1
|
Li J, Li K, Zhang Y, Li X, Wang H. Regulation mechanism of endochondral ossification in Rana zhenhaiensis during metamorphosis based on histomorphology and transcriptome analyses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101286. [PMID: 38996694 DOI: 10.1016/j.cbd.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Endochondral ossification plays a crucial role in the limb development of amphibians. This study explored the ossification sequence in the hindlimb of Rana zhenhaiensis tadpoles and the correlation between thyroid hormones (THs) and endochondral ossification via histomorphology and transcriptional analyses. Our results suggest that ossification of the femur and tibiofibula was initiated during the period of high THs activity (metamorphosis climax). In addition, the results of differentially expressed gene analyses in the hindlimb and tail showed that systemic factors, transcription factors, and locally secreted factors interacted with each other during the metamorphosis climax to regulate the occurrence of endochondral ossification. These results will enrich the morphological data of anurans and provide scientific reference for the evolutionary history of vertebrates.
Collapse
Affiliation(s)
- Jiayi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Kaiyue Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yue Zhang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Sterner ZR, Jabrah A, Shaidani NI, Horb ME, Dockery R, Paul B, Buchholz DR. Development and metamorphosis in frogs deficient in the thyroid hormone transporter MCT8. Gen Comp Endocrinol 2023; 331:114179. [PMID: 36427548 PMCID: PMC9771991 DOI: 10.1016/j.ygcen.2022.114179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Precisely regulated thyroid hormone (TH) signaling within tissues during frog metamorphosis gives rise to the organism-wide coordination of developmental events among organs required for survival. This TH signaling is controlled by multiple cellular mechanisms, including TH transport across the plasma membrane. A highly specific TH transporter has been identified, namely monocarboxylate transporter 8 (MCT8), which facilitates uptake and efflux of TH and is differentially and dynamically expressed among tissues during metamorphosis. We hypothesized that loss of MCT8 would alter tissue sensitivity to TH and affect the timing of tissue transformation. To address this, we used CRISPR/Cas9 to introduce frameshift mutations inslc16a2, the gene encoding MCT8, inXenopus laevis. We produced homozygous mutant tadpoles with a 29-bp mutation in the l-chromosome and a 20-bp mutation in the S-chromosome. We found that MCT8 mutants survive metamorphosis with normal growth and development of external morphology throughout the larval period. Consistent with this result, the expression of the pituitary hormone regulating TH plasma levels (tshb) was similar among genotypes as was TH response gene expression in brain at metamorphic climax. Further, delayed initiation of limb outgrowth during natural metamorphosis and reduced hindlimb and tail TH sensitivity were not observed in MCT8 mutants. In sum, we did not observe an effect on TH-dependent development in MCT8 mutants, suggesting compensatory TH transport occurs in tadpole tissues, as seen in most tissues in all model organisms examined.
Collapse
Affiliation(s)
- Zachary R Sterner
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Ayah Jabrah
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Nikko-Ideen Shaidani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Woods Hole, MA, United States
| | - Marko E Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Woods Hole, MA, United States
| | - Rejenae Dockery
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
3
|
Tanizaki Y, Zhang H, Shibata Y, Shi YB. Organ-specific effects on target binding due to knockout of thyroid hormone receptor α during Xenopus metamorphosis. Dev Growth Differ 2023; 65:23-28. [PMID: 36397722 DOI: 10.1111/dgd.12825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (T3) is essential for normal development and metabolism, especially during postembryonic development, a period around birth in mammals when plasma T3 levels reach their peak. T3 functions through two T3 receptors, TRα and TRβ. However, little is known about the tissue-specific functions of TRs during postembryonic development because of maternal influence and difficulty in manipulation of mammalian models. We have studied Xenopus tropicalis metamorphosis as a model for human postembryonic development. By using TRα knockout (Xtr·thratmshi ) tadpoles, we have previously shown that TRα is important for T3-dependent intestinal remodeling and hindlimb development but not tail resorption during metamorphosis. Here, we have identified genes bound by TR in premetamorphic wild-type and Xtr·thratmshi tails with or without T3 treatment by using chromatin immunoprecipitation-sequencing and compared them with those in the intestine and hindlimb. Compared to other organs, the tail has much fewer genes bound by TR or affected by TRα knockout. Bioinformatic analyses revealed that among the genes bound by TR in wild-type but not Xtr·thratmshi organs, fewer gene ontology (GO) terms or biological pathways related to metamorphosis were enriched in the tail compared to those in the intestine and hindlimb. This difference likely underlies the drastic effects of TRα knockout on the metamorphosis of the intestine and hindlimb but not the tail. Thus, TRα has tissue-specific roles in regulating T3-dependent anuran metamorphosis by directly targeting the pathways and GO terms important for metamorphosis.
