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil; Research Group in Clinical and Molecular Endocrinology and Metabology (ENDOCLIM), São Luís, Brazil; Clinical Research Center (CEPEC), Presidente Dutra University Hospital of the Federal University of Maranhão (HUUFMA/EBSERH), São Luís, Brazil.
| |
Collapse
|
11
|
Lavezzi E, Brunetti A, Smiroldo V, Nappo G, Pedicini V, Vitali E, Trivellin G, Mazziotti G, Lania A. Case Report: New CDKN1B Mutation in Multiple Endocrine Neoplasia Type 4 and Brief Literature Review on Clinical Management. Front Endocrinol (Lausanne) 2022; 13:773143. [PMID: 35355569 PMCID: PMC8959648 DOI: 10.3389/fendo.2022.773143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/25/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The fourth type of multiple endocrine neoplasia (MEN) is known as a rare variant of MEN presenting a MEN1-like phenotype and originating from a germline mutation in CDKN1B. However, due to the small number of cases documented in the literature, the peculiar clinical features of MEN4 are still largely unknown, and clear indications about the clinical management of these patients are currently lacking. In order to widen our knowledge on MEN4 and to better typify the clinical features of this syndrome, we present two more cases of subjects with MEN4, and through a review of the current literature, we provide some possible indications on these patients' management. CASE PRESENTATION The first report is about a man who was diagnosed with a metastatic ileal G2-NET at the age of 34. Genetic analysis revealed the mutation p.I119T (c.356T>C) of exon 1 of CDKN1B, a mutation already reported in the literature in association with early-onset pituitary adenomas. The second report is about a 76-year-old woman with a multifocal pancreatic G1-NET. Genetic analysis identified the CDKN1B mutation c.482C>G (p.S161C), described here for the first time in association with MEN4 and currently classified as a variant of uncertain significance. Both patients underwent biochemical and imaging screening for MEN1-related diseases without any pathological findings. CONCLUSIONS According to the cases reported in the literature, hyperparathyroidism is the most common clinical feature of MEN4, followed by pituitary adenoma and neuroendocrine tumors. However, MEN4 appears to be a variant of MEN with milder clinical features and later onset. Therefore, these patients might need a different and personalized approach in clinical management and a peculiar screening and follow-up strategy.
Collapse
Affiliation(s)
- Elisabetta Lavezzi
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- *Correspondence: Elisabetta Lavezzi,
| | - Alessandro Brunetti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Valeria Smiroldo
- Oncology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Gennaro Nappo
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Eleonora Vitali
- Endocrinology Unit and Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Giampaolo Trivellin
- Endocrinology Unit and Laboratory of Cellular and Molecular Endocrinology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Gherardo Mazziotti
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Andrea Lania
- Endocrinology, Diabetology and Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
12
|
Brandi ML, Agarwal SK, Perrier ND, Lines KE, Valk GD, Thakker RV. Multiple Endocrine Neoplasia Type 1: Latest Insights. Endocr Rev 2021; 42:133-170. [PMID: 33249439 PMCID: PMC7958143 DOI: 10.1210/endrev/bnaa031] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Multiple endocrine neoplasia type 1 (MEN1), a rare tumor syndrome that is inherited in an autosomal dominant pattern, is continuing to raise great interest for endocrinology, gastroenterology, surgery, radiology, genetics, and molecular biology specialists. There have been 2 major clinical practice guidance papers published in the past 2 decades, with the most recent published 8 years ago. Since then, several new insights on the basic biology and clinical features of MEN1 have appeared in the literature, and those data are discussed in this review. The genetic and molecular interactions of the MEN1-encoded protein menin with transcription factors and chromatin-modifying proteins in cell signaling pathways mediated by transforming growth factor β/bone morphogenetic protein, a few nuclear receptors, Wnt/β-catenin, and Hedgehog, and preclinical studies in mouse models have facilitated the understanding of the pathogenesis of MEN1-associated tumors and potential pharmacological interventions. The advancements in genetic diagnosis have offered a chance to recognize MEN1-related conditions in germline MEN1 mutation-negative patients. There is rapidly accumulating knowledge about clinical presentation in children, adolescents, and pregnancy that is translatable into the management of these very fragile patients. The discoveries about the genetic and molecular signatures of sporadic neuroendocrine tumors support the development of clinical trials with novel targeted therapies, along with advancements in diagnostic tools and surgical approaches. Finally, quality of life studies in patients affected by MEN1 and related conditions represent an effort necessary to develop a pharmacoeconomic interpretation of the problem. Because advances are being made both broadly and in focused areas, this timely review presents and discusses those studies collectively.
Collapse
Affiliation(s)
| | | | - Nancy D Perrier
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Gerlof D Valk
- University Medical Center Utrecht, CX Utrecht, the Netherlands
| | | |
Collapse
|
13
|
Abstract
Regulation of the serum calcium level in humans is achieved by the endocrine action of parathyroid glands working in concert with vitamin D and a set of critical target cells and tissues including osteoblasts, osteoclasts, the renal tubules, and the small intestine. The parathyroid glands, small highly vascularized endocrine organs located behind the thyroid gland, secrete parathyroid hormone (PTH) into the systemic circulation as is needed to keep the serum free calcium concentration within a tight physiologic range. Primary hyperparathyroidism (HPT), a disorder of mineral metabolism usually associated with abnormally elevated serum calcium, results from the uncontrolled release of PTH from one or several abnormal parathyroid glands. Although in the vast majority of cases HPT is a sporadic disease, it can also present as a manifestation of a familial syndrome. Many benign and malignant sporadic parathyroid neoplasms are caused by loss-of-function mutations in tumor suppressor genes that were initially identified by the study of genomic DNA from patients who developed HPT as a manifestation of an inherited syndrome. Somatic and inherited mutations in certain proto-oncogenes can also result in the development of parathyroid tumors. The clinical and genetic investigation of familial HPT in kindreds found to lack germline variants in the already known HPT-predisposition genes represents a promising future direction for the discovery of novel genes relevant to parathyroid tumor development.
Collapse
Affiliation(s)
- Jenny E. Blau
- Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: William F. Simonds,
| |
Collapse
|
14
|
Abstract
Pituitary adenomas are common intracranial neoplasms, with diverse phenotypes. Most of these tumors occur sporadically and are not part of genetic disorders. Over the last decades numerous genetic studies have led to identification of somatic and germline mutations associated with pituitary tumors, which has advanced the understanding of pituitary tumorigenesis. Exploring the genetic background of pituitary neuroendocrine tumors can lead to early diagnosis associated with better outcomes, and their molecular mechanisms should lead to novel targeted therapies even for sporadic tumors. This article summarizes the genes and the syndromes associated with pituitary tumors.
