1
|
Ge G, Zhao W, Zhong Z, Huang Y, Hua Y, Chen K, Yu Y, Wu T, Lu Y, Yadav N, Zhang F. Acacetin ameliorates pressure overload-induced cardiac remodeling by targeting USP10 and inhibiting maladaptive cardiomyocyte autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156588. [PMID: 40118748 DOI: 10.1016/j.phymed.2025.156588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Numerous drugs have been developed to meet the critical demand for treatments inhibiting cardiac remodeling following cardiovascular disease. Acacetin is a flavonoid with potential therapeutic effects against various cardiovascular diseases. PURPOSE This study investigated the effect of acacetin on pressure overload-induced cardiac remodeling and its underlying molecular regulatory mechanisms. METHODS We simulated pressure overload-induced cardiac remodeling in male C57BL/6 mice by constricting the thoracic aortic arch and assessed the effect of acacetin on cardiac remodeling. RESULTS Acacetin significantly ameliorated cardiac remodeling by downregulating ubiquitin-specific peptidase 10 (USP10) protein expression and reducing autophagy levels in cardiomyocytes. These findings confirm that acacetin improves cardiac remodeling by suppressing cardiomyocyte autophagy and highlight the crucial role of USP10 in the Beclin 1 ubiquitination degradation-mediated inhibition of the cardiomyocyte autophagy signaling pathway. CONCLUSION These results suggest that acacetin is a promising candidate drug for the treatment of cardiac remodeling induced by pressure overload.
Collapse
Affiliation(s)
- Gaoyuan Ge
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, Jiangsu, PR China; Department of Cardiology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Hanjiang Middle Road 368, Yangzhou 225000, Jiangsu, PR China
| | - Wei Zhao
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, Jiangsu, PR China
| | - Zhuen Zhong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, Jiangsu, PR China
| | - Youfu Huang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, Jiangsu, PR China
| | - Yan Hua
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, Jiangsu, PR China
| | - Kaiyan Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, Jiangsu, PR China
| | - Yue Yu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, Jiangsu, PR China
| | - Tianyu Wu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, Jiangsu, PR China
| | - Yao Lu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, Jiangsu, PR China
| | - Nishant Yadav
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, Jiangsu, PR China
| | - Fengxiang Zhang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, Jiangsu, PR China.
| |
Collapse
|
2
|
Malik JA, Zafar MA, Singh S, Nanda S, Bashir H, Das DK, Lamba T, Khan MA, Kaur G, Agrewala JN. From defense to dysfunction: Autophagy's dual role in disease pathophysiology. Eur J Pharmacol 2024; 981:176856. [PMID: 39068979 DOI: 10.1016/j.ejphar.2024.176856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Autophagy is a fundamental pillar of cellular resilience, indispensable for maintaining cellular health and vitality. It coordinates the meticulous breakdown of cytoplasmic macromolecules as a guardian of cell metabolism, genomic integrity, and survival. In the complex play of biological warfare, autophagy emerges as a firm defender, bravely confronting various pathogenic, infectious, and cancerous adversaries. Nevertheless, its role transcends mere defense, wielding both protective and harmful effects in the complex landscape of disease pathogenesis. From the onslaught of infectious outbreaks to the devious progression of chronic lifestyle disorders, autophagy emerges as a central protagonist, convolutedly shaping the trajectory of cellular health and disease progression. In this article, we embark on a journey into the complicated web of molecular and immunological mechanisms that govern autophagy's profound influence over disease. Our focus sharpens on dissecting the impact of various autophagy-associated proteins on the kaleidoscope of immune responses, spanning the spectrum from infectious outbreaks to chronic lifestyle ailments. Through this voyage of discovery, we unveil the vast potential of autophagy as a therapeutic linchpin, offering tantalizing prospects for targeted interventions and innovative treatment modalities that promise to transform the landscape of disease management.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Adeel Zafar
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India; Division of Immunology, Boston Children's Hospital Harvard Medical School Boston, MA, 02115, USA; Department of Pediatrics, Harvard Medical School Boston, MA, 02115, USA
| | - Sanpreet Singh
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India; Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sidhanta Nanda
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Hilal Bashir
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Deepjyoti Kumar Das
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Taruna Lamba
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Affan Khan
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Gurpreet Kaur
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
| |
Collapse
|
3
|
Ayagama T, Charles PD, Bose SJ, Boland B, Priestman DA, Aston D, Berridge G, Fischer R, Cribbs AP, Song Q, Mirams GR, Amponsah K, Heather L, Galione A, Herring N, Kramer H, Capel RA, Platt FM, Schotten U, Verheule S, Burton RA. Compartmentalization proteomics revealed endolysosomal protein network changes in a goat model of atrial fibrillation. iScience 2024; 27:109609. [PMID: 38827406 PMCID: PMC11141153 DOI: 10.1016/j.isci.2024.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 06/04/2024] Open
Abstract
Endolysosomes (EL) are known for their role in regulating both intracellular trafficking and proteostasis. EL facilitate the elimination of damaged membranes, protein aggregates, membranous organelles and play an important role in calcium signaling. The specific role of EL in cardiac atrial fibrillation (AF) is not well understood. We isolated atrial EL organelles from AF goat biopsies and conducted a comprehensive integrated omics analysis to study the EL-specific proteins and pathways. We also performed electron tomography, protein and enzyme assays on these biopsies. Our results revealed the upregulation of the AMPK pathway and the expression of EL-specific proteins that were not found in whole tissue lysates, including GAA, DYNLRB1, CLTB, SIRT3, CCT2, and muscle-specific HSPB2. We also observed structural anomalies, such as autophagic-vacuole formation, irregularly shaped mitochondria, and glycogen deposition. Our results provide molecular information suggesting EL play a role in AF disease process over extended time frames.