Collapse
Affiliation(s)
- Yuta Tanizaki
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Cell Regulation and Development Affinity Group, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
4
|
Denver RJ. Stress hormones mediate developmental plasticity in vertebrates with complex life cycles. Neurobiol Stress 2021; 14:100301. [PMID: 33614863 PMCID: PMC7879041 DOI: 10.1016/j.ynstr.2021.100301] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
The environment experienced by developing organisms can shape the timing and character of developmental processes, generating different phenotypes from the same genotype, each with different probabilities of survival and performance as adults. Chordates have two basic modes of development, indirect and direct. Species with indirect development, which includes most fishes and amphibians, have a complex life cycle with a free-swimming larva that is typically a growth stage, followed by a metamorphosis into the adult form. Species with direct development, which is an evolutionarily derived developmental mode, develop directly from embryo to the juvenile without an intervening larval stage. Among the best studied species with complex life cycles are the amphibians, especially the anurans (frogs and toads). Amphibian tadpoles are exposed to diverse biotic and abiotic factors in their developmental habitat. They have extensive capacity for developmental plasticity, which can lead to the expression of different, adaptive morphologies as tadpoles (polyphenism), variation in the timing of and size at metamorphosis, and carry-over effects on the phenotype of the juvenile/adult. The neuroendocrine stress axis plays a pivotal role in mediating environmental effects on amphibian development. Before initiating metamorphosis, if tadpoles are exposed to predators they upregulate production of the stress hormone corticosterone (CORT), which acts directly on the tail to cause it to grow, thereby increasing escape performance. When tadpoles reach a minimum body size to initiate metamorphosis they can vary the timing of transformation in relation to growth opportunity or mortality risk in the larval habitat. They do this by modulating the production of thyroid hormone (TH), the primary inducer of metamorphosis, and CORT, which synergizes with TH to promote tissue transformation. Hypophysiotropic neurons that release the stress neurohormone corticotropin-releasing factor (CRF) are activated in response to environmental stress (e.g., pond drying, food restriction, etc.), and CRF accelerates metamorphosis by directly inducing secretion of pituitary thyrotropin and corticotropin, thereby increasing secretion of TH and CORT. Although activation of the neuroendocrine stress axis promotes immediate survival in a deteriorating larval habitat, costs may be incurred such as reduced tadpole growth and size at metamorphosis. Small size at transformation can impair performance of the adult, reducing probability of survival in the terrestrial habitat, or fecundity. Furthermore, elevations in CORT in the tadpole caused by environmental stressors cause long term, stable changes in neuroendocrine function, behavior and physiology of the adult, which can affect fitness. Comparative studies show that the roles of stress hormones in developmental plasticity are conserved across vertebrate taxa including humans.