Collapse
Affiliation(s)
- Sayka Barry
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
15
|
Abstract
Calcium homeostasis is maintained by the actions of the parathyroid glands, which release parathyroid hormone into the systemic circulation as necessary to maintain the serum calcium concentration within a tight physiologic range. Excessive secretion of parathyroid hormone from one or more neoplastic parathyroid glands, however, causes the metabolic disease primary hyperparathyroidism (HPT) typically associated with hypercalcemia. Although the majority of cases of HPT are sporadic, it can present in the context of a familial syndrome. Mutations in the tumor suppressor genes discovered by the study of such families are now recognized to be pathogenic for many sporadic parathyroid tumors. Inherited and somatic mutations of proto-oncogenes causing parathyroid neoplasia are also known. Future investigation of somatic changes in parathyroid tumor DNA and the study of kindreds with HPT yet lacking germline mutation in the set of genes known to predispose to HPT represent two avenues likely to unmask additional novel genes relevant to parathyroid neoplasia.
Collapse
Affiliation(s)
- William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Chasseloup F, Pankratz N, Lane J, Faucz FR, Keil MF, Chittiboina P, Kay DM, Hussein Tayeb T, Stratakis CA, Mills JL, Hernández-Ramírez LC. Germline CDKN1B Loss-of-Function Variants Cause Pediatric Cushing's Disease With or Without an MEN4 Phenotype. J Clin Endocrinol Metab 2020; 105:5813889. [PMID: 32232325 PMCID: PMC7190031 DOI: 10.1210/clinem/dgaa160] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Germline loss-of-function CDKN1B gene variants cause the autosomal dominant syndrome of multiple endocrine neoplasia type 4 (MEN4). Even though pituitary neuroendocrine tumors are a well-known component of the syndrome, only 2 cases of Cushing's disease (CD) have so far been described in this setting. AIM To screen a large cohort of CD patients for CDKN1B gene defects and to determine their functional effects. PATIENTS We screened 211 CD patients (94.3% pediatric) by germline whole-exome sequencing (WES) only (n = 157), germline and tumor WES (n = 27), Sanger sequencing (n = 6), and/or germline copy number variant (CNV) analysis (n = 194). Sixty cases were previously unpublished. Variant segregation was investigated in the patients' families, and putative pathogenic variants were functionally characterized. RESULTS Five variants of interest were found in 1 patient each: 1 truncating (p.Q107Rfs*12) and 4 nontruncating variants, including 3 missense changes affecting the CDKN1B protein scatter domain (p.I119T, p.E126Q, and p.D136G) and one 5' untranslated region (UTR) deletion (c.-29_-26delAGAG). No CNVs were found. All cases presented early (10.5 ± 1.3 years) and apparently sporadically. Aside from colon adenocarcinoma in 1 carrier, no additional neoplasms were detected in the probands or their families. In vitro assays demonstrated protein instability and disruption of the scatter domain of CDKN1B for all variants tested. CONCLUSIONS Five patients with CD and germline CDKN1B variants of uncertain significance (n = 2) or pathogenic/likely pathogenic (n = 3) were identified, accounting for 2.6% of the patients screened. Our finding that germline CDKN1B loss-of-function may present as apparently sporadic, isolated pediatric CD has important implications for clinical screening and genetic counselling.
Collapse
Affiliation(s)
- Fanny Chasseloup
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
- Departmentof Endocrinology, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Institut Cochin, INSERM U1016 CNRS 8104 Paris Descartes University, Paris, France
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Margaret F Keil
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland
| | - Denise M Kay
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Tara Hussein Tayeb
- College of Medicine, Sulaimani University, Sulaimani, Kurdistan, Iraq
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - James L Mills
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
- Correspondence and Reprint Requests: Laura C. Hernández-Ramírez, MD, PhD, Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, CRC, Rm 1E-3216, Bethesda, MD 20892-1862, USA. E-mail:
| |
Collapse
|
17
|
Abstract
Inherited syndromes are important to recognize in the setting of a pancreatic neuroendocrine tumor (PNET) as there are significant implications for the patient's medical management and opportunity for early detection of subsequent manifestations. Although most PNETs are sporadic, approximately 10% are due to an inherited syndrome, which include multiple endocrine neoplasia type 1 (MEN1), multiple endocrine neoplasia type 4 (MEN4), von Hippel-Lindau disease (VHL), neurofibromatosis type 1 (NF1), and tuberous sclerosis complex (TSC). The general hallmarks of a hereditary endocrine neoplasia predisposition syndrome include any one of the following: multiple primary tumors (in the same or different organs), rare tumors (prevalence of less than 1 in 1,000 people in the general population), earlier age of diagnosis (usually under the age of 40), characteristic pattern of disease in the individual or family (phenotype and inheritance pattern). These syndromes are monogenic (due to a single gene disorder), highly penetrant (with all carriers of the disease exhibiting at least part of the phenotype) and can display variable expressivity (where affected individuals may have different presentations and features of the disease). A thoughtful approach to management is required, even if the presenting symptom is resolved, as these syndromes often involve multi-organ disease with a lifelong risk for tumor development. Additionally, the natural history of tumors in the setting of a hereditary condition may be different than would be expected in a sporadic form of the disease. For example, in some circumstances the risk of metastatic disease is lower, and therefor longer observation is the preferred approach over early surgical intervention. The unique aspects to management, challenges in hereditary disease recognition and accurate diagnosis, and rarity of these syndromes are all reasons to support referral to high-volume centers with the experience and knowledge to treat patients with hereditary endocrine neoplasia syndromes.