Collapse
Affiliation(s)
- Thamali Ayagama
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Barry Boland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | | | - Daniel Aston
- Department of Anaesthesia and Critical Care, Royal Papworth Hospital NHS Foundation Trust, Papworth Road, Cambridge CB2 0AY, UK
| | | | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Adam P. Cribbs
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington OX3 7LD, UK
| | - Qianqian Song
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Gary R. Mirams
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kwabena Amponsah
- Centre for Mathematical Medicine & Biology, Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lisa Heather
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, , University of Oxford, South Park Road, Oxford OX1 3PT, UK
| | - Holger Kramer
- Mass spectrometry Facility, The MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | - Ulrich Schotten
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Sander Verheule
- Departments of Physiology and Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rebecca A.B. Burton
- Department of Pharmacology, University of Oxford, Oxford, UK
- University of Liverpool, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool, UK
| |
Collapse
|
4
|
Tantisuwat L, Saengklub N, Boonpala P, Kumphune S, Panyasing Y, Kalandakanond-Thongsong S, Kijtawornrat A. Sacubitril/valsartan mitigates cardiac remodeling, systolic dysfunction, and preserves mitochondrial quality in a rat model of mitral regurgitation. Sci Rep 2023; 13:11472. [PMID: 37455281 DOI: 10.1038/s41598-023-38694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Sacubitril/valsartan (SAC/VAL), an angiotensin receptor blocker-neprilysin inhibitor, has been widely used to treat several types of heart failure. Nevertheless, the effects of drugs in mitral regurgitation patients, from the molecular level to therapeutic effects, remain unclear. This study investigates the roles of SAC/VAL on cardiac function, mitochondrial quality, autophagy, mitophagy, and natriuretic peptides in a rat model of chronic mitral regurgitation. Male Sprague-Dawley rats underwent MR induction (n = 16) and sham surgeries (n = 8). Four weeks post-surgery confirmed MR rats were randomly divided into MR (n = 8) and SAC/VAL (n = 8) groups. The SAC/VAL group was administered SAC/VAL, whereas the MR and the sham rats received vehicle via oral gavage daily for 8 weeks. Cardiac geometry, function, and myocardial fibrosis were assessed by echocardiography and histopathology. Spectrophotometry and real-time PCR were performed to assess the pharmacological effects on mitochondrial quality, autophagy, mitophagy, and natriuretic peptides. MR rats demonstrated significant left heart dilation and left ventricular systolic dysfunction compared with the sham group, which could be significantly improved by SAC/VAL. In addition, SAC/VAL significantly reduced myocardial cardiac remodeling and fibrosis in MR rats. SAC/VAL improved the mitochondrial quality by attenuating mitochondrial reactive oxygen species production and mitochondrial depolarization compared with the MR group. Also, the upregulation of autophagy-related, mitophagy-related, and natriuretic peptide system gene expression in MR rats was attenuated by SAC/VAL treatment. In conclusion, this study demonstrated that SAC/VAL treatment could provide numerous beneficial effects in MR conditions, suggesting that this drug may be an effective treatment for MR.
Collapse
Affiliation(s)
- Lalida Tantisuwat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nakkawee Saengklub
- Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Pakit Boonpala
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, Thailand
- Biomedical Engineering and Innovation Research Centre, Chiang Mai University, Chiang Mai, Thailand
| | - Yaowalak Panyasing
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Chulalongkorn University Laboratory Animal Center (CULAC), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
5
|
Effect of WenXin KeLi on Improvement of Arrhythmia after Myocardial Infarction by Intervening PI3K-AKT-mTOR Autophagy Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2022970. [PMID: 36212955 PMCID: PMC9536921 DOI: 10.1155/2022/2022970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Background Myocardial infarction (MI) is an acute and serious cardiovascular disease. Arrhythmia after MI can lead to sudden cardiac death, which seriously affects the survival outcome of patients. WenXin KeLi is a Chinese patent medicine for the treatment of arrhythmia in a clinic, which can significantly improve symptoms of palpitation and play an important role in reducing the risk of arrhythmia after MI. In this study, we aimed to explore the pharmacological mechanism of WenXin KeLi in protecting the heart. Methods The MI model was established by ligating the left coronary artery and the ventricular fibrillation threshold (VFT) was measured by electrical stimulation. The expression of connexin43 (CX43) and autophagy-related protein were measured by Western Blot, and correlation analysis was conducted to study the relationship between cardiac autophagy, CX43, and arrhythmia in rats after MI. The effects of WenXin KeLi on arrhythmia, cardiac structure, and function in MI rats were respectively observed by electrical stimulation, cardiac gross section, Masson staining, and cardiac ultrasound. The effects of WenXin KeLi on the expression of phosphoinositide 3 kinase-protein kinase B-mammalian targets of rapamycin (PI3K-AKT-mTOR) autophagy pathway and CX43 were observed by Western Blot. Results After 4 weeks of MI, the VFT in the model group was significantly reduced, the expression levels of yeast ATG6 homolog (Beclin1), microtubule-associated protein 1A/1B-light chain 3 (LC3II/LC3I), and p-CX43 (S368) significantly increased, the expression of sequestosome-1(P62) and CX43 significantly decreased. LC3II/LC3I and Beclin1 expression were significantly negatively correlated with the VFT, and the expression of P62 and CX43 were significantly positively correlated with the VFT. LC3II/LC3I and Beclin1 expression were negatively correlated with CX43 expression, while P62 expression was positively correlated with CX43 expression. WenXin KeLi could significantly increase the VFT, reduce the deposition of collagen fibers, and increase the index levels of the left ventricular end-diastolic anterior wall (LVEDAW), interventricular septum end-diastolic (IVSED), left ventricular end-systolic anterior wall (LVESAW), interventricular septum end-systolic (IVSES), left ventricular end-diastolic posterior wall (LVEDPW), left ventricular end-systolic posterior wall (LVESPW), left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), and reduce the index levels of the left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic dimension (LVESD), left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV). WenXin KeLi could increase the expression of CX43, P62, AKT, p-PI3K, p-AKT (308), p-AKT (473), and p-mTOR and decrease the expression of LC3II/LC3I and Beclin1. Conclusion WenXin KeLi can activate the PI3K-AKT-mTOR signaling pathway, improve cardiac autophagy and Cx43 expression in rats after MI, reduce the risk of arrhythmia after MI, and play a cardioprotective role.
Collapse
|
6
|
Jing Y, Yang R, Chen W, Ye Q. Anti-Arrhythmic Effects of Sodium-Glucose Co-Transporter 2 Inhibitors. Front Pharmacol 2022; 13:898718. [PMID: 35814223 PMCID: PMC9263384 DOI: 10.3389/fphar.2022.898718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
Arrhythmias are clinically prevalent with a high mortality rate. They impose a huge economic burden, thereby substantially affecting the quality of life. Sodium-glucose co-transporter 2 inhibitor (SGLT2i) is a new type of hypoglycemic drug, which can regulate blood glucose level safely and effectively. Additionally, it reduces the occurrence and progression of heart failure and cardiovascular events significantly. Recently, studies have found that SGLT2i can alleviate the occurrence and progression of cardiac arrhythmias; however, the exact mechanism remains unclear. In this review, we aimed to discuss and summarize new literature on different modes in which SGLT2i ameliorates the occurrence and development of cardiac arrhythmias.