Collapse
Affiliation(s)
- Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
5
|
Nakajima K, Tazawa I, Shi YB. A unique role of thyroid hormone receptor β in regulating notochord resorption during Xenopus metamorphosis. Gen Comp Endocrinol 2019; 277:66-72. [PMID: 30851299 PMCID: PMC6535367 DOI: 10.1016/j.ygcen.2019.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Tail resorption during anuran metamorphosis is perhaps the most dramatic tissue transformation that occurs during vertebrate development. Earlier studies in highly related anuran species Xenopus laevis and Xenopus tropicalis have shown that thyroid hormone (T3) receptor (TR) plays a necessary and sufficient role to mediate the causative effect of T3 on metamorphosis. Of the two known TR genes in vertebrates, TRα is highly expressed during both premetamorphosis and metamorphosis while TRβ expression is low in premetamorphic tadpoles but highly upregulated as a direct target gene of T3 during metamorphosis, suggesting potentially different functions during metamorphosis. Indeed, gene knockout studies have shown that knocking out TRα and TRβ has different effects on tadpole development. In particularly, homozygous TRβ knockout tadpoles become tailed frogs well after sibling wild type ones complete metamorphosis. Most noticeably, in TRβ-knockout tadpoles, an apparently normal notochord is present when the notochord in wild-type and TRα-knockout tadpoles disappears. Here, we have investigated how tail notochord resorption is regulated by TR. We show that TRβ is selectively very highly expressed in the notochord compared to TRα. We have also discovered differential regulation of several matrix metalloproteinases (MMPs), which are known to be upregulated by T3 and implicated to play a role in tissue resorption by degrading the extracellular matrix (ECM). In particular, MMP9-TH and MMP13 are extremely highly expressed in the notochord compared to the rest of the tail. In situ hybridization analyses show that these MMPs are expressed in the outer sheath cells and/or the connective tissue sheath surrounding the notochord. Our findings suggest that high levels of TRβ expression in the notochord specifically upregulate these MMPs, which in turn degrades the ECM, leading to the collapse of the notochord and its subsequent resorption during metamorphosis.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739-8526, Japan; Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Ichiro Tazawa
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
6
|
Sachs LM, Buchholz DR. Insufficiency of Thyroid Hormone in Frog Metamorphosis and the Role of Glucocorticoids. Front Endocrinol (Lausanne) 2019; 10:287. [PMID: 31143159 PMCID: PMC6521741 DOI: 10.3389/fendo.2019.00287] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) is the most important hormone in frog metamorphosis, a developmental process which will not occur in the absence of TH but can be induced precociously by exogenous TH. However, such treatments including in-vitro TH treatments often do not replicate the events of natural metamorphosis in many organs, including lung, brain, blood, intestine, pancreas, tail, and skin. A potential explanation for the discrepancy between natural and TH-induced metamorphosis is the involvement of glucocorticoids (GCs). GCs are not able to advance development by themselves but can modulate the rate of developmental progress induced by TH via increased tissue sensitivity to TH. Global gene expression analyses and endocrine experiments suggest that GCs may also have direct actions required for completion of metamorphosis independent of their effects on TH signaling. Here, we provide a new review and analysis of the requirement and necessity of TH signaling in light of recent insights from gene knockout frogs. We also examine the independent and interactive roles GCs play in regulating morphological and molecular metamorphic events dependent upon TH.
Collapse
Affiliation(s)
- Laurent M. Sachs
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'histoire Naturelle, Paris, France
| | - Daniel R. Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
7
|
Yaoita Y. Tail Resorption During Metamorphosis in Xenopus Tadpoles. Front Endocrinol (Lausanne) 2019; 10:143. [PMID: 30923513 PMCID: PMC6426756 DOI: 10.3389/fendo.2019.00143] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/18/2019] [Indexed: 01/09/2023] Open
Abstract
Tail resorption in anuran tadpoles is one of the most physically and physiologically notable phenomena in developmental biology. A tail that is over twice as long as the tadpole trunk is absorbed within several days, while concurrently the tadpole's locomotive function is continuously managed during the transition of the driving force from the tail to hindlimbs. Elaborate regulation is necessary to accomplish this locomotive switch. Tadpole's hindlimbs must develop from the limb-bud size to the mature size and the nervous system must be arranged to control movement before the tail is degenerated. The order of the development and growth of hindlimbs and the regression of the tail are regulated by the increasing levels of thyroid hormones (THs), the intracellular metabolism of THs, the expression levels of TH receptors, the expression of several effector genes, and other factors that can modulate TH signaling. The tail degeneration that is induced by the TH surge occurs through two mechanisms, direct TH-responsive cell death (suicide) and cell death caused by the degradation of the extracellular matrix and a loss of cellular anchorage (murder). These pathways lead to the collapse of the notochord, the contraction of surviving slow muscles, and, ultimately, the loss of the tail. In this review, I focus on the differential TH sensitivity of the tail and hindlimbs and the mechanism of tail resorption during Xenopus metamorphosis.