Collapse
Affiliation(s)
- Jennifer L Geurts
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
18
|
Frederiksen A, Rossing M, Hermann P, Ejersted C, Thakker RV, Frost M. Clinical Features of Multiple Endocrine Neoplasia Type 4: Novel Pathogenic Variant and Review of Published Cases. J Clin Endocrinol Metab 2019; 104:3637-3646. [PMID: 30990521 PMCID: PMC6637788 DOI: 10.1210/jc.2019-00082] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Abstract
CONTEXT The clinical phenotype of multiple endocrine neoplasia type 4 (MEN4) is undefined due to a limited number of published cases. Knowledge on disease manifestation in MEN4 is essential for developing prevention programs and treatment. OBJECTIVE To expand current knowledge of the MEN4 phenotype including assessment of penetrance. DESIGN This is a case report and a brief review of previously published MEN4 cases. PATIENTS We report a large Danish family with multiple cases of endocrine tumors that segregated with a pathogenic variant in the CDKN1B gene. MAIN OUTCOME/RESULT The medical history of the proband included primary hyperparathyroidism and Cushing disease. Genetic analysis identified a pathogenic variant in CDKN1B (c.121_122delTT, p.Leu41Asnfs*83). Among the family members, another 12 individuals were identified as carriers of the same variant, which segregated with development of endocrine tumors. Hypercalcemia due to primary hyperparathyroidism occurred in all 13 of the available carriers of the genetic variant, and 4 patients also had functioning or nonfunctioning pituitary adenomas, whereas 1 patient had a metastatic neuroendocrine tumor (carcinoid). Loss-of-heterozygosity was detected in two of five parathyroid adenomas, supporting that CDKN1B acts as a tumor suppressor gene. Thirty cases representing 16 different CDKN1B variants have previously been reported, and these cases presented primarily with primary hyperparathyroidism and functioning and nonfunctioning pituitary tumors. CONCLUSION Hypercalcemia due to primary hyperparathyroidism and pituitary tumors are common in MEN4. Gastrointestinal neuroendocrine tumors appear to be less prevalent in MEN4 than in MEN1.
Collapse
Affiliation(s)
- Anja Frederiksen
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Pernille Hermann
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Charlotte Ejersted
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology & Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Morten Frost
- Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- Correspondence and Reprint Requests: Morten Frost, MD, PhD, Department of Endocrinology, Odense University Hospital, Kloevervaenget 6, Odense 5000, Denmark. E-mail:
| |
Collapse
|
19
|
Pepe S, Korbonits M, Iacovazzo D. Germline and mosaic mutations causing pituitary tumours: genetic and molecular aspects. J Endocrinol 2019; 240:R21-R45. [PMID: 30530903 DOI: 10.1530/joe-18-0446] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
While 95% of pituitary adenomas arise sporadically without a known inheritable predisposing mutation, in about 5% of the cases they can arise in a familial setting, either isolated (familial isolated pituitary adenoma or FIPA) or as part of a syndrome. FIPA is caused, in 15-30% of all kindreds, by inactivating mutations in the AIP gene, encoding a co-chaperone with a vast array of interacting partners and causing most commonly growth hormone excess. While the mechanisms linking AIP with pituitary tumorigenesis have not been fully understood, they are likely to involve several pathways, including the cAMP-dependent protein kinase A pathway via defective G inhibitory protein signalling or altered interaction with phosphodiesterases. The cAMP pathway is also affected by other conditions predisposing to pituitary tumours, including X-linked acrogigantism caused by duplications of the GPR101 gene, encoding an orphan G stimulatory protein-coupled receptor. Activating mosaic mutations in the GNAS gene, coding for the Gα stimulatory protein, cause McCune-Albright syndrome, while inactivating mutations in the regulatory type 1α subunit of protein kinase A represent the most frequent genetic cause of Carney complex, a syndromic condition with multi-organ manifestations also involving the pituitary gland. In this review, we discuss the genetic and molecular aspects of isolated and syndromic familial pituitary adenomas due to germline or mosaic mutations, including those secondary to AIP and GPR101 mutations, multiple endocrine neoplasia type 1 and 4, Carney complex, McCune-Albright syndrome, DICER1 syndrome and mutations in the SDHx genes underlying the association of familial paragangliomas and phaeochromocytomas with pituitary adenomas.
Collapse
Affiliation(s)
- Sara Pepe
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Donato Iacovazzo
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
20
|
Abstract
In the general population, height is determined by a complex interplay between genetic and environmental factors. Pituitary gigantism is a rare but very important subgroup of patients with excessive height, as it has an identifiable and clinically treatable cause. The disease is caused by chronic growth hormone and insulin-like growth factor 1 secretion from a pituitary somatotrope adenoma that forms before the closure of the epiphyses. If not controlled effectively, this hormonal hypersecretion could lead to extremely elevated final adult height. The past 10 years have seen marked advances in the understanding of pituitary gigantism, including the identification of genetic causes in ~50% of cases, such as mutations in the AIP gene or chromosome Xq26.3 duplications in X-linked acrogigantism syndrome. Pituitary gigantism has a male preponderance, and patients usually have large pituitary adenomas. The large tumour size, together with the young age of patients and frequent resistance to medical therapy, makes the management of pituitary gigantism complex. Early diagnosis and rapid referral for effective therapy appear to improve outcomes in patients with pituitary gigantism; therefore, a high level of clinical suspicion and efficient use of diagnostic resources is key to controlling overgrowth and preventing patients from reaching very elevated final adult heights.
Collapse
Affiliation(s)
- Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium.
| | - Patrick Petrossians
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases and Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, Liège Université, Liège, Belgium
| | - Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| |
Collapse
|
21
|
Carvalho RA, Urtremari B, Jorge AAL, Santana LS, Quedas EPS, Sekiya T, Longuini VC, Montenegro FLM, Lerario AM, Toledo SPA, Marx SJ, Toledo RA, Lourenço DM. Germline mutation landscape of multiple endocrine neoplasia type 1 using full gene next-generation sequencing. Eur J Endocrinol 2018; 179:391-407. [PMID: 30324798 DOI: 10.1530/eje-18-0430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Background Loss-of-function germline MEN1 gene mutations account for 75-95% of patients with multiple endocrine neoplasia type 1 (MEN1). It has been postulated that mutations in non-coding regions of MEN1 might occur in some of the remaining patients; however, this hypothesis has not yet been fully investigated. Objective To sequence for the entire MEN1 including promoter, exons and introns in a large MEN1 cohort and determine the mutation profile. Methods and patients A target next-generation sequencing (tNGS) assay comprising 7.2 kb of the full MEN1 was developed to investigate germline mutations in 76 unrelated MEN1 probands (49 familial, 27 sporadic). tNGS results were validated by Sanger sequencing (SS), and multiplex ligation-dependent probe amplification (MLPA) assay was applied when no mutations were identifiable by both tNGS and SS. Results Germline MEN1 variants were verified in coding region and splicing sites of 57/76 patients (74%) by both tNGS and SS (100% reproducibility). Thirty-eight different pathogenic or likely pathogenic variants were identified, including 13 new and six recurrent variants. Three large deletions were detected by MLPA only. No mutation was detected in 16 patients. In untranslated, regulatory or in deep intronic MEN1 regions of the 76 MEN1 cases, no point or short indel pathogenic variants were found in untranslated, although 33 benign/likely benign and three new VUS variants were detected. Conclusions Our study documents that point or short indel mutations in non-coding regions of MEN1 are very rare events. Also, tNGS proved to be a highly effective technology for routine genetic MEN1 testing.