Collapse
|
7
|
Versaci F, Valenti V, Forte M, Cammisotto V, Nocella C, Bartimoccia S, Schirone L, Schiavon S, Vecchio D, D’Ambrosio L, Spinosa G, D’Amico A, Chimenti I, Violi F, Frati G, Pignatelli P, Sciarretta S, Pastori D, Carnevale R. Aging-Related Decline of Autophagy in Patients with Atrial Fibrillation-A Post Hoc Analysis of the ATHERO-AF Study. Antioxidants (Basel) 2022; 11:antiox11040698. [PMID: 35453383 PMCID: PMC9030744 DOI: 10.3390/antiox11040698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 01/02/2023] Open
Abstract
Background: Aging is an independent risk factor for cardiovascular diseases. The autophagy process may play a role in delaying aging and improving cardiovascular function in aging. Data regarding autophagy in atrial fibrillation (AF) patients are lacking. Methods: A post hoc analysis of the prospective ATHERO-AF cohort study, including 150 AF patients and 150 sex- and age-matched control subjects (CS), was performed. For the analysis, the population was divided into three age groups: <50−60, 61−70, and >70 years. Oxidative stress (Nox2 activity and hydrogen peroxide, H2O2), platelet activation (PA) by sP-selectin and CD40L, endothelial dysfunction (nitric oxide, NO), and autophagy parameters (P62 and ATG5 levels) were assessed. Results: Nox2 activity and H2O2 production were higher in the AF patients than in the CS; conversely, antioxidant capacity was decreased in the AF patients compared to the CS, as was NO production. Moreover, sP-selectin and CD40L were higher in the AF patients than in the CS. The autophagy process was also significantly impaired in the AF patients. We found a significant difference in oxidative stress, PA, NO production, and autophagy across the age groups. Autophagy markers correlated with oxidative stress, PA, and endothelial dysfunction in both groups. Conclusions: This study provides evidence that the autophagy process may represent a mechanism for increased cardiovascular risk in the AF population.
Collapse
Affiliation(s)
- Francesco Versaci
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy; (F.V.); (V.V.)
| | - Valentina Valenti
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy; (F.V.); (V.V.)
| | - Maurizio Forte
- IRCCS Neuromed, 86077 Pozzilli, Italy; (M.F.); (G.F.); (S.S.)
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (C.N.); (P.P.)
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (C.N.); (P.P.)
| | - Simona Bartimoccia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Leonardo Schirone
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Daniele Vecchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Luca D’Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Giulia Spinosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Alessandra D’Amico
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
| | - Isotta Chimenti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | | | - Giacomo Frati
- IRCCS Neuromed, 86077 Pozzilli, Italy; (M.F.); (G.F.); (S.S.)
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (C.N.); (P.P.)
- Mediterranea Cardiocentro, 80122 Naples, Italy;
| | - Sebastiano Sciarretta
- IRCCS Neuromed, 86077 Pozzilli, Italy; (M.F.); (G.F.); (S.S.)
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
| | - Daniele Pastori
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (V.C.); (C.N.); (P.P.)
- Correspondence: (D.P.); (R.C.); Tel.: +39-0649970941 (D.P.); +39-07731757245 (R.C.); Fax: +39-0649972309 (D.P.); +39-07731757245 (R.C.)
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.B.); (L.S.); (S.S.); (D.V.); (L.D.); (G.S.); (I.C.)
- Mediterranea Cardiocentro, 80122 Naples, Italy;
- Correspondence: (D.P.); (R.C.); Tel.: +39-0649970941 (D.P.); +39-07731757245 (R.C.); Fax: +39-0649972309 (D.P.); +39-07731757245 (R.C.)
| |
Collapse
|
8
|
Zhang T, Wu Y, Hu Z, Xing W, Kun LV, Wang D, Hu N. Small-Molecule Integrated Stress Response Inhibitor Reduces Susceptibility to Postinfarct Atrial Fibrillation in Rats via the Inhibition of Integrated Stress Responses. J Pharmacol Exp Ther 2021; 378:197-206. [PMID: 34215702 DOI: 10.1124/jpet.121.000491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/23/2021] [Indexed: 11/22/2022] Open
Abstract
Phosphorylation of the eukaryotic translation initiation factor 2 α-subunit, which subsequently upregulates activating transcription factor 4 (ATF4), is the core event in the integrated stress response (ISR) pathway. Previous studies indicate phosphorylation of eukaryotic translation initiation factor 2 ɑ-subunit in atrial tissue in response to atrial fibrillation (AF). This study investigated the role of ISR pathway in experimental AF by using a small-molecule ISR inhibitor (ISRIB). Accordingly, rats were subjected to coronary artery occlusion to induce myocardial infarction (MI), or sham operation, and received either trans-ISRIB (2 mg/kg/d, i.p.) or vehicle for seven days. Thereafter, animals were subjected to the AF inducibility test by transesophageal rapid burst pacing followed by procurement of left atrium (LA) for assessment of atrial fibrosis, inflammatory indices, autophagy-related proteins, ISR activation, ion channel, and connexin 43 expression. Results showed a significant increase in the AF vulnerability and the activation of ISR in LA as evidenced by enhanced eukaryotic translation initiation factor 2 ɑ-subunit phosphorylation. ISRIB treatment suppressed upregulation of ATF4, fibrosis as indexed by determination of α-smooth muscle actin and collagen levels, inflammatory macrophage infiltration (i.e., CD68 and inducible nitric oxide synthase/CD68-positive macrophage), and autophagy as determined by expression of light chain 3. Further, ISRIB treatment reversed the expression of relevant ion channel (i.e., the voltage-gated sodium channel 1.5 , L-type voltage-dependent calcium channel 1.2, and voltage-activated A-type potassium ion channel 4.3) and connexin 43 remodeling. Collectively, the results suggest that the ISR is a key pathway in pathogenesis of AF, post-MI, and represents a novel target for treatment of AF. SIGNIFICANCE STATEMENT: The activation of integrated stress response (ISR) pathway as evidenced by enhanced eukaryotic translation initiation factor 2 ɑ-subunit phosphorylation in left atrium plays a key role in atrial fibrillation (AF). ISR inhibitor (ISRIB) reduces AF occurrence and atrial proarrhythmogenic substrate. The beneficial action of ISRIB may be mediated by suppressing ISR pathway-related cardiac fibrosis, inflammatory macrophage infiltration, autophagy, and restoring the expression of ion channel and connexin 43. This study suggests a key dysfunctional role for ISR in pathogenesis of AF with implications for novel treatment.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| | - Yong Wu
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| | - Zhengtao Hu
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| | - Wen Xing
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| | - L V Kun
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| | - Deguo Wang
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| | - Nengwei Hu
- Department of Gerontology (T.Z., Y.W., Z.H., W.X., D.W., N.H.) and Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution (W.X., K.L., D.W., N.H.), First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, Anhui, China; Department of Psychology, Wannan Medical College, Wuhu, Anhui, China (T.Z.); and Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland (N.H.)
