1
|
Hofbauer L, Pleyer LM, Reiter F, Schleiffer A, Vlasova A, Serebreni L, Huang A, Stark A. A genome-wide screen identifies silencers with distinct chromatin properties and mechanisms of repression. Mol Cell 2024; 84:4503-4521.e14. [PMID: 39571581 DOI: 10.1016/j.molcel.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 12/08/2024]
Abstract
Differential gene transcription enables development and homeostasis in all animals and is regulated by two major classes of distal cis-regulatory DNA elements (CREs): enhancers and silencers. Although enhancers have been thoroughly characterized, the properties and mechanisms of silencers remain largely unknown. By an unbiased genome-wide functional screen in Drosophila melanogaster S2 cells, we discover a class of silencers that bind one of three transcription factors (TFs) and are generally not included in chromatin-defined CRE catalogs as they mostly lack detectable DNA accessibility. The silencer-binding TF CG11247, which we term Saft, safeguards cell fate decisions in vivo and functions via a highly conserved domain we term zinc-finger-associated C-terminal (ZAC) and the corepressor G9a, independently of G9a's H3K9-methyltransferase activity. Overall, our identification of silencers with unexpected properties and mechanisms has important implications for the understanding and future study of repressive CREs, as well as the functional annotation of animal genomes.
Collapse
Affiliation(s)
- Lorena Hofbauer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Lisa-Marie Pleyer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Franziska Reiter
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Anna Vlasova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Leonid Serebreni
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Annie Huang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
2
|
Yheskel M, Castiglione MA, Kelly RD, Sidoli S, Secombe J. The histone demethylase KDM5 has insulator activity in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626780. [PMID: 39677601 PMCID: PMC11642926 DOI: 10.1101/2024.12.04.626780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
KDM5 family proteins are best known for their demethylation of the promoter proximal chromatin mark H3K4me3. KDM5-regulated transcription is critical in the brain, with variants in the X-linked paralog KDM5C causing the intellectual disability (ID) disorder Claes-Jensen syndrome. Although the demethylase activity of KDM5C is known to be important for neuronal function, the contribution of non-enzymatic activities remain less characterized. We therefore used Drosophila to model the ID variant Kdm5 L854F , which disrupts a C5HC2 zinc finger adjacent to the enzymatic JmjC domain. Kdm5 L854F causes similar transcriptional changes in the brain to a demethylase dead strain, Kdm5 J1310C * , despite having little effect on enzymatic activity. KDM5 L854F is also distinct from KDM5 J1310C * in its reduced interactions with insulator proteins and enhancement of position effect variegation. Instead, the common transcriptional deficits likely result from both the JmjC and C5HC2 domains driving proper genomic organization through their activity in promoting proper loop architecture.
Collapse
|
3
|
Romanov SE, Shloma VV, Maksimov DA, Koryakov DE. SetDB1 and Su(var)3-9 are essential for late stages of larval development of Drosophila melanogaster. Chromosome Res 2023; 31:35. [PMID: 38099968 DOI: 10.1007/s10577-023-09743-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Methylation of H3K9 histone residue is a marker of gene silencing in eukaryotes. Three enzymes responsible for adding this modification - G9a, SetDB1/Egg, and Su(var)3-9 - are known in Drosophila. To understand how simultaneous mutations of SetDB1 and Su(var)3-9 may affect the fly development, appropriate combinations were obtained. Double mutants egg; Su(var)3-9 displayed pronounced embryonic lethality, slower larval growth and died before or during metamorphosis. Analysis of transcription in larval salivary glands and wing imaginal disks indicated that the effect of double mutation is tissue-specific. In salivary gland chromosomes, affected genes display low H3K9me2 enrichment and are rarely bound by SetDB1 or Su(var)3-9. We suppose that each of these enzymes directly or indirectly controls its own set of gene targets in different organs, and double mutation results in an imbalanced developmental program. This also indicates that SetDB1 and Su(var)3-9 may affect transcription via H3K9-independent mechanisms. Unexpectedly, in double and triple mutants, amount of di- and tri-methylated H3K9 is drastically reduced, but not completely absent. We hypothesize that this residual methylation implies the existence of additional H3K9-specific methyltransferase in Drosophila.