Collapse
Affiliation(s)
- Rafael A Carvalho
- Unidade de Endocrinologia Genetica UEG, Laboratorio de Endocrinologia Celular e Molecular LIM-25, Disciplina de Endocrinologia
| | - Betsaida Urtremari
- Unidade de Endocrinologia Genetica UEG, Laboratorio de Endocrinologia Celular e Molecular LIM-25, Disciplina de Endocrinologia
| | - Alexander A L Jorge
- Unidade de Endocrinologia Genetica UEG, Laboratorio de Endocrinologia Celular e Molecular LIM-25, Disciplina de Endocrinologia
| | - Lucas S Santana
- Unidade de Endocrinologia Genetica UEG, Laboratorio de Endocrinologia Celular e Molecular LIM-25, Disciplina de Endocrinologia
| | - Elisangela P S Quedas
- Unidade de Endocrinologia Genetica UEG, Laboratorio de Endocrinologia Celular e Molecular LIM-25, Disciplina de Endocrinologia
| | - Tomoko Sekiya
- Unidade de Endocrinologia Genetica UEG, Laboratorio de Endocrinologia Celular e Molecular LIM-25, Disciplina de Endocrinologia
| | - Viviane C Longuini
- Unidade de Endocrinologia Genetica UEG, Laboratorio de Endocrinologia Celular e Molecular LIM-25, Disciplina de Endocrinologia
| | - Fabio L M Montenegro
- Unidade de Paratireoide, Laboratorio de Cirurgia Vascular e da Cabeça e Pescoço LIM-28, Disciplina de Cirurgia de Cabeça e Pescoço, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Antonio M Lerario
- Division of Metabolism, Department of Internal Medicine, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Sergio P A Toledo
- Unidade de Endocrinologia Genetica UEG, Laboratorio de Endocrinologia Celular e Molecular LIM-25, Disciplina de Endocrinologia
- Endocrinology Division, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Stephen J Marx
- Unidade de Endocrinologia Genetica UEG, Laboratorio de Endocrinologia Celular e Molecular LIM-25, Disciplina de Endocrinologia
- Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, Maryland, USA
| | | | - Delmar M Lourenço
- Unidade de Endocrinologia Genetica UEG, Laboratorio de Endocrinologia Celular e Molecular LIM-25, Disciplina de Endocrinologia
- Disciplina de Endocrinologia, Instituto do Cancer do Estado de Sao Paulo ICESP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
22
|
Abstract
The knowledge on the molecular and genetic causes of Cushing's syndrome (CS) has greatly increased in the recent years. Somatic mutations leading to overactive 3',5'-cyclic adenosine monophosphate/protein kinase A and wingless-type MMTV integration site family/beta-catenin pathways are the main molecular mechanisms underlying adrenocortical tumorigenesis. Corticotropinomas are characterized by resistance to glucocorticoid negative feedback, impaired cell cycle control and overexpression of pathways sustaining ACTH secretion. Recognizing the genetic defects behind corticotroph and adrenocortical tumorigenesis proves crucial for tailoring the clinical management of CS patients and for designing strategies for genetic counseling and clinical screening to be applied in routine medical practice.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA.
| |
Collapse
|
23
|
Pardi E, Borsari S, Saponaro F, Bogazzi F, Urbani C, Mariotti S, Pigliaru F, Satta C, Pani F, Materazzi G, Miccoli P, Grantaliano L, Marcocci C, Cetani F. Mutational and large deletion study of genes implicated in hereditary forms of primary hyperparathyroidism and correlation with clinical features. PLoS One 2017; 12:e0186485. [PMID: 29036195 PMCID: PMC5643132 DOI: 10.1371/journal.pone.0186485] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/01/2017] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to carry out genetic screening of the MEN1, CDKN1B and AIP genes, both by direct sequencing of the coding region and multiplex ligation-dependent probe amplification (MLPA) assay in the largest monocentric series of Italian patients with Multiple Endocrine Neoplasia type 1 syndrome (MEN1) and Familial Isolated Hyperparathyroidism (FIHP). The study also aimed to describe and compare the clinical features of MEN1 mutation-negative and mutation-positive patients during long-term follow-up and to correlate the specific types and locations of MEN1 gene mutations with onset and aggressiveness of the main MEN1 manifestations. A total of 69 index cases followed at the Endocrinology Unit in Pisa over a period of 19 years, including 54 MEN1 and 15 FIHP kindreds were enrolled. Seven index cases with MEN1 but MEN1 mutation-negative, followed at the University Hospital of Cagliari, were also investigated. FIHP were also tested for CDC73 and CaSR gene alterations. MEN1 germline mutations were identified in 90% of the index cases of familial MEN1 (F-MEN1) and in 23% of sporadic cases (S-MEN1). MEN1 and CDC73 mutations accounted for 13% and 7% of the FIHP cohort, respectively. A CDKN1B mutation was identified in one F-MEN1. Two AIP variants of unknown significance were detected in two MEN1-negative S-MEN1. A MEN1 positive test best predicted the onset of all three major MEN1-related manifestations or parathyroid and gastro-entero-pancreatic tumors during follow-up. A comparison between the clinical characteristics of F and S-MEN1 showed a higher prevalence of a single parathyroid disease and pituitary tumors in sporadic compared to familial MEN1 patients. No significant correlation was found between the type and location of MEN1 mutations and the clinical phenotype. Since all MEN1 mutation-positive sporadic patients had a phenotype resembling that of familial MEN1 (multiglandular parathyroid hyperplasia, a prevalence of gastro-entero-pancreatic tumors and/or the classic triad) we might hypothesize that a subset of the sporadic MEN1 mutation-negative patients could represent an incidental coexistence of sporadic primary hyperparathyroidism and pituitary tumors or a MEN1 phenocopy, in our cohort, as in most cases described in the literature.