| |
Collapse
|
9
|
Enomoto H, Mittal N, Inomata T, Arimura T, Izumi T, Kimura A, Fukuda K, Makino S. Dilated cardiomyopathy-linked heat shock protein family D member 1 mutations cause up-regulation of reactive oxygen species and autophagy through mitochondrial dysfunction. Cardiovasc Res 2020; 117:1118-1131. [PMID: 32520982 DOI: 10.1093/cvr/cvaa158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/01/2019] [Accepted: 06/04/2020] [Indexed: 01/08/2023] Open
Abstract
AIMS During heart failure, the levels of circulatory heat shock protein family D member 1 (HSP60) increase. However, its underlying mechanism is still unknown. The apical domain of heat shock protein family D member 1 (HSPD1) is conserved throughout evolution. We found a point mutation in HSPD1 in a familial dilated cardiomyopathy (DCM) patient. A similar point mutation in HSPD1 in the zebrafish mutant, nbl, led to loss of its regenerative capacity and development of pericardial oedema under heat stress condition. In this study, we aimed to determine the direct involvement of HSPD1 in the development of DCM. METHODS AND RESULTS By Sanger method, we found a point mutation (Thr320Ala) in the apical domain of HSPD1, in one familial DCM patient, which was four amino acids away from the point mutation (Val324Glu) in the nbl mutant zebrafish. The nbl mutants showed atrio-ventricular block and sudden death at 8-month post-fertilization. Histological and microscopic analysis of the nbl mutant hearts showed decreased ventricular wall thickness, elevated level of reactive oxygen species (ROS), increased fibrosis, mitochondrial damage, and increased autophagosomes. mRNA and protein expression of autophagy-related genes significantly increased in nbl mutants. We established HEK293 stable cell lines of wild-type, nbl-type, and DCM-type HSPD1, with tetracycline-dependent expression. Compared to wild-type, both nbl- and DCM-type cells showed decreased cell growth, increased expression of ROS and autophagy-related genes, inhibition of the activity of mitochondrial electron transport chain complexes III and IV, and decreased mitochondrial fission and fusion. CONCLUSION Mutations in HSPD1 caused mitochondrial dysfunction and induced mitophagy. Mitochondrial dysfunction caused increased ROS and cardiac atrophy.
Collapse
Affiliation(s)
- Hirokazu Enomoto
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Nishant Mittal
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takayuki Inomata
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Takuro Arimura
- Department of Molecular Pathogenesis, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tohru Izumi
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinji Makino
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Health Center, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
10
|
Liu Y, Bai F, Liu N, Ouyang F, Liu Q. The Warburg effect: A new insight into atrial fibrillation. Clin Chim Acta 2019; 499:4-12. [PMID: 31473195 DOI: 10.1016/j.cca.2019.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. Atrial remodeling, including electrical/structural/autonomic remodeling, plays a vital role in AF pathogenesis. All of these have been shown to contribute continuously to the self-perpetuating nature of AF. The Warburg effect was found to play important roles in tumor and non-tumor disease. Recently, lots of studies documented altered atrial metabolism in AF, but the specific mechanism and the impact of these changes upon AF initiation/progression remain unclear. In this article, we review the metabolic consideration in AF comprehensively and observe the footprints of the Warburg effect. We also summarize the signaling pathway involved in the Warburg effect during AF-HIF-1α and AMPK, and discuss their potential roles in AF maintenance and progression. In conclusion, we give the innovative idea that the Warburg effect exists in AF and promotes the progression of AF. Targeting it may provide new therapies for AF treatment.
Collapse
Affiliation(s)
- Yaozhong Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Fan Bai
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Na Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Feifan Ouyang
- Department of Cardiology, Asklepios-Klinik St Georg, Hamburg, Germany
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Hunan Province, China.
| |
Collapse
|
11
|
Li J, Zhang D, Wiersma M, Brundel BJJM. Role of Autophagy in Proteostasis: Friend and Foe in Cardiac Diseases. Cells 2018; 7:cells7120279. [PMID: 30572675 PMCID: PMC6316637 DOI: 10.3390/cells7120279] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022] Open
Abstract
Due to ageing of the population, the incidence of cardiovascular diseases will increase in the coming years, constituting a substantial burden on health care systems. In particular, atrial fibrillation (AF) is approaching epidemic proportions. It has been identified that the derailment of proteostasis, which is characterized by the loss of homeostasis in protein biosynthesis, folding, trafficking, and clearance by protein degradation systems such as autophagy, underlies the development of common cardiac diseases. Among various safeguards within the proteostasis system, autophagy is a vital cellular process that modulates clearance of misfolded and proteotoxic proteins from cardiomyocytes. On the other hand, excessive autophagy may result in derailment of proteostasis and therefore cardiac dysfunction. Here, we review the interplay between autophagy and proteostasis in the healthy heart, discuss the imbalance between autophagy and proteostasis during cardiac diseases, including AF, and finally explore new druggable targets which may limit cardiac disease initiation and progression.
Collapse
Affiliation(s)
- Jin Li
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| | - Deli Zhang
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| | - Marit Wiersma
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Yuan Y, Zhao J, Gong Y, Wang D, Wang X, Yun F, Liu Z, Zhang S, Li W, Zhao X, Sun L, Sheng L, Pan Z, Li Y. Autophagy exacerbates electrical remodeling in atrial fibrillation by ubiquitin-dependent degradation of L-type calcium channel. Cell Death Dis 2018; 9:873. [PMID: 30158642 PMCID: PMC6115437 DOI: 10.1038/s41419-018-0860-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/16/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022]
Abstract
Autophagy, a bidirectional degradative process extensively occurring in eukaryotes, has been revealed as a potential therapeutic target for several cardiovascular diseases. However, its role in atrial fibrillation (AF) remains largely unknown. This study aimed to determine the role of autophagy in atrial electrical remodeling under AF condition. Here, we reported that autophagic flux was markedly activated in atria of persistent AF patients and rabbit model of atrial rapid pacing (RAP). We also observed that the key autophagy-related gene7 (ATG7) significantly upregulated in AF patients as well as tachypacing rabbits. Moreover, lentivirus-mediated ATG7 knockdown and overexpression in rabbits were employed to clarify the effects of autophagy on atrial electrophysiology via intracardiac operation and patch-clamp experiments. Lentivirus-mediated ATG7 knockdown or autophagy inhibitor chloroquine (CQ) restored the shortened atrial effective refractory period (AERP) and alleviated the AF vulnerability caused by tachypacing in rabbits. Conversely, ATG7 overexpression significantly promoted the incidence and persistence of AF and decreased L-type calcium channel (Cav1.2 α-subunits), along with abbreviated action potential duration (APD) and diminished L-type calcium current (ICa,L). Furthermore, the co-localization and interaction of Cav1.2 with LC3B-positive autophagosomes enhanced when autophagy was activated in atrial myocytes. Tachypacing-induced autophagic degradation of Cav1.2 required ubiquitin signal through the recruitment of ubiquitin-binding proteins RFP2 and p62, which guided Cav1.2 to autophagosomes. These findings suggest that autophagy induces atrial electrical remodeling via ubiquitin-dependent selective degradation of Cav1.2 and provide a novel and promising strategy for preventing AF development.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Jing Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China.,Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, 150001, Harbin, China
| | - Yongtai Gong
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Dingyu Wang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Xiaoyu Wang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Fengxiang Yun
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Zhaorui Liu
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Song Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Wenpeng Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Xinbo Zhao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Li Sun
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Li Sheng
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology, Harbin Medical University, 150081, Harbin, China
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, 150001, Harbin, China. .,Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, 150001, Harbin, China. .,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, 150081, Harbin, China.