Collapse
Affiliation(s)
- Stanislav E Romanov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Viktor V Shloma
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Dmitry E Koryakov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia.
| |
Collapse
|
4
|
Deshpande N, Bryk M. Diverse and dynamic forms of gene regulation by the S. cerevisiae histone methyltransferase Set1. Curr Genet 2023; 69:91-114. [PMID: 37000206 DOI: 10.1007/s00294-023-01265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023]
Abstract
Gene transcription is an essential and highly regulated process. In eukaryotic cells, the structural organization of nucleosomes with DNA wrapped around histone proteins impedes transcription. Chromatin remodelers, transcription factors, co-activators, and histone-modifying enzymes work together to make DNA accessible to RNA polymerase. Histone lysine methylation can positively or negatively regulate gene transcription. Methylation of histone 3 lysine 4 by SET-domain-containing proteins is evolutionarily conserved from yeast to humans. In higher eukaryotes, mutations in SET-domain proteins are associated with defects in the development and segmentation of embryos, skeletal and muscle development, and diseases, including several leukemias. Since histone methyltransferases are evolutionarily conserved, the mechanisms of gene regulation mediated by these enzymes are also conserved. Budding yeast Saccharomyces cerevisiae is an excellent model system to study the impact of histone 3 lysine 4 (H3K4) methylation on eukaryotic gene regulation. Unlike larger eukaryotes, yeast cells have only one enzyme that catalyzes H3K4 methylation, Set1. In this review, we summarize current knowledge about the impact of Set1-catalyzed H3K4 methylation on gene transcription in S. cerevisiae. We describe the COMPASS complex, factors that influence H3K4 methylation, and the roles of Set1 in gene silencing at telomeres and heterochromatin, as well as repression and activation at euchromatic loci. We also discuss proteins that "read" H3K4 methyl marks to regulate transcription and summarize alternate functions for Set1 beyond H3K4 methylation.
Collapse
Affiliation(s)
- Neha Deshpande
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mary Bryk
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Jan S, Dar MI, Wani R, Sandey J, Mushtaq I, Lateef S, Syed SH. Targeting EHMT2/ G9a for cancer therapy: Progress and perspective. Eur J Pharmacol 2020; 893:173827. [PMID: 33347828 DOI: 10.1016/j.ejphar.2020.173827] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Euchromatic histone lysine methyltransferase-2, also known as G9a, is a ubiquitously expressed SET domain-containing histone lysine methyltransferase linked with both facultative and constitutive heterochromatin formation and transcriptional repression. It is an essential developmental gene and reported to play role in embryonic development, establishment of proviral silencing in ES cells, tumor cell growth, metastasis, T-cell immune response, cocaine induced neural plasticity and cognition and adaptive behavior. It is mainly responsible for carrying out mono, di and tri methylation of histone H3K9 in euchromatin. G9a levels are elevated in many cancers and its selective inhibition is known to reduce the cell growth and induce autophagy, apoptosis and senescence. We carried out a thorough search of online literature databases including Pubmed, Scopus, Journal websites, Clinical trials etc to gather the maximum possible information related to the G9a. The main messages from the cited papers are presented in a systematic manner. Chemical structures were drawn by Chemdraw software. In this review, we shed light on current understanding of structure and biological activity of G9a, the molecular events directing its targeting to genomic regions and its post-translational modification. Finally, we discuss the current strategies to target G9a in different cancers and evaluate the available compounds and agents used to inhibit G9a functions. The review provides the present status and future directions of research in targeting G9a and provides the basis to persuade the development of novel strategies to target G9a -related effects in cancer cells.
Collapse
Affiliation(s)
- Suraya Jan
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Ishaq Dar
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rubiada Wani
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagjeet Sandey
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Iqra Mushtaq
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sammar Lateef
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sajad Hussain Syed
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Masuko K, Fuse N, Komaba K, Katsuyama T, Nakajima R, Furuhashi H, Kurata S. winged eye Induces Transdetermination of Drosophila Imaginal Disc by Acting in Concert with a Histone Methyltransferase, Su(var)3-9. Cell Rep 2019; 22:206-217. [PMID: 29298422 DOI: 10.1016/j.celrep.2017.11.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 07/12/2017] [Accepted: 11/29/2017] [Indexed: 12/23/2022] Open
Abstract
Drosophila imaginal disc cells exhibit a remarkable ability to convert cell fates in response to various perturbations, a phenomenon called transdetermination (TD). We previously identified winged eye (wge) as a factor that induces eye-to-wing TD upon overexpression in eye imaginal discs, but the molecular mechanisms underlying TD have remained largely unclear. Here, we found that wge induces various histone modifications and enhances the methylation of Lys9 on histone H3 (H3K9), a feature of heterochromatin. A histone methyltransferase, Su(var)3-9, is required for wge-mediated H3K9 methylation and eye-to-wing TD. Su(var)3-9 is also required for classical wound-induced TD but not for normal development, suggesting its involvement in several types of imaginal disc TDs. Transcriptome analysis revealed that wge represses eye identity genes independently of Su(var)3-9 and activates TD-related genes by acting together with Su(var)3-9. These findings provide new insights into diverse types of chromatin regulation at progressive steps of cell-fate conversions.