Collapse
Affiliation(s)
- Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federica Saponaro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fausto Bogazzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Urbani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Mariotti
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesca Pigliaru
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Chiara Satta
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Fabiana Pani
- Endocrinology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gabriele Materazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Lorena Grantaliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Medical Sciences, Hospital Villa Albani, Anzio (RM), Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- University Hospital of Pisa, Endocrine Unit 2, Pisa, Italy
| | - Filomena Cetani
- University Hospital of Pisa, Endocrine Unit 2, Pisa, Italy
- * E-mail:
| |
Collapse
|
24
|
Alrezk R, Hannah-Shmouni F, Stratakis CA. MEN4 and CDKN1B mutations: the latest of the MEN syndromes. Endocr Relat Cancer 2017; 24:T195-T208. [PMID: 28824003 PMCID: PMC5623937 DOI: 10.1530/erc-17-0243] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022]
Abstract
Multiple endocrine neoplasia (MEN) refers to a group of autosomal dominant disorders with generally high penetrance that lead to the development of a wide spectrum of endocrine and non-endocrine manifestations. The most frequent among these conditions is MEN type 1 (MEN1), which is caused by germline heterozygous loss-of-function mutations in the tumor suppressor gene MEN1 MEN1 is characterized by primary hyperparathyroidism (PHPT) and functional or nonfunctional pancreatic neuroendocrine tumors and pituitary adenomas. Approximately 10% of patients with familial or sporadic MEN1-like phenotype do not have MEN1 mutations or deletions. A novel MEN syndrome was discovered, initially in rats (MENX), and later in humans (MEN4), which is caused by germline mutations in the putative tumor suppressor CDKN1B The most common phenotype of the 19 established cases of MEN4 that have been described to date is PHPT followed by pituitary adenomas. Recently, somatic or germline mutations in CDKN1B were also identified in patients with sporadic PHPT, small intestinal neuroendocrine tumors, lymphoma and breast cancer, demonstrating a novel role for CDKN1B as a tumor susceptibility gene for other neoplasms. In this review, we report on the genetic characterization and clinical features of MEN4.
Collapse
Affiliation(s)
- Rami Alrezk
- The National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of Health, Bethesda, Maryland, USA
| | - Fady Hannah-Shmouni
- Section on Endocrinology & Geneticsthe Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Constantine A Stratakis
- Section on Endocrinology & Geneticsthe Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Bencivenga D, Caldarelli I, Stampone E, Mancini FP, Balestrieri ML, Della Ragione F, Borriello A. p27 Kip1 and human cancers: A reappraisal of a still enigmatic protein. Cancer Lett 2017; 403:354-365. [DOI: 10.1016/j.canlet.2017.06.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
|
26
|
Abstract
Primary hyperparathyroidism (PHPT) is a common disorder in which parathyroid hormone (PTH) is excessively secreted from one or more of the four parathyroid glands. A single benign parathyroid adenoma is the cause in most people. However, multiglandular disease is not rare and is typically seen in familial PHPT syndromes. The genetics of PHPT is usually monoclonal when a single gland is involved and polyclonal when multiglandular disease is present. The genes that have been implicated in PHPT include proto-oncogenes and tumour-suppressor genes. Hypercalcaemia is the biochemical hallmark of PHPT. Usually, the concentration of PTH is frankly increased but can remain within the normal range, which is abnormal in the setting of hypercalcaemia. Normocalcaemic PHPT, a variant in which the serum calcium level is persistently normal but PTH levels are increased in the absence of an obvious inciting stimulus, is now recognized. The clinical presentation of PHPT varies from asymptomatic disease (seen in countries where biochemical screening is routine) to classic symptomatic disease in which renal and/or skeletal complications are observed. Management guidelines have recently been revised to help the clinician to decide on the merits of a parathyroidectomy or a non-surgical course. This Primer covers these areas with particular attention to the epidemiology, clinical presentations, genetics, evaluation and guidelines for the management of PHPT.
Collapse
|
27
|
Pardi E, Mariotti S, Pellegata NS, Benfini K, Borsari S, Saponaro F, Torregrossa L, Cappai A, Satta C, Mastinu M, Marcocci C, Cetani F. Functional characterization of a CDKN1B mutation in a Sardinian kindred with multiple endocrine neoplasia type 4 (MEN4). Endocr Connect 2015; 4:1-8. [PMID: 25416039 PMCID: PMC5713151 DOI: 10.1530/ec-14-0116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Inactivating germline mutations of the CDKN1B gene, encoding for the nuclear cyclin-dependent kinase inhibitor p27kip1 protein, have been reported in patients with multiple endocrine neoplasia type 4 (MEN4), a MEN1-like phenotype without MEN1 mutations. The aim of this study was to in vitro characterize the germline CDKN1B mutation c.374_375delCT (S125X) we detected in a patient with MEN4. The proband was affected by multiglandular primary hyperparathyroidism and gastro-entero-pancreatic tumors. We carried out subcellular localization experiments transfecting into eukaryotic HeLa and GH3 cell lines plasmid vectors expressing the CDKN1B wild type (wt) or mutant cDNA. Western blot studies showed that fusion proteins were expressed at equal levels. The mutated protein was shorter compared to the wt protein and lacked the highly conserved C-terminal domain, which includes the bipartite nuclear localization signal at amino acids 152/153 and 166/168. In HeLa and GH3 cells wt p27 localized in the nucleus whereas the p27_S125X protein was retained in the cytoplasm predicting the loss of tumor suppressive function. The proband's tumoral parathyroid tissue did not show allelic loss, since wt and mutant alleles were both present by sequencing the somatic DNA. Immunohistochemistry showed a complete loss of nuclear p27 expression in the parathyroid adenoma removed by the patient at the second surgery. In conclusion, our study confirms the pathogenic role of the c.374_375delCT CDKN1B germline mutation in a patient with MEN4.