| |
Collapse
|
13
|
Eberli D, Horst M, Mortezavi A, Andersson KE, Gobet R, Sulser T, Simon HU, Salemi S. Increased autophagy contributes to impaired smooth muscle function in neurogenic lower urinary tract dysfunction. Neurourol Urodyn 2018; 37:2414-2424. [PMID: 29797356 DOI: 10.1002/nau.23705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022]
Abstract
AIMS To explore whether autophagy plays a role in the remodeling of bladder smooth muscle cells (SMCs) in children with neurogenic lower urinary tract dysfunction (NLUTD), we investigated the effect of autophagy in NLUTD in the paediatric population. METHODS Bladder biopsies were taken from children with NLUTD and healthy donors as controls. Samples were labeled with the SMC markers calponin, smoothelin, and the autophagy proteins LC3, ATG5, and Beclin1. The contractile ability of bladder derived SMCs was investigated. RESULTS ATG5 gene and protein was upregulated in NLUTD muscle tissue compared to normal bladder. NLUTD muscle exhibited a punctated immunostaining pattern for LC3 in a subset of the SMCs, confirming the accumulation of autophagosomes. Pronounced elevation of ATG5 in the SMC in NLUTD tissue was associated with a downregulation of the key contractile proteins smoothelin and calponin. Pharmacological blocking of autophagy completely stopped the cells growth in normal bladder SMCs. Inhibition of autophagy in the NLUTD SMCs, with already elevated levels of ATG5, resulted in a reduction of ATG5 protein expression to the basal level found in normal controls. CONCLUSIONS Our study suggests that autophagy is an important factor affecting the remodeling of SMCs and the alteration of functionality in bladder smooth muscle tissue in the NLUTD. Since autophagy can be influenced by oral medication, this finding might lead to novel strategies preventing the deterioration of NLUTD muscle.
Collapse
Affiliation(s)
- Daniel Eberli
- Department of Urology, Laboratory for Tissue Engineering and Stem Cell Therapy, University Hospital Zürich, Zürich, Switzerland
| | - Maya Horst
- Division of Paediatric Urology, Department of Paediatric Surgery, University Children's Hospital, Zürich, Switzerland
| | - Ashkan Mortezavi
- Department of Urology, Laboratory for Tissue Engineering and Stem Cell Therapy, University Hospital Zürich, Zürich, Switzerland
| | - Karl-Erik Andersson
- Wake Forest University Health Sciences, Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston Salem, North Carolina
| | - Rita Gobet
- Division of Paediatric Urology, Department of Paediatric Surgery, University Children's Hospital, Zürich, Switzerland
| | - Tullio Sulser
- Department of Urology, Laboratory for Tissue Engineering and Stem Cell Therapy, University Hospital Zürich, Zürich, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Souzan Salemi
- Department of Urology, Laboratory for Tissue Engineering and Stem Cell Therapy, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Dai H, Wang X, Yin S, Zhang Y, Han Y, Yang N, Xu J, Sun L, Yuan Y, Sheng L, Gong Y, Li Y. Atrial Fibrillation Promotion in a Rat Model of Rheumatoid Arthritis. J Am Heart Assoc 2017; 6:JAHA.117.007320. [PMID: 29269354 PMCID: PMC5779041 DOI: 10.1161/jaha.117.007320] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background The prevalence of atrial fibrillation (AF) is significantly higher in rheumatoid arthritis (RA) patients, but the underlying mechanisms remain poorly understood. The goal of this study was to assess the effects of RA on AF susceptibility and atrial arrhythmogenic remodeling in a rat model of RA. Methods and Results Collagen‐induced arthritis was induced in rats by immunization with type II collagen in Freund's incomplete adjuvant. Among the rats that developed arthritis, AF susceptibility and atrial remodeling were examined 8 weeks after the primary immunization. AF inducibility and duration were substantially increased in collagen‐induced arthritis rats, and AF duration was significantly and positively correlated with the serum IL‐6 and TNF‐α levels. Rats with collagen‐induced arthritis showed prolonged atrial conduction time with no changes in the atrial effective refractory period. Atrial conduction delay was accompanied by significantly increased atrial fibrosis. In addition, atrial structural and autonomic remodeling, including left atrial dilation, apoptosis and autophagy of atrial myocytes, and atrial heterogeneous sympathetic hyperinnervation, was observed. Interestingly, we found that collagen‐induced arthritis had no significant effects on connexins, Nav1.5, and the main ion channels' protein expressions in atria. Conclusions We demonstrated that RA increased AF susceptibility by inducing AF‐promoting atrial remodeling. This study may provide insights into mechanisms underlying RA‐induced AF and validate a model that is suitable for further mechanistic and therapeutic exploration.