Collapse
Affiliation(s)
- Keita Masuko
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kanae Komaba
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tomonori Katsuyama
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Rumi Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hirofumi Furuhashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
7
|
|
8
|
Shimaji K, Tanaka R, Maeda T, Ozaki M, Yoshida H, Ohkawa Y, Sato T, Suyama M, Yamaguchi M. Histone methyltransferase G9a is a key regulator of the starvation-induced behaviors in Drosophila melanogaster. Sci Rep 2017; 7:14763. [PMID: 29116191 PMCID: PMC5676964 DOI: 10.1038/s41598-017-15344-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023] Open
Abstract
Organisms have developed behavioral strategies to defend themselves from starvation stress. Despite of their importance in nature, the underlying mechanisms have been poorly understood. Here, we show that Drosophila G9a (dG9a), one of the histone H3 Lys 9-specific histone methyltransferases, functions as a key regulator for the starvation-induced behaviors. RNA-sequencing analyses utilizing dG9a null mutant flies revealed that the expression of some genes relating to gustatory perception are regulated by dG9a under starvation conditions. Reverse transcription quantitative-PCR analyses showed that the expression of gustatory receptor genes for sensing sugar are up-regulated in starved dG9a null mutant. Consistent with this, proboscis extension reflex tests indicated that dG9a depletion increased the sensitivity to sucrose under starvation conditions. Furthermore, the locomotion activity was promoted in starved dG9a null mutant. We also found that dG9a depletion down-regulates the expression of insulin-like peptide genes that are required for the suppression of starvation-induced hyperactivity. Furthermore, refeeding of wild type flies after starvation conditions restores the hyperactivity and increased sensitivity to sucrose as well as dG9a expression level. These data suggest that dG9a functions as a key regulator for the decision of behavioral strategies under starvation conditions.
Collapse
Affiliation(s)
- Kouhei Shimaji
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ryo Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Toru Maeda
- Department of Biology, Graduate School of Science, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Mamiko Ozaki
- Department of Biology, Graduate School of Science, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Maidashi, Fukuoka, 812-8582, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Maidashi, Fukuoka, 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Maidashi, Fukuoka, 812-8582, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan. .,The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
9
|
Maksimov DA, Laktionov PP, Posukh OV, Belyakin SN, Koryakov DE. Genome-wide analysis of SU(VAR)3-9 distribution in chromosomes of Drosophila melanogaster. Chromosoma 2017; 127:85-102. [DOI: 10.1007/s00412-017-0647-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
|
10
|
Epigenetic regulation of starvation-induced autophagy in Drosophila by histone methyltransferase G9a. Sci Rep 2017; 7:7343. [PMID: 28779125 PMCID: PMC5544687 DOI: 10.1038/s41598-017-07566-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/30/2017] [Indexed: 11/13/2022] Open
Abstract
Epigenetics is now emerging as a key regulation in response to various stresses. We herein identified the Drosophila histone methyltransferase G9a (dG9a) as a key factor to acquire tolerance to starvation stress. The depletion of dG9a led to high sensitivity to starvation stress in adult flies, while its overexpression induced starvation stress resistance. The catalytic domain of dG9a was not required for starvation stress resistance. dG9a plays no apparent role in tolerance to other stresses including heat and oxidative stresses. Metabolomic approaches were applied to investigate global changes in the metabolome due to the loss of dG9a during starvation stress. The results obtained indicated that dG9a plays an important role in maintaining energy reservoirs including amino acid, trehalose, glycogen, and triacylglycerol levels during starvation. Further investigations on the underlying mechanisms showed that the depletion of dG9a repressed starvation-induced autophagy by controlling the expression level of Atg8a, a critical gene for the progression of autophagy, in a different manner to that in cancer cells. These results indicate a positive role for dG9a in starvation-induced autophagy.