Collapse
Affiliation(s)
- Elena Pardi
- E Pardi, Department of Clinical and Experimental Medicine, University of Pisa, Endocrine Unit 2, University Hospital of Pisa, Pisa, Italy
| | - Stefano Mariotti
- S Mariotti, Endocrinology Unit, Department of Medical Sciences "M Aresu", University of Cagliari, Cagliari, Italy
| | - Natalia S Pellegata
- N Pellegata, Institute of Pathology, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Katiuscia Benfini
- K Benfini, Institute of Pathology, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Simona Borsari
- S Borsari, Department of Clinical and Experimental Medicine, University of Pisa, Endocrine Unit 2, University Hospital of Pisa, Pisa, Italy
| | - Federica Saponaro
- F Saponaro, Department of Clinical and Experimental Medicine, University of Pisa, Endocrine Unit 2, University Hospital of Pisa, Pisa, Italy
| | - Liborio Torregrossa
- L Torregrossa, Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Antonello Cappai
- A Cappai, Endocrinology Unit, Department of Medical Sciences "M Aresu", University of Cagliari, Cagliari, Italy
| | - Chiara Satta
- C Satta, Endocrinology Unit, Department of Medical Sciences "M Aresu", University of Cagliari, Cagliari, Italy
| | - Marco Mastinu
- M Mastinu, Endocrinology Unit, Department of Medical Sciences "M Aresu", University of Cagliari, Cagliari, Italy
| | - Claudio Marcocci
- C Marcocci, Department of Clinical and Experimental Medicine, University of Pisa, Endocrine Unit 2, University Hospital of Pisa, Pisa, Italy
| | - Filomena Cetani
- F Cetani, Department of Clinical and Experimental Medicine, University of Pisa, Endocrine Unit 2, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
28
|
Costa-Guda J, Arnold A. Genetic and epigenetic changes in sporadic endocrine tumors: parathyroid tumors. Mol Cell Endocrinol 2014; 386:46-54. [PMID: 24035866 PMCID: PMC3943641 DOI: 10.1016/j.mce.2013.09.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 01/05/2023]
Abstract
Parathyroid neoplasia is most commonly due to benign parathyroid adenoma but rarely can be caused by malignant parathyroid carcinoma. Evidence suggests that parathyroid carcinomas rarely, if ever, evolve through an identifiable benign intermediate, with the notable exception of carcinomas associated with the familial hyperparathyroidism-jaw tumor syndrome. Several genes have been directly implicated in the pathogenesis of typical sporadic parathyroid adenoma; somatic mutations in the MEN1 tumor suppressor gene are the most frequent finding, and alterations in the cyclin D1/PRAD1 oncogene are also firmly established molecular drivers of sporadic adenomas. In addition, good evidence supports mutation in the CDKN1B/p27 cyclin-dependent kinase inhibitor (CDKI) gene, and in other CDKI genes as contributing to disease pathogenesis in this context. Somatic defects in additional genes, including β-catenin, POT1 and EZH2 may contribute to parathyroid adenoma formation but, for most, their ability to drive parathyroid tumorigenesis remains to be demonstrated experimentally. Further, genetic predisposition to sporadic presentations of parathyroid adenoma appears be conferred by rare, and probably low-penetrance, germline variants in CDKI genes and, perhaps, in other genes such as CASR and AIP. The HRPT2 tumor suppressor gene is commonly mutated in parathyroid carcinoma.
Collapse
Affiliation(s)
- Jessica Costa-Guda
- Center for Molecular Medicine and Division of Endocrinology & Metabolism, University of Connecticut School of Medicine, Farmington, CT 06030-3101, USA
| | - Andrew Arnold
- Center for Molecular Medicine and Division of Endocrinology & Metabolism, University of Connecticut School of Medicine, Farmington, CT 06030-3101, USA.
| |
Collapse
|
29
|
Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol 2014; 386:2-15. [PMID: 23933118 PMCID: PMC4082531 DOI: 10.1016/j.mce.2013.08.002] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 01/03/2023]
Abstract
Multiple endocrine neoplasia (MEN) is characterized by the occurrence of tumors involving two or more endocrine glands within a single patient. Four major forms of MEN, which are autosomal dominant disorders, are recognized and referred to as: MEN type 1 (MEN1), due to menin mutations; MEN2 (previously MEN2A) due to mutations of a tyrosine kinase receptor encoded by the rearranged during transfection (RET) protoncogene; MEN3 (previously MEN2B) due to RET mutations; and MEN4 due to cyclin-dependent kinase inhibitor (CDNK1B) mutations. Each MEN type is associated with the occurrence of specific tumors. Thus, MEN1 is characterized by the occurrence of parathyroid, pancreatic islet and anterior pituitary tumors; MEN2 is characterized by the occurrence of medullary thyroid carcinoma (MTC) in association with phaeochromocytoma and parathyroid tumors; MEN3 is characterized by the occurrence of MTC and phaeochromocytoma in association with a marfanoid habitus, mucosal neuromas, medullated corneal fibers and intestinal autonomic ganglion dysfunction, leading to megacolon; and MEN4, which is also referred to as MENX, is characterized by the occurrence of parathyroid and anterior pituitary tumors in possible association with tumors of the adrenals, kidneys, and reproductive organs. This review will focus on the clinical and molecular details of the MEN1 and MEN4 syndromes. The gene causing MEN1 is located on chromosome 11q13, and encodes a 610 amino-acid protein, menin, which has functions in cell division, genome stability, and transcription regulation. Menin, which acts as scaffold protein, may increase or decrease gene expression by epigenetic regulation of gene expression via histone methylation. Thus, menin by forming a subunit of the mixed lineage leukemia (MLL) complexes that trimethylate histone H3 at lysine 4 (H3K4), facilitates activation of transcriptional activity in target genes such as cyclin-dependent kinase (CDK) inhibitors; and by interacting with the suppressor of variegation 3-9 homolog family protein (SUV39H1) to mediate H3K methylation, thereby silencing transcriptional activity of target genes. MEN1-associated tumors harbor germline and somatic mutations, consistent with Knudson's two-hit hypothesis. Genetic diagnosis to identify individuals with germline MEN1 mutations has facilitated appropriate targeting of clinical, biochemical and radiological screening for this high risk group of patients for whom earlier implementation of treatments can then be considered. MEN4 is caused by heterozygous mutations of CDNK1B which encodes the 196 amino-acid CDK1 p27Kip1, which is activated by H3K4 methylation.
Collapse
Affiliation(s)
- Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom.
| |
Collapse
|
30
|
Abstract
Acromegaly is predominantly caused by a pituitary adenoma, which secretes an excess of GH resulting in increased IGF1 levels. Most of the GH assays used currently measure only the levels of the 22 kDa form of GH. In theory, the diagnostic sensitivity may be lower compared with the previous assays, which have used polyclonal antibodies. Many GH-secreting adenomas are plurihormonal and may co-secrete prolactin, TSH and α-subunit. Hyperprolactinaemia is found in 30-40% of patients with acromegaly, and hyperprolactinaemia may occasionally be diagnosed before acromegaly is apparent. Although trans-sphenoidal surgery of a GH-secreting adenoma remains the first treatment at most centres, the role of somatostatin analogues, octreotide long-acting repeatable and lanreotide Autogel as primary therapy is still the subject of some debate. Although the normalisation of GH and IGF1 levels is the main objective in all patients with acromegaly, GH and IGF1 levels may be discordant, especially during somatostatin analogue therapy. This discordance usually takes the form of high GH levels and an IGF1 level towards the upper limit of the normal range. Pasireotide, a new somatostatin analogue, may be more efficacious in some patients, but the drug has not yet been registered for acromegaly. Papers published on pasireotide have reported an increased risk of diabetes mellitus due to a reduction in insulin levels. Pegvisomant, the GH receptor antagonist, is indicated - alone or in combination with a somatostatin analogue - in most patients who fail to enter remission on a somatostatin analogue. Dopamine-D2-agonists may be effective as monotherapy in a few patients, but it may prove necessary to apply combination therapy involving a somatostatin analogue and/or pegvisomant.