Collapse
Affiliation(s)
- Hui Dai
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaoyu Wang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shuangli Yin
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yun Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Han
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ning Yang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jicheng Xu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Sun
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Yuan
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Sheng
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yongtai Gong
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Wiersma M, Meijering RAM, Qi XY, Zhang D, Liu T, Hoogstra-Berends F, Sibon OCM, Henning RH, Nattel S, Brundel BJJM. Endoplasmic Reticulum Stress Is Associated With Autophagy and Cardiomyocyte Remodeling in Experimental and Human Atrial Fibrillation. J Am Heart Assoc 2017; 6:e006458. [PMID: 29066441 PMCID: PMC5721854 DOI: 10.1161/jaha.117.006458] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Derailment of proteostasis, the homeostasis of production, function, and breakdown of proteins, contributes importantly to the self-perpetuating nature of atrial fibrillation (AF), the most common heart rhythm disorder in humans. Autophagy plays an important role in proteostasis by degrading aberrant proteins and organelles. Herein, we investigated the role of autophagy and its activation pathway in experimental and clinical AF. METHODS AND RESULTS Tachypacing of HL-1 atrial cardiomyocytes causes a gradual and significant activation of autophagy, as evidenced by enhanced LC3B-II expression, autophagic flux and autophagosome formation, and degradation of p62, resulting in reduction of Ca2+ amplitude. Autophagy is activated downstream of endoplasmic reticulum (ER) stress: blocking ER stress by the chemical chaperone 4-phenyl butyrate, overexpression of the ER chaperone-protein heat shock protein A5, or overexpression of a phosphorylation-blocked mutant of eukaryotic initiation factor 2α (eIF2α) prevents autophagy activation and Ca2+-transient loss in tachypaced HL-1 cardiomyocytes. Moreover, pharmacological inhibition of ER stress in tachypaced Drosophila confirms its role in derailing cardiomyocyte function. In vivo treatment with sodium salt of phenyl butyrate protected atrial-tachypaced dog cardiomyocytes from electrical remodeling (action potential duration shortening, L-type Ca2+-current reduction), cellular Ca2+-handling/contractile dysfunction, and ER stress and autophagy; it also attenuated AF progression. Finally, atrial tissue from patients with persistent AF reveals activation of autophagy and induction of ER stress, which correlates with markers of cardiomyocyte damage. CONCLUSIONS These results identify ER stress-associated autophagy as an important pathway in AF progression and demonstrate the potential therapeutic action of the ER-stress inhibitor 4-phenyl butyrate.
Collapse
Affiliation(s)
- Marit Wiersma
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Roelien A M Meijering
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xiao-Yan Qi
- Department of Medicine, Montreal Heart Institute and Université de Montréal, the Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University of Duisburg-Essen, Duisburg, Germany
| | - Deli Zhang
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Femke Hoogstra-Berends
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ody C M Sibon
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, the Department of Pharmacology and Therapeutics, McGill University, Montreal, Québec, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University of Duisburg-Essen, Duisburg, Germany
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Abstract
The incidence and prevalence of cardiac diseases, which are the main cause of death worldwide, are likely to increase because of population ageing. Prevailing theories about the mechanisms of ageing feature the gradual derailment of cellular protein homeostasis (proteostasis) and loss of protein quality control as central factors. In the heart, loss of protein patency, owing to flaws in genetically-determined design or because of environmentally-induced 'wear and tear', can overwhelm protein quality control, thereby triggering derailment of proteostasis and contributing to cardiac ageing. Failure of protein quality control involves impairment of chaperones, ubiquitin-proteosomal systems, autophagy, and loss of sarcomeric and cytoskeletal proteins, all of which relate to induction of cardiomyocyte senescence. Targeting protein quality control to maintain cardiac proteostasis offers a novel therapeutic strategy to promote cardiac health and combat cardiac disease. Currently marketed drugs are available to explore this concept in the clinical setting.
Collapse
Affiliation(s)
- Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
17
|
Lekli I, Haines DD, Balla G, Tosaki A. Autophagy: an adaptive physiological countermeasure to cellular senescence and ischaemia/reperfusion-associated cardiac arrhythmias. J Cell Mol Med 2016; 21:1058-1072. [PMID: 27997746 PMCID: PMC5431132 DOI: 10.1111/jcmm.13053] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress placed on tissues that involved in pathogenesis of a disease activates compensatory metabolic changes, such as DNA damage repair that in turn causes intracellular accumulation of detritus and ‘proteotoxic stress’, leading to emergence of ‘senescent’ cellular phenotypes, which express high levels of inflammatory mediators, resulting in degradation of tissue function. Proteotoxic stress resulting from hyperactive inflammation following reperfusion of ischaemic tissue causes accumulation of proteinaceous debris in cells of the heart in ways that cause potentially fatal arrhythmias, in particular ventricular fibrillation (VF). An adaptive response to VF is occurrence of autophagy, an intracellular bulk degradation of damaged macromolecules and organelles that may restore cellular and tissue homoeostasis, improving chances for recovery. Nevertheless, depending on the type and intensity of stressors and inflammatory responses, autophagy may become pathological, resulting in excessive cell death. The present review examines the multilayered defences that cells have evolved to reduce proteotoxic stress by degradation of potentially toxic material beginning with endoplasmic reticulum‐associated degradation, and the unfolded protein response, which are mechanisms for removal from the endoplasmic reticulum of misfolded proteins, and then progressing through the stages of autophagy, including descriptions of autophagosomes and related vesicular structures which process material for degradation and autophagy‐associated proteins including Beclin‐1 and regulatory complexes. The physiological roles of each mode of proteotoxic defence will be examined along with consideration of how emerging understanding of autophagy, along with a newly discovered regulatory cell type called telocytes, may be used to augment existing strategies for the prevention and management of cardiovascular disease.
Collapse
Affiliation(s)
- Istvan Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - David Donald Haines
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Balla
- Department of Pediatrics, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.,Hemostasis, Thrombosis and Vascular Biology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Arpad Tosaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Chen MC, Chang JP, Lin YS, Pan KL, Ho WC, Liu WH, Chang TH, Huang YK, Fang CY, Chen CJ. Deciphering the gene expression profile of peroxisome proliferator-activated receptor signaling pathway in the left atria of patients with mitral regurgitation. J Transl Med 2016; 14:157. [PMID: 27250500 PMCID: PMC4890244 DOI: 10.1186/s12967-016-0871-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/19/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Differentially expressed genes in the left atria of mitral regurgitation (MR) pigs have been linked to peroxisome proliferator-activated receptor (PPAR) signaling pathway in the KEGG pathway. However, specific genes of the PPAR signaling pathway in the left atria of MR patients have never been explored. METHODS This study enrolled 15 MR patients with heart failure, 7 patients with aortic valve disease and heart failure, and 6 normal controls. We used PCR assay (84 genes) for PPAR pathway and quantitative RT-PCR to study specific genes of the PPAR pathway in the left atria. RESULTS Gene expression profiling analysis through PCR assay identified 23 genes to be differentially expressed in the left atria of MR patients compared to normal controls. The expressions of APOA1, ACADM, FABP3, ETFDH, ECH1, CPT1B, CPT2, SLC27A6, ACAA2, SMARCD3, SORBS1, EHHADH, SLC27A1, PPARGC1B, PPARA and CPT1A were significantly up-regulated, whereas the expression of PLTP was significantly down-regulated in the MR patients compared to normal controls. The expressions of HMGCS2, ACADM, FABP3, MLYCD, ECH1, ACAA2, EHHADH, CPT1A and PLTP were significantly up-regulated in the MR patients compared to patients with aortic valve disease. Notably, only ACADM, FABP3, ECH1, ACAA2, EHHADH, CPT1A and PLTP of the PPAR pathway were significantly differentially expressed in the MR patients compared to patients with aortic valve disease and normal controls. CONCLUSIONS Differentially expressed genes of the PPAR pathway have been identified in the left atria of MR patients compared with patients with aortic valve disease and normal controls.