Collapse
|
8
|
Laslo M, Denver RJ, Hanken J. Evolutionary Conservation of Thyroid Hormone Receptor and Deiodinase Expression Dynamics in ovo in a Direct-Developing Frog, Eleutherodactylus coqui. Front Endocrinol (Lausanne) 2019; 10:307. [PMID: 31178826 PMCID: PMC6542950 DOI: 10.3389/fendo.2019.00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
Direct development is a reproductive mode in amphibians that has evolved independently from the ancestral biphasic life history in at least a dozen anuran lineages. Most direct-developing frogs, including the Puerto Rican coquí, Eleutherodactylus coqui, lack a free-living aquatic larva and instead hatch from terrestrial eggs as miniature adults. Their embryonic development includes the transient formation of many larval-specific features and the formation of adult-specific features that typically form postembryonically-during metamorphosis-in indirect-developing frogs. We found that pre-hatching developmental patterns of thyroid hormone receptors alpha (thra) and beta (thrb) and deiodinases type II (dio2) and type III (dio3) mRNAs in E. coqui limb and tail are conserved relative to those seen during metamorphosis in indirect-developing frogs. Additionally, thra, thrb, and dio2 mRNAs are expressed in the limb before formation of the embryonic thyroid gland. Liquid-chromatography mass-spectrometry revealed that maternally derived thyroid hormone is present throughout early embryogenesis, including stages of digit formation that occur prior to the increase in embryonically produced thyroid hormone. Eleutherodactylus coqui embryos take up much less 3,5,3'-triiodothyronine (T3) from the environment compared with X. tropicalis tadpoles. However, E. coqui tissue explants mount robust and direct gene expression responses to exogenous T3 similar to those seen in metamorphosing species. The presence of key components of the thyroid axis in the limb and the ability of limb tissue to respond to T3 suggest that thyroid hormone-mediated limb development may begin prior to thyroid gland formation. Thyroid hormone-dependent limb development and tail resorption characteristic of metamorphosis in indirect-developing anurans are evolutionarily conserved, but they occur instead in ovo in E. coqui.
Collapse
Affiliation(s)
- Mara Laslo
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
- *Correspondence: Mara Laslo
| | - Robert J. Denver
- Departments of Molecular, Cellular and Developmental Biology, and Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - James Hanken
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
9
|
Morioka S, Mohanty-Hejmadi P, Yaoita Y, Tazawa I. Homeotic transformation of tails into limbs in anurans. Dev Growth Differ 2018; 60:365-376. [PMID: 30133711 DOI: 10.1111/dgd.12547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/18/2022]
Abstract
Anuran tadpoles can regenerate their tails after amputation. However, they occasionally form ectopic limbs instead of the lost tail part after vitamin A treatment. This is regarded as an example of a homeotic transformation. In this phenomenon, the developmental fate of the tail blastema is apparently altered from that of a tail to that of limbs, indicating a realignment of positional information in the blastema. Morphological observations and analyses of the development of skeletal elements during the process suggest that positional information in the blastema is rewritten from tail to trunk specification under the influence of vitamin A, resulting in limb formation. Despite the extensive information gained from morphological observations, a comprehensive understanding of this phenomenon also requires molecular data. We review previous studies related to anuran homeotic transformation. The findings of these studies provide a basis for evaluating major hypotheses and identifying molecular data that should be prioritized in future studies. Finally, we argue that positional information for the tail blastema changes to that for a part of the trunk, leading to homeotic transformations. To suggest this hypothesis, we present published data that favor the rewriting of positional information.