Collapse
|
11
|
Shimaji K, Konishi T, Yoshida H, Kimura H, Yamaguchi M. Genome-wide genetic screen identified the link between dG9a and epidermal growth factor receptor signaling pathway in vivo. Exp Cell Res 2016; 346:53-64. [PMID: 27343629 DOI: 10.1016/j.yexcr.2016.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
G9a is one of the histone H3 Lys 9 (H3K9) specific methyltransferases first identified in mammals. Drosophila G9a (dG9a) has been reported to induce H3K9 dimethylation in vivo, and the target genes of dG9a were identified during embryonic and larval stages. Although dG9a is important for a variety of developmental processes, the link between dG9a and signaling pathways are not addressed yet. Here, by genome-wide genetic screen, taking advantage of the rough eye phenotype of flies that over-express dG9a in eye discs, we identified 16 genes that enhanced the rough eye phenotype induced by dG9a over-expression. These 16 genes included Star, anterior open, bereft and F-box and leucine-rich repeat protein 6 which are components of epidermal growth factor receptor (EGFR) signaling pathway. When dG9a over-expression was combined with mutation of Star, differentiation of R7 photoreceptors in eye imaginal discs as well as cone cells and pigment cells in pupal retinae was severely inhibited. Furthermore, the dG9a over-expression reduced the activated ERK signals in eye discs. These data demonstrate a strong genetic link between dG9a and the EGFR signaling pathway.
Collapse
Affiliation(s)
- Kouhei Shimaji
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takahiro Konishi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
12
|
Sienski G, Batki J, Senti KA, Dönertas D, Tirian L, Meixner K, Brennecke J. Silencio/CG9754 connects the Piwi-piRNA complex to the cellular heterochromatin machinery. Genes Dev 2015; 29:2258-71. [PMID: 26494711 PMCID: PMC4647559 DOI: 10.1101/gad.271908.115] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022]
Abstract
In this study, Sienski et al. characterize CG9754/Silencio as an essential piRNA pathway factor that is required for Piwi's nuclear function in guiding the transcriptional silencing of transposons. These results provide novel insight into the transcriptional silencing process downstream from Piwi and the regulation of piRNA-guided heterochromatin formation. The repression of transposable elements in eukaryotes often involves their transcriptional silencing via targeted chromatin modifications. In animal gonads, nuclear Argonaute proteins of the PIWI clade complexed with small guide RNAs (piRNAs) serve as sequence specificity determinants in this process. How binding of nuclear PIWI–piRNA complexes to nascent transcripts orchestrates heterochromatin formation and transcriptional silencing is unknown. Here, we characterize CG9754/Silencio as an essential piRNA pathway factor that is required for Piwi-mediated transcriptional silencing in Drosophila. Ectopic targeting of Silencio to RNA or DNA is sufficient to elicit silencing independently of Piwi and known piRNA pathway factors. Instead, Silencio requires the H3K9 methyltransferase Eggless/SetDB1 for its silencing ability. In agreement with this, SetDB1, but not Su(var)3-9, is required for Piwi-mediated transcriptional silencing genome-wide. Due to its interaction with the target-engaged Piwi–piRNA complex, we suggest that Silencio acts as linker between the sequence specificity factor Piwi and the cellular heterochromatin machinery.