Collapse
Affiliation(s)
- Mien-Cheng Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan.
| | - Jen-Ping Chang
- Division of Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Sheng Lin
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Kuo-Li Pan
- Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Wan-Chun Ho
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan
| | - Wen-Hao Liu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Yao-Kuang Huang
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Yuan Fang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan
| | - Chien-Jen Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 123 Ta Pei Road, Niao Sung District, Kaohsiung, 83301, Taiwan
| |
Collapse
|
19
|
Wiersma M, Henning RH, Brundel BJJM. Derailed Proteostasis as a Determinant of Cardiac Aging. Can J Cardiol 2016; 32:1166.e11-20. [PMID: 27345610 DOI: 10.1016/j.cjca.2016.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 01/12/2023] Open
Abstract
Age comprises the single most important risk factor for cardiac disease development. The incidence and prevalence of cardiac diseases, which represents the main cause of death worldwide, will increase even more because of the aging population. A hallmark of aging is that it is accompanied by a gradual derailment of proteostasis (eg, the homeostasis of protein synthesis, folding, assembly, trafficking, function, and degradation). Loss of proteostasis is highly relevant to cardiomyocytes, because they are postmitotic cells and therefore not constantly replenished by proliferation. The derailment of proteostasis during aging is thus an important factor that preconditions for the development of age-related cardiac diseases, such as atrial fibrillation. In turn, frailty of proteostasis in aging cardiomyocytes is exemplified by its accelerated derailment in multiple cardiac diseases. Here, we review 2 major components of the proteostasis network, the stress-responsive and protein degradation pathways, in healthy and aged cardiomyocytes. Furthermore, we discuss the relation between derailment of proteostasis and age-related cardiac diseases, including atrial fibrillation. Finally, we introduce novel therapeutic targets that might possibly attenuate cardiac aging and thus limit cardiac disease progression.
Collapse
Affiliation(s)
- Marit Wiersma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Zhang D, Hu X, Henning RH, Brundel BJJM. Keeping up the balance: role of HDACs in cardiac proteostasis and therapeutic implications for atrial fibrillation. Cardiovasc Res 2015; 109:519-26. [PMID: 26645980 DOI: 10.1093/cvr/cvv265] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/29/2015] [Indexed: 12/16/2022] Open
Abstract
Cardiomyocytes are long-lived post-mitotic cells with limited regenerative capacity. Proper cardiomyocyte function depends critically on the maintenance of a healthy homeostasis of protein expression, folding, assembly, trafficking, function, and degradation, together commonly referred to as proteostasis. Impairment of proteostasis has a prominent role in the pathophysiology of ageing-related neurodegenerative diseases including Huntington's, Parkinson's, and Alzheimer's disease. Emerging evidence reveals also a role for impaired proteostasis in the pathophysiology of common human cardiac diseases such as cardiac hypertrophy, dilated and ischaemic cardiomyopathies, and atrial fibrillation (AF). Histone deacetylases (HDACs) have recently been recognized as key modulators which control cardiac proteostasis by deacetylating various proteins. By deacetylating chromatin proteins, including histones, HDACs modulate epigenetic regulation of pathological gene expression. Also, HDACs exert a broad range of functions outside the nucleus by deacetylating structural and contractile proteins. The cytosolic actions of HDACs result in changed protein function through post-translational modifications and/or modulation of their degradation. This review describes the mechanisms underlying the derailment of proteostasis in AF and subsequently focuses on the role of HDACs herein. In addition, the therapeutic potential of HDAC inhibition to maintain a healthy proteostasis resulting in a delay in AF onset and progression is discussed.
Collapse
Affiliation(s)
- Deli Zhang
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, PO Box 30 001, 9700RB Groningen, The Netherlands
| | - Xu Hu
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, PO Box 30 001, 9700RB Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, PO Box 30 001, 9700RB Groningen, The Netherlands
| | - Bianca J J M Brundel
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, PO Box 30 001, 9700RB Groningen, The Netherlands Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Deroyer C, Magne J, Moonen M, Le Goff C, Dupont L, Hulin A, Radermecker M, Colige A, Cavalier E, Kolh P, Pierard L, Lancellotti P, Merville MP, Fillet M. New biomarkers for primary mitral regurgitation. Clin Proteomics 2015; 12:25. [PMID: 26405438 PMCID: PMC4581160 DOI: 10.1186/s12014-015-9097-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/14/2015] [Indexed: 12/24/2022] Open
Abstract
Background Mitral regurgitation is a frequent valvular heart disease affecting around 2.5 % of the population with prevalence directly related to aging. Degeneration of mitral valve is broadly considered as a passive ongoing pathophysiological process and little is known about its physiological deregulation. The purpose of this study was to highlight new biomarkers of mitral regurgitation in order to decipher the underlying pathological mechanism as well as to allow the diagnosis and the monitoring of the disease. Results Modulation of various blood proteins expression was examined in patients suffering from different grades of mitral regurgitation (mild, moderate and severe) compared to healthy controls. To this end, several routine clinical assays and the multi analyte profile technology targeting 184 proteins were used. High-density lipoprotein, apolipoprotein-A1, haptoglobin and haptoglobin-α2 chain levels significantly decreased proportionally to the degree of mitral regurgitation when compared to controls. High-density lipoprotein and apolipoprotein-A1 levels were associated with effective regurgitant orifice area and regurgitant volume. Apolipoprotein-A1 was an independent predictor of severe mitral regurgitation. Moreover, with ordinal logistic regression, apolipoprotein-A1 remained the only independent factor associated with mitral regurgitation. In addition, myxomatous mitral valves were studied by immunocytochemistry. We observed an increase of LC3, the marker of autophagy, in myxomatous mitral valves compared with healthy mitral valves. Conclusion These potential biomarkers of mitral regurgitation highlighted different cellular processes that could be modified in myxomatous degenerescence: reverse cholesterol transport, antioxidant properties and autophagy. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9097-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Céline Deroyer
- GIGA Proteomic Unit, Clinical Chemistry Laboratory, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Julien Magne
- GIGA Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Marie Moonen
- GIGA Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Caroline Le Goff
- Department of Clinical Chemistry, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Laura Dupont
- GIGA-Cancer, Laboratory of Connective Tissues Biology, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Alexia Hulin
- GIGA-Cancer, Laboratory of Connective Tissues Biology, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Marc Radermecker