Collapse
Affiliation(s)
- Sho Morioka
- Amphibian Research Center, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | | | - Yoshio Yaoita
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Ichiro Tazawa
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| |
Collapse
|
10
|
Nakajima K, Tazawa I, Yaoita Y. Thyroid Hormone Receptor α- and β-Knockout Xenopus tropicalis Tadpoles Reveal Subtype-Specific Roles During Development. Endocrinology 2018; 159:733-743. [PMID: 29126198 DOI: 10.1210/en.2017-00601] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (TH) binds TH receptor α (TRα) and β (TRβ) to induce amphibian metamorphosis. Whereas TH signaling has been well studied, functional differences between TRα and TRβ during this process have not been characterized. To understand how each TR contributes to metamorphosis, we generated TRα- and TRβ-knockout tadpoles of Xenopus tropicalis and examined developmental abnormalities, histology of the tail and intestine, and messenger RNA expression of genes encoding extracellular matrix-degrading enzymes. In TRβ-knockout tadpoles, tail regression was delayed significantly and a healthy notochord was observed even 5 days after the initiation of tail shortening (stage 62), whereas in the tails of wild-type and TRα-knockout tadpoles, the notochord disappeared after ∼1 day. The messenger RNA expression levels of genes encoding extracellular matrix-degrading enzymes (MMP2, MMP9TH, MMP13, MMP14, and FAPα) were obviously reduced in the tail tip of TRβ-knockout tadpoles, with the shortening tail. The reduction in olfactory nerve length and head narrowing by gill absorption were also affected. Hind limb growth and intestinal shortening were not compromised in TRβ-knockout tadpoles, whereas tail regression and olfactory nerve shortening appeared to proceed normally in TRα-knockout tadpoles, except for the precocious development of hind limbs. Our results demonstrated the distinct roles of TRα and TRβ in hind limb growth and tail regression, respectively.
Collapse
Affiliation(s)
- Keisuke Nakajima
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Ichiro Tazawa
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| | - Yoshio Yaoita
- Division of Embryology, Amphibian Research Center, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
11
|
Buchholz DR. Xenopus metamorphosis as a model to study thyroid hormone receptor function during vertebrate developmental transitions. Mol Cell Endocrinol 2017; 459:64-70. [PMID: 28363743 DOI: 10.1016/j.mce.2017.03.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
A hormone-dependent developmental transition from aquatic to terrestrial existence occurs in all tetrapod vertebrates, such as birth, hatching, and metamorphosis. Thyroid hormones (TH) and their receptors (TRs) are key players in the tissue transformations comprising vertebrate developmental transitions. The African clawed frog, Xenopus, is a premier model for the role of TRs in developmental transitions because of the numerous and dramatic TH-dependent tissue transformations during metamorphosis and because of the endocrine, molecular, and genomic resources available. TRs are nuclear receptors that repress TH-response genes when plasma TH is minimal and that activate those same genes to induce tissue-specific gene regulation cascades when TH plasma levels increase. Tissue-specific TR expression levels help determine tissue sensitivity and responsivity to TH thereby regulating the initiation and rate of developmental change in TH-sensitive tissues which govern the tissue developmental asynchrony observed during metamorphosis. This review highlighting Xenopus presents the key experimental findings underpinning the roles TRs play in control of vertebrate developmental transitions.