Collapse
Affiliation(s)
- Grzegorz Sienski
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Julia Batki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Kirsten-André Senti
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Derya Dönertas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Laszlo Tirian
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Katharina Meixner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
13
|
Shimaji K, Konishi T, Tanaka S, Yoshida H, Kato Y, Ohkawa Y, Sato T, Suyama M, Kimura H, Yamaguchi M. Genomewide identification of target genes of histone methyltransferase dG9a duringDrosophilaembryogenesis. Genes Cells 2015; 20:902-14. [DOI: 10.1111/gtc.12281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 07/22/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Kouhei Shimaji
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Takahiro Konishi
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Shintaro Tanaka
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Hideki Yoshida
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Yasuko Kato
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives; Faculty of Medicine; Kyushu University; Maidashi Fukuoka 812-8582 Japan
| | - Tetsuya Sato
- Division of Bioinformatics; Medical Institute of Bioregulation; Kyushu University; Maidashi Fukuoka 812-8582 Japan
| | - Mikita Suyama
- Division of Bioinformatics; Medical Institute of Bioregulation; Kyushu University; Maidashi Fukuoka 812-8582 Japan
| | - Hiroshi Kimura
- Department of Biological Sciences; Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; Nagatsuta Midori-ku Yokohama 226-8501 Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| |
Collapse
|
14
|
Clough E, Tedeschi T, Hazelrigg T. Epigenetic regulation of oogenesis and germ stem cell maintenance by the Drosophila histone methyltransferase Eggless/dSetDB1. Dev Biol 2014; 388:181-91. [PMID: 24485852 DOI: 10.1016/j.ydbio.2014.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/10/2014] [Accepted: 01/17/2014] [Indexed: 11/16/2022]
Abstract
The Drosophila melanogaster histone lysine methyltransferase (HKMT) Eggless (Egg/dSETDB1) catalyzes methylation of Histone H3 lysine 9 (H3K9), a signature of repressive heterochromatin. Our previous studies showed that H3K9 methylation by Egg is required for oogenesis. Here we analyze a set of EMS-induced mutations in the egg gene, identify the molecular lesions of these mutations, and compare the effects on oogenesis of both strong loss-of-function and weak hypomorphic alleles. These studies show that H3K9 methylation by Egg is required for multiple stages of oogenesis. Mosaic expression experiments show that the egg gene is not required intrinsically in the germ cells for their early differentiation, but is required in the germ cells for their survival past stage 5 of oogenesis. egg is also required in germ stem cells for their maintenance, since egg- germ stem cells initially survive but are not maintained as females age. Mosaic analysis also reveals that the early egg chamber budding defects in egg- ovaries are due to an intrinsic requirement for egg in follicle stem cells and their descendents, and that egg plays a non-autonomous role in somatic cells in the germarium to influence the differentiation of early germ cells.
Collapse
Affiliation(s)
- Emily Clough
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Thomas Tedeschi
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Tulle Hazelrigg
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
15
|
|
16
|
Roles of histone H3K9 methyltransferases during Drosophila spermatogenesis. Chromosome Res 2012; 20:319-31. [DOI: 10.1007/s10577-012-9276-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/25/2012] [Accepted: 01/28/2012] [Indexed: 12/11/2022]
|
17
|
Lee SH, Kim IJ, Kim JG, Park JS, Kim YS, Yamaguchi M, Kim CM, Yoo MA. Regulation of intestinal stem cell proliferation by human methyl-CpG-binding protein-2 in Drosophila. Cell Struct Funct 2011; 36:197-208. [PMID: 21979236 DOI: 10.1247/csf.11027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies have suggested the involvement of epigenetic factors such as methyl-CpG-binding protein-2 (MeCP2) in tumorigenesis. In addition, cancer may represent a stem cell-based disease, suggesting that understanding of stem cell regulation could provide valuable insights into the mechanisms of tumorigenesis. However, the function of epigenetic factors in stem cell regulation in adult tissues remains poorly understood. In the present study, we investigated the role of human MeCP2 (hMeCP2), a bridge factor linked to DNA modification and histone modification, in stem cell proliferation using adult Drosophila midgut, which appears to be an excellent model system to study stem cell biology. Results show that enterocyte (EC)-specific expression of hMeCP2 in adult midgut using an exogenous GAL4/UAS expression system induced intestinal stem cell (ISC) proliferation marked by staining with anti-phospho-histone H3 antibody and BrdU incorporation assays. In addition, hMeCP2 expression in ECs activated extracellular stress-response kinase signals in ISCs. Furthermore, expression of hMeCP2 modulated the distribution of heterochromatin protein-1 in ECs. Our data suggests the hypothesis that the expression of hMeCP2 in differentiated ECs stimulates ISC proliferation, implying a role of MeCP2 as a stem cell regulator.
Collapse
Affiliation(s)
- Shin-Hae Lee
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Mutations in more than 450 different genes have been associated with intellectual disability (ID) and related cognitive disorders (CDs), such as autism. It is to be expected that this number will increase three to fourfold in the next years due to the rapid implementation of innovative high-throughput sequencing technology in genetics labs. Numerous functional relationships have been identified between the products of individual ID genes, and common molecular and cellular pathways onto which these networks converge are beginning to emerge. Prominent examples are genes involved in synaptic plasticity, Ras and Rho GTPase signaling, and epigenetic genes that encode modifiers of the chromatin structure. It thus seems that there might be common pathological patterns in ID, despite its bewildering genetic heterogeneity. These common pathways provide attractive opportunities for knowledge-based therapeutic interventions.