- Department of Cardiovascular and Thoracic Surgery and Human Anatomy, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Alain Colige
- GIGA-Cancer, Laboratory of Connective Tissues Biology, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Philippe Kolh
- Department of Biomedical and Preclinical Sciences, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Luc Pierard
- GIGA Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Patrizio Lancellotti
- GIGA Cardiovascular Sciences, Department of Cardiology, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Marie-Paule Merville
- Department of Clinical Chemistry, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| | - Marianne Fillet
- GIGA Proteomic Unit, Clinical Chemistry Laboratory, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium ; Laboratory for the Analysis of Medicines, CIRM, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium
| |
Collapse
|
22
|
Chen MC, Chang JP, Chang TH, Hsu SD, Huang HD, Ho WC, Wang FS, Hsiao CC, Liu WH. Unraveling regulatory mechanisms of atrial remodeling of mitral regurgitation pigs by gene expression profiling analysis: role of type I angiotensin II receptor antagonist. Transl Res 2015; 165:599-620. [PMID: 25500755 DOI: 10.1016/j.trsl.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022]
Abstract
Left atrial enlargement associated with mitral regurgitation (MR) predicts a poor prognosis. However, the underlying regulatory mechanisms of atrial remodeling remain unclear. We used high-density oligonucleotide microarrays and enrichment analysis to identify the alteration of RNA expression pattern and biological processes involved in the atrial remodeling of pigs with and without MR. Gene arrays from left atria tissues were compared in 13 pigs (iatrogenic MR pigs [n = 6], iatrogenic MR pigs treated with valsartan [n = 4], and pigs without MR [n = 3]). A total of 22 genes were differentially upregulated by altered fold change >2.0 (Log2FC > 1), and 49 genes were differentially downregulated by altered fold change <0.5 (Log2FC < -1) in the left atria of the MR pigs compared with the pigs without MR. Enrichment analysis showed that renin-angiotensin system was identified in the Kyoto Encyclopedia of Genes and Genomes pathway. Notably, 12 of the 22 upregulated genes were identified to be downregulated by valsartan and 10 of the 49 downregulated genes were identified to be upregulated by valsartan. The tissue concentrations of angiotensin II and gene expression of hypertrophic gene, myosin regulatory light chain 2, ventricular isoforms, and fibrosis-related genes were significantly increased in the MR pigs compared with pigs without MR. In conclusion, differentially expressed transcriptome and related biological pathways have been identified in the left atria of the MR pigs compared with pigs without MR. Additionally, some of the differentially expressed genes could be regulated by type I angiotensin II receptor blocker.
Collapse
Affiliation(s)
- Mien-Cheng Chen
- Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Jen-Ping Chang
- Division of Cardiovascular Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Da Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Wan-Chun Ho
- Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Department of Medical Research, Graduate institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chang-Chun Hsiao
- Department of Medical Research, Graduate institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Hao Liu
- Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, despite the significant advances in medicine. Autophagy, a process of self-cannibalization employed by mammalian cells for the recycling of cellular contents, is altered not only in a number of CVDs, but in other diseases, as well. Many FDA-approved drugs are known to induce autophagy-mediated side effects in the cardiovascular system. In some cases, such drug-induced autophagy could be harnessed and used for treating CVD, greatly reducing the duration and cost of CVD treatments. However, because the induction of autophagy in cardiovascular targets can be both adaptive and maladaptive under specific settings, the challenge is to determine whether the changes stimulated by drug-induced autophagy are, in fact, beneficial. In this review, we surveyed a number of CVDs in which autophagy is known to occur, and we also address the role of FDA-approved drugs for which autophagy-mediated side effects occur within the cardiovascular system. The therapeutic potential of using small molecule modulators of autophagy in the management of CVD progression is discussed.
Collapse
|
24
|
Yuan Y, Zhao J, Yan S, Wang D, Zhang S, Yun F, Zhao H, Sun L, Liu G, Ding X, Liu L, Li Y. Autophagy: a potential novel mechanistic contributor to atrial fibrillation. Int J Cardiol 2014; 172:492-4. [PMID: 24485634 DOI: 10.1016/j.ijcard.2014.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/07/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Yue Yuan
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jing Zhao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Sen Yan
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Dingyu Wang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Song Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Fengxiang Yun
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Hongwei Zhao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Li Sun
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Guangzhong Liu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xue Ding
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Lei Liu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
25
|
Wong A, Grubb DR, Cooley N, Luo J, Woodcock EA. Regulation of autophagy in cardiomyocytes by Ins(1,4,5)P(3) and IP(3)-receptors. J Mol Cell Cardiol 2012; 54:19-24. [PMID: 23137780 DOI: 10.1016/j.yjmcc.2012.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/19/2012] [Accepted: 10/24/2012] [Indexed: 12/11/2022]
Abstract
Autophagy is a process that removes damaged proteins and organelles and is of particular importance in terminally differentiated cells such as cardiomyocytes, where it has primarily a protective role. We investigated the involvement of inositol(1,4,5)trisphosphate (Ins(1,4,5)P(3)) and its receptors in autophagic responses in neonatal rat ventricular myocytes (NRVM). Treatment with the IP(3)-receptor (IP(3)-R) antagonist 2-aminoethoxydiphenyl borate (2-APB) at 5 or 20 μmol/L resulted in an increase in autophagosome content, defined as puncta labeled by antibody to microtubule associated light chain 3 (LC3). 2-APB also increased autophagic flux, indicated by heightened LC3II accumulation, which was further enhanced by bafilomycin (10nmol/L). Expression of Ins(1,4,5)P(3) 5-phosphatase (IP(3)-5-Pase) to deplete Ins(1,4,5)P(3) also increased LC3-labeled puncta and LC3II content, suggesting that Ins(1,4,5)P(3) inhibits autophagy. The IP(3)-R can act as an inhibitory scaffold sequestering the autophagic effector, beclin-1 to its ligand binding domain (LBD). Expression of GFP-IP(3)-R-LBD inhibited autophagic signaling and furthermore, beclin-1 co-immunoprecipitated with the IP(3)-R-LBD. A mutant GFP-IP(3)-R-LBD with reduced ability to bind Ins(1,4,5)P(3) bound beclin-1 and inhibited autophagy similarly to the wild type sequence. These data provide evidence that Ins(1,4,5)P(3) and IP(3)-R act as inhibitors of autophagic responses in cardiomyocytes. By suppressing autophagy, IP(3)-R may contribute to cardiac pathology.
Collapse
Affiliation(s)
- Albert Wong
- Molecular Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
| | | | | | | | | |
Collapse
|