Collapse
Affiliation(s)
- Marianne Andersen
- Department of Endocrinology, Odense University Hospital, Sønder Boulevard 29, 5000 Odense C, Denmark and Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
31
|
Lee M, Pellegata NS. Multiple endocrine neoplasia syndromes associated with mutation of p27. J Endocrinol Invest 2013; 36:781-7. [PMID: 23800691 DOI: 10.3275/9021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Multiple endocrine neoplasias (MEN) are autosomal dominant disorders characterized by the occurrence of tumors in at least two endocrine glands. Until recently, two MEN syndromes were known, i.e. the MEN type 1 (MEN1) and type 2 (MEN2), which are caused by germline mutations in the MEN1 and RET genes, respectively. These two syndromes are characterized by a different tumor spectrum. A few years ago we described a variant of the MEN syndromes, which spontaneously developed in a rat colony and was named MENX. Affected animals consistently develop multiple endocrine tumors, with a spectrum that shares features with both MEN1 and MEN2 human syndromes. Genetic studies identified a germline mutation in the Cdkn1b gene, encoding the p27 cell cycle inhibitor, as the causative mutation for MENX. Capitalizing on these findings, germline mutations in the human homologue, CDKN1B, were searched for and identified in patients with multiple endocrine tumors. As a consequence of this discovery, a novel human MEN syndrome, named MEN4, was recognized, which is caused by heterozygous mutations in p27. These studies identified Cdkn1b/CDKN1B as a novel tumor susceptibility gene for multiple endocrine tumors in both rats and humans. Here we review the characteristics of the MENX and MEN4 syndromes and we briefly address the main function of p27 and how it is affected by MENX- or MEN4-associated mutations.
Collapse
Affiliation(s)
- M Lee
- Institute of Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | | |
Collapse
|
32
|
Pardi E, Marcocci C, Borsari S, Saponaro F, Torregrossa L, Tancredi M, Raspini B, Basolo F, Cetani F. Aryl hydrocarbon receptor interacting protein (AIP) mutations occur rarely in sporadic parathyroid adenomas. J Clin Endocrinol Metab 2013; 98:2800-10. [PMID: 23633209 DOI: 10.1210/jc.2012-4029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT The molecular pathogenesis of primary hyperparathyroidism is still largely unknown. The aryl hydrocarbon receptor interacting protein (AIP) gene has a major role in the pathogenesis of familial isolated pituitary adenoma. OBJECTIVE We evaluated the involvement of the AIP gene in sporadic parathyroid adenomas. PATIENTS AND DESIGN We performed direct sequencing and multiplex ligation-dependent probe amplification analyses of the AIP gene in a large series of sporadic parathyroid adenomas. Loss of heterozygosity (LOH) at the AIP locus was studied, and aryl hydrocarbon receptor interacting protein immunostaining was also performed. In addition, alterations in the MEN1 gene were studied. RESULTS A somatic AIP mutation, substitution of arginine with glutamine at codon 304 (R304Q), was identified in 2 of 132 tumors. The mutation was germline in both cases despite the nonfamilial presentation. Heterozygous AIP large deletions were detected in 29 cases including 1 of the 2 mutated tumors, confirming a biallelic inactivation of the AIP gene. The AIP-mutated tumor with LOH showed decreased AIP immunostaining compared with normal parathyroid. LOH at the MEN1 locus, which often shared LOH at the AIP locus, was found in one third of tumors. Somatic MEN1 mutations were found in the 1 of the 2 AIP-mutated tumors and in 22 parathyroid adenomas. In addition, multiplex ligation-dependent probe amplification analysis revealed 1 large deletion of the MEN1 gene in 1 patient. CONCLUSIONS The AIP gene is rarely involved in parathyroid adenomas, but the germline nature of the mutations suggests that it might predispose to primary hyperparathyroidism. MEN1 gene alterations occur in a substantial proportion of sporadic parathyroid adenomas.
Collapse
Affiliation(s)
- Elena Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Current World Literature. Curr Opin Oncol 2013; 25:99-104. [DOI: 10.1097/cco.0b013e32835c1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Carroll RW. Multiple endocrine neoplasia type 1 (MEN1). Asia Pac J Clin Oncol 2012; 9:297-309. [DOI: 10.1111/ajco.12046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Richard W Carroll
- Endocrine, Diabetes and Research Centre; Wellington Regional Hospital; Wellington New Zealand
| |
Collapse
|
35
|
Erdas E, Aste N, Pilloni L, Nicolosi A, Licheri S, Cappai A, Mastinu M, Cetani F, Pardi E, Mariotti S, Pomata M. Functioning glucagonoma associated with primary hyperparathyroidism: multiple endocrine neoplasia type 1 or incidental association? BMC Cancer 2012; 12:614. [PMID: 23259638 PMCID: PMC3543729 DOI: 10.1186/1471-2407-12-614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diagnosis of multiple endocrine neoplasia type 1 (MEN1) is commonly based on clinical criteria, and confirmed by genetic testing. In patients without known MEN1-related germline mutations, the possibility of a casual association between two or more endocrine tumors cannot be excluded and subsequent management may be difficult to plan. We describe a very uncommon case of functioning glucagonoma associated with primary hyperparathyroidism (pHPT) in which genetic testing failed to detect germline mutations of MEN-1 and other known genes responsible for MEN1. CASE PRESENTATION The patient, a 65-year old woman, had been suffering for more than 1 year from weakness, progressive weight loss, angular cheilitis, glossitis and, more recently, skin rashes on the perineum, perioral skin and groin folds. After multidisciplinary investigations, functioning glucagonoma and asymptomatic pHPT were diagnosed and, since family history was negative, sporadic MEN1 was suspected. However, genetic testing revealed neither MEN-1 nor other gene mutations responsible for rarer cases of MEN1 (CDKN1B/p27 and other cyclin-dependent kinase inhibitor genes CDKN1A/p15, CDKN2C/p18, CDKN2B/p21). The patient underwent distal splenopancreatectomy and at the 4-month follow-up she showed complete remission of symptoms. Six months later, a thyroid nodule, suspected to be a malignant neoplasia, and two hyperfunctioning parathyroid glands were detected respectively by ultrasound with fine needle aspiration cytology and 99mTc-sestamibi scan with SPECT acquisition. Total thyroidectomy was performed, whereas selective parathyroidectomy was preferred to a more extensive procedure because the diagnosis of MEN1 was not supported by genetic analysis and intraoperative intact parathyroid hormone had revealed "adenoma-like" kinetics after the second parathyroid resection. Thirty-nine and 25 months after respectively the first and the second operation, the patient is well and shows no signs or symptoms of recurrence. CONCLUSIONS Despite well-defined diagnostic criteria and guidelines, diagnosis of MEN1 can still be challenging. When diagnosis is doubtful, appropriate management may be difficult to establish.