Collapse
Affiliation(s)
- Hans van Bokhoven
- Molecular Neurogenetics Unit, Department of Human Genetics, Nijmegen Center for Molecular Life Sciences, Radboud University, Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
19
|
Nifuji A, Ideno H, Ohyama Y, Takanabe R, Araki R, Abe M, Noda M, Shibuya H. Nemo-like kinase (NLK) expression in osteoblastic cells and suppression of osteoblastic differentiation. Exp Cell Res 2010; 316:1127-36. [PMID: 20116374 DOI: 10.1016/j.yexcr.2010.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 12/22/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) regulate proliferation and differentiation in osteoblasts. The vertebral homologue of nemo, nemo-like kinase (NLK), is an atypical MAPK that targets several signaling components, including the T-cell factor/lymphoid enhancer factor (TCF/Lef1) transcription factor. Recent studies have shown that NLK forms a complex with the histone H3-K9 methyltransferase SETDB1 and suppresses peroxisome proliferator-activated receptor (PPAR)-gamma:: action in the mesenchymal cell line ST2. Here we investigated whether NLK regulates osteoblastic differentiation. We showed that NLK mRNA is expressed in vivo in osteoblasts at embryonic day 18.5 (E18.5) mouse calvariae. By using retrovirus vectors, we performed forced expression of NLK in primary calvarial osteoblasts (pOB cells) and the mesenchymal cell line ST2. Wild-type NLK (NLK-WT) suppressed alkaline phosphatase activity and expression of bone marker genes such as alkaline phosphatase, type I procollagen, runx2, osterix, steopontin and osteocalcin in these cells. NLK-WT also decreased type I collagen protein expression in pOB and ST2 cells. Furthermore, mineralized nodule formation was reduced in pOB cells overexpressing NLK-WT. In contrast, kinase-negative form of NLK (NLK-KN) did not suppress or partially suppress ALP activity and bone marker gene expression in pOB and ST2 cells. NLK-KN did not suppress nodule formation in pOB cells. In addition to forced expression, suppression of endogenous NLK expression by siRNA increased bone marker gene expression in pOB and ST2 cells. Finally, transcriptional activity analysis of gene promoters revealed that NLK-WT suppressed Wnt1 activation of TOP flash promoter and Runx2 activation of the osteocalcin promoter. Taken together, these results suggest that NLK negatively regulates osteoblastic differentiation.
Collapse
Affiliation(s)
- Akira Nifuji
- National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Multiple SET methyltransferases are required to maintain normal heterochromatin domains in the genome of Drosophila melanogaster. Genetics 2009; 181:1303-19. [PMID: 19189944 DOI: 10.1534/genetics.108.100271] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Methylation of histone H3 lysine 9 (H3K9) is a key feature of silent chromatin and plays an important role in stabilizing the interaction of heterochromatin protein 1 (HP1) with chromatin. Genomes of metazoans such as the fruit fly Drosophila melanogaster generally encode three types of H3K9-specific SET domain methyltransferases that contribute to chromatin homeostasis during the life cycle of the organism. SU(VAR)3-9, dG9a, and dSETDB1 all function in the generation of wild-type H3K9 methylation levels in the Drosophila genome. Two of these enzymes, dSETDB1 and SU(VAR)3-9, govern heterochromatin formation in distinct but overlapping patterns across the genome. H3K9 methylation in the small, heterochromatic fourth chromosome of D. melanogaster is governed mainly by dSETDB1, whereas dSETDB1 and SU(VAR)3-9 function in concert to methylate H3K9 in the pericentric heterochromatin of all chromosomes, with dG9a having little impact in these domains, as shown by monitoring position effect variegation. To understand how these distinct heterochromatin compartments may be differentiated, we examined the developmental timing of dSETDB1 function using a knockdown strategy. dSETDB1 acts to maintain heterochromatin during metamorphosis, at a later stage in development than the reported action of SU(VAR)3-9. Surprisingly, depletion of both of these enzymes has less deleterious effect than depletion of one. These results imply that dSETDB1 acts as a heterochromatin maintenance factor that may be required for the persistence of earlier developmental events normally governed by SU(VAR)3-9. In addition, the genetic interactions between dSETDB1 and Su(var)3-9 mutations emphasize the importance of maintaining the activities of these histone methyltransferases in balance for normal genome function.
Collapse
|