Collapse
Affiliation(s)
- Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Ct., Cincinnati, OH, 45221 USA.
| |
Collapse
|
12
|
Choi J, Ishizuya-Oka A, Buchholz DR. Growth, Development, and Intestinal Remodeling Occurs in the Absence of Thyroid Hormone Receptor α in Tadpoles of Xenopus tropicalis. Endocrinology 2017; 158:1623-1633. [PMID: 28323943 DOI: 10.1210/en.2016-1955] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
Abstract
During development in all vertebrates, thyroid hormone receptors (TRs) are expressed before as well as during and after the peak in plasma thyroid hormone (TH) levels. Previously, we established a role for unliganded TRα in gene repression and developmental timing using tadpoles of TRα knockout (TRαKO) frogs. Here, we examined the role of liganded TRα on growth, development, and intestinal remodeling during natural and TH-induced metamorphosis. Disrupted TRα had little effect on growth during the larval period, but after metamorphosis, TRαKO juveniles grew more slowly than wild-type (WT) juveniles. TRαKO tadpoles developed faster throughout premetamorphosis when TH was low or absent, and despite their decreased responsivity to exogenous TH, TRαKO tadpoles not only were able to complete TH-dependent metamorphosis but also did so earlier than WT tadpoles. In contrast to external morphology, larval epithelial cell apoptosis and adult cell proliferation of intestinal remodeling were delayed in TRαKO tadpoles. Also, TRαKO intestines did not shrink in length to the full extent, and fewer intestinal folds into the lumen were present in TRαKO compared with WT juveniles. Such delayed remodeling occurred despite higher premetamorphic expression levels of TH target genes important for metamorphic progression-namely, TRβ, Klf9, and ST3. Furthermore, the decreased TH-dependent intestinal shrinkage was consistent with reduced TH response gene expression during natural and TH-induced metamorphosis. As in the TRα null mouse model, TRαKO frogs had statistically significant but surprisingly mild growth and development phenotypes with normal survival and fertility.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221
| | | | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221
| |
Collapse
|
13
|
Yost AT, Thornton LM, Venables BJ, Sellin Jeffries MK. Dietary exposure to polybrominated diphenyl ether 47 (BDE-47) inhibits development and alters thyroid hormone-related gene expression in the brain of Xenopus laevis tadpoles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:237-244. [PMID: 27838513 DOI: 10.1016/j.etap.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Few studies have investigated the thyroid-disrupting effects of polybrominated diphenyl ethers (PBDEs) across multiple levels of biological organization in anurans, despite their suitability for the screening of thyroid disruptors. Therefore, the present study evaluated the effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on development, thyroid histology and thyroid hormone-related gene expression in Xenopus laevis exposed to 0 (control), 50 (low), 500 (medium) or 5000μg BDE-47/g food (high) for 21days. Only the high dose of BDE-47 hindered growth and development; however, thyroid hormone-associated gene expression was downregulated in the brains of tadpoles regardless of dose. These results show that BDE-47 disrupts thyroid hormone signaling at the molecular and whole-organism levels and suggest that gene expression in the brain is a more sensitive endpoint than metamorphosis. Furthermore, the altered gene expression patterns among BDE-47-exposed tadpoles provide insight into the mechanisms of PBDE-induced thyroid disruption and highlight the potential for PBDEs to act as neurodevelopmental toxicants.
Collapse
Affiliation(s)
- Alexandra T Yost
- Department of Biology, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Leah M Thornton
- Department of Biology, Texas Christian University, Fort Worth, TX, 76129, USA
| | - Barney J Venables
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | | |
Collapse
|
14
|
Faunes F, Larraín J. Conservation in the involvement of heterochronic genes and hormones during developmental transitions. Dev Biol 2016; 416:3-17. [DOI: 10.1016/j.ydbio.2016.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 01/26/2023]
|
15
|
Zhao L, Liu L, Wang S, Wang H, Jiang J. Transcriptome profiles of metamorphosis in the ornamented pygmy frog Microhyla fissipes clarify the functions of thyroid hormone receptors in metamorphosis. Sci Rep 2016; 6:27310. [PMID: 27254593 PMCID: PMC4890586 DOI: 10.1038/srep27310] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/16/2016] [Indexed: 11/09/2022] Open
Abstract
Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis.
Collapse
Affiliation(s)
- Lanying Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusha Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shouhong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
16
|
Zhang WT, Liu K, Xiang JS, Zhang LY, Liu WJ, Dong ZD, Li YZ, Li HL, Chen SL, Wang N. Molecular cloning, expression of, and regulation by thyroid-hormone receptor α A in the half-smooth tongue sole Cynoglossus semilaevis during metamorphosis. JOURNAL OF FISH BIOLOGY 2016; 88:1693-1707. [PMID: 26953104 DOI: 10.1111/jfb.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
To elucidate the effect of thyroid hormone receptor α A (thraa) on metamorphosis, the full length cDNA of half-smooth tongue sole Cynoglossus semilaevis was cloned. The relative gene transcript level of thraa at different development stages was quantified using real-time PCR. Transcription of thraa increased and declined rapidly during metamorphosis. Hyperthyroidism was induced in juveniles and larvae with exposure to T3 and T4, and hypothyroidism with thiourea (TU), 2-mercapto-1-methylimidazole (MMI). thraa mRNA was higher in fish treated for 6 days with MMI than in untreated controls, although inhibited larvae did not complete metamorphosis. The addition of exogenous T4 reversed this effect in the MMI-treated group, but not in the TU-treated group. In situ hybridization revealed progressive tail end of body growth and change during developmental stages, with corresponding changes in thraa expression. This process may be induced by thyroid hormones with thraa as a major mediator. The morphological changes of tip of the tail may be associated with the development of lateral swimming.
Collapse
Affiliation(s)
- W T Zhang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - K Liu
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- College of Fisheries and Life Science, Shanghai Ocean University, Yangpu, Shanghai 201306, China
| | - J S Xiang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- College of Fisheries and Life Science, Shanghai Ocean University, Yangpu, Shanghai 201306, China
| | - L Y Zhang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China
| | - W J Liu
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- College of Fisheries and Life Science, Shanghai Ocean University, Yangpu, Shanghai 201306, China
| | - Z D Dong
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- School of Marine life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Y Z Li
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
| | - H L Li
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
| | - S L Chen
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
| | - N Wang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Ocean Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 26607, China
| |
Collapse
|
17
|
Hu F, Knoedler JR, Denver RJ. A Mechanism to Enhance Cellular Responsivity to Hormone Action: Krüppel-Like Factor 9 Promotes Thyroid Hormone Receptor-β Autoinduction During Postembryonic Brain Development. Endocrinology 2016; 157:1683-93. [PMID: 26886257 PMCID: PMC4816725 DOI: 10.1210/en.2015-1980] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thyroid hormone (TH) receptor (TR)-β (trb) is induced by TH (autoinduced) in Xenopus tadpoles during metamorphosis. We previously showed that Krüppel-like factor 9 (Klf9) is rapidly induced by TH in the tadpole brain, associates in chromatin with the trb upstream region in a developmental stage and TH-dependent manner, and forced expression of Klf9 in the Xenopus laevis cell line XTC-2 accelerates and enhances trb autoinduction. Here we investigated whether Klf9 can promote trb autoinduction in tadpole brain in vivo. Using electroporation-mediated gene transfer, we transfected plasmids into premetamorphic tadpole brain to express wild-type or mutant forms of Klf9. Forced expression of Klf9 increased baseline trb mRNA levels in thyroid-intact but not in goitrogen-treated tadpoles, supporting that Klf9 enhances liganded TR action. As in XTC-2 cells, forced expression of Klf9 enhanced trb autoinduction in tadpole brain in vivo and also increased TH-dependent induction of the TR target genes klf9 and thbzip. Consistent with our previous mutagenesis experiments conducted in XTC-2 cells, the actions of Klf9 in vivo required an intact N-terminal region but not a functional DNA binding domain. Forced expression of TRβ in tadpole brain by electroporation-mediated gene transfer increased baseline and TH-induced TR target gene transcription, supporting a role for trb autoinduction during metamorphosis. Our findings support that Klf9 acts as an accessory transcription factor for TR at the trb locus during tadpole metamorphosis, enhancing trb autoinduction and transcription of other TR target genes, which increases cellular responsivity to further TH action on developmental gene regulation programs.
Collapse
Affiliation(s)
- Fang Hu
- Department of Molecular, Cellular, and Developmental Biology (F.H., R.J.D.) and Neuroscience Graduate Program (J.R.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109
| | - Joseph R Knoedler
- Department of Molecular, Cellular, and Developmental Biology (F.H., R.J.D.) and Neuroscience Graduate Program (J.R.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109
| | - Robert J Denver
- Department of Molecular, Cellular, and Developmental Biology (F.H., R.J.D.) and Neuroscience Graduate Program (J.R.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
18
|
Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System. PLoS One 2015; 10:e0144991. [PMID: 26710071 PMCID: PMC4692385 DOI: 10.1371/journal.pone.0144991] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3′,5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute to better understanding of the evolution of the TH system.
Collapse
|
19
|
Choi J, Moskalik CL, Ng A, Matter SF, Buchholz DR. Regulation of thyroid hormone-induced development in vivo by thyroid hormone transporters and cytosolic binding proteins. Gen Comp Endocrinol 2015; 222:69-80. [PMID: 26188717 DOI: 10.1016/j.ygcen.2015.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 01/20/2023]
Abstract
Differential tissue sensitivity/responsivity to hormones can explain developmental asynchrony among hormone-dependent events despite equivalent exposure of each tissue to circulating hormone levels. A dramatic vertebrate example is during frog metamorphosis, where transformation of the hind limb, brain, intestine, liver, and tail are completely dependent on thyroid hormone (TH) but occurs asynchronously during development. TH transporters (THTs) and cytosolic TH binding proteins (CTHBPs) have been proposed to affect the timing of tissue transformation based on expression profiles and in vitro studies, but they have not been previously tested in vivo. We used a combination of expression pattern, relative expression level, and in vivo functional analysis to evaluate the potential for THTs (LAT1, OATP1c1, and MCT8) and CTHBPs (PKM2, CRYM, and ALDH1) to control the timing of TH-dependent development. Quantitative PCR analysis revealed complex expression profiles of THTs and CTHBPs with respect to developmental stage, tissue, and TH receptor β (TRβ) expression. For some tissues, the timing of tissue transformation was associated with a peak in the expression of some THTs or CTHBPs. An in vivo overexpression assay by tail muscle injection showed LAT1, PKM2, and CRYM increased TH-dependent tail muscle cell disappearance. Co-overexpression of MCT8 and CRYM had a synergistic effect on cell disappearance. Our data show that each tissue examined has a unique developmental expression profile of THTs and CTHBPs and provide direct in vivo evidence that the ones tested are capable of affecting the timing of developmental responses to TH.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Christine L Moskalik
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Allison Ng
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA.
| |
Collapse
|
20
|
Zhang Y, Li Y, Qin Z, Wang H, Li J. A screening assay for thyroid hormone signaling disruption based on thyroid hormone-response gene expression analysis in the frog Pelophylax nigromaculatus. J Environ Sci (China) 2015; 34:143-154. [PMID: 26257357 DOI: 10.1016/j.jes.2015.01.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/30/2014] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
Amphibian metamorphosis provides a wonderful model to study the thyroid hormone (TH) signaling disrupting activity of environmental chemicals, with Xenopus laevis as the most commonly used species. This study aimed to establish a rapid and sensitive screening assay based on TH-response gene expression analysis using Pelophylax nigromaculatus, a native frog species distributed widely in East Asia, especially in China. To achieve this, five candidate TH-response genes that were sensitive to T3 induction were chosen as molecular markers, and T3 induction was determined as 0.2 nmol/L T3 exposure for 48 hr. The developed assay can detect the agonistic activity of T3 with a lowest observed effective