Collapse
Affiliation(s)
- Enrico Erdas
- General Surgery Unit, Department of Surgical Sciences, San Giovanni di Dio Hospital, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Martucci F, Trivellin G, Korbonits M. Familial isolated pituitary adenomas: an emerging clinical entity. J Endocrinol Invest 2012; 35:1003-14. [PMID: 23310926 DOI: 10.1007/bf03346742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Familial pituitary tumors are increasingly recognized. While some of these cases are related to wellknown syndromic conditions such as multiple endocrine neoplasia type 1 (MEN1) or Carney complex, others belong to the familial isolated pituitary adenoma (FIPA) patient group. The discovery of heterozygous, loss-of-function germline mutations in the gene encoding the aryl hydrocarbon receptor interacting protein (AIP) in 2006 has subsequently enabled the identification of a mutation in this gene in 20% of FIPA families and 20% of childhood-onset simplex soma- totroph adenomas. The exact mechanism by which the lack of AIP leads to pituitary adenomas is not clear. AIP mutations cause a low penetrance autosomal dominant disease with often a distinct phenotype characterized by young-onset, aggressive, large GH, mixed GH and PRL or PRL-secreting adenomas. This review aims to summarize currently available clinical data on AIP mutation-positive and negative FIPA patients.
Collapse
Affiliation(s)
- F Martucci
- Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | | | | |
Collapse
|
37
|
Ullmann U, Unuane D, Velkeniers B, Lissens W, Wuyts W, Bonduelle M. A new double substitution mutation in the MEN1 gene: a limited penetrance and a specific phenotype. Eur J Hum Genet 2012. [PMID: 23188049 DOI: 10.1038/ejhg.2012.241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal-dominant cancer syndrome that is caused by a germline mutation in the MEN1 gene encoding a tumour-suppressor protein, menin. MEN1 causes a combination of endocrine tumours such as parathyroid adenomas, pituitary adenomas, glucagonomas, gastrinomas, insulinomas, adrenocortical adenomas and non-endocrine tumours. We here present a large MEN1 family where the carriers developed mild hyperparathyroidism, multiple well-differentiated functionally active neuroendocrine tumours of the pancreas and no pituitary tumour. The causal mutation is a new double substitution in the coding region of exon 2 in the MEN1 gene c.[428T>A; 429C>T], p.Leu143His. This new mutation in the MEN1 gene is clinically relevant leading to a limited penetrance and specific phenotype.
Collapse
Affiliation(s)
- Urielle Ullmann
- Center for Medical Genetics UZ Brussel Hospital, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
38
|
Thakker RV, Newey PJ, Walls GV, Bilezikian J, Dralle H, Ebeling PR, Melmed S, Sakurai A, Tonelli F, Brandi ML. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab 2012; 97:2990-3011. [PMID: 22723327 DOI: 10.1210/jc.2012-1230] [Citation(s) in RCA: 860] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim was to provide guidelines for evaluation, treatment, and genetic testing for multiple endocrine neoplasia type 1 (MEN1). PARTICIPANTS The group, which comprised 10 experts, including physicians, surgeons, and geneticists from international centers, received no corporate funding or remuneration. PROCESS Guidelines were developed by reviews of peer-reviewed publications; a draft was prepared, reviewed, and rigorously revised at several stages; and agreed-upon revisions were incorporated. CONCLUSIONS MEN1 is an autosomal dominant disorder that is due to mutations in the tumor suppressor gene MEN1, which encodes a 610-amino acid protein, menin. Thus, the finding of MEN1 in a patient has important implications for family members because first-degree relatives have a 50% risk of developing the disease and can often be identified by MEN1 mutational analysis. MEN1 is characterized by the occurrence of parathyroid, pancreatic islet, and anterior pituitary tumors. Some patients may also develop carcinoid tumors, adrenocortical tumors, meningiomas, facial angiofibromas, collagenomas, and lipomas. Patients with MEN1 have a decreased life expectancy, and the outcomes of current treatments, which are generally similar to those for the respective tumors occurring in non-MEN1 patients, are not as successful because of multiple tumors, which may be larger, more aggressive, and resistant to treatment, and the concurrence of metastases. The prognosis for MEN1 patients might be improved by presymptomatic tumor detection and undertaking treatment specific for MEN1 tumors. Thus, it is recommended that MEN1 patients and their families should be cared for by multidisciplinary teams comprising relevant specialists with experience in the diagnosis and treatment of patients with endocrine tumors.
Collapse
Affiliation(s)
- Rajesh V Thakker
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Giacché M, Panarotto A, Mori L, Daffini L, Tacchetti MC, Pirola I, Agabiti Rosei E, Castellano M. A novel menin gene deletional mutation in a little series of Italian patients affected by apparently sporadic multiple endocrine neoplasia type 1 syndrome. J Endocrinol Invest 2012; 35:124-8. [PMID: 22490989 DOI: 10.1007/bf03345419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM To perform a genetic screening for the multiple endocrine neoplasia type 1 (MEN1) gene mutations in patients affected by an apparently sporadic form of the disease, referred to an internal medicine unit of a large general hospital. SUBJECTS AND METHODS In a group of 12 consecutive patients presenting clinical features of MEN type 1 syndrome, we performed a genetic screening for germline MEN1 gene mutations, including complete sequencing of the coding region (exons 2 to 10) and multiplex ligation-dependent probe amplification analysis for large deletion detection. RESULTS Among these patients affected by apparently sporadic MEN type 1 syndrome, a targeted clinical history could detect indirect support for a diagnosis of familial condition only in 2 cases. The genetic screening identified pathogenic germline MEN1 gene mutations in 3 patients (25%). A previously unknown 18 base-pair deletion within exon 3, c.564_581delCAATGGGGAGCAGACAGC, resulting in loss of 6 amino acids (pAsp189_Ala194del), was found in heterozygosis in a woman affected by primary hyperparathyroidism and multifocal pancreatic neoplasia. CONCLUSIONS Our results underscore the importance of performing genetic testing also in apparently sporadic MEN1 patients and extend the list of molecular variants leading to inactivation of the MEN1 gene.
Collapse
Affiliation(s)
- M Giacché
- Internal Medicine Division, Department of Medical and Surgical Sciences, University of Brescia – Spedali Civili of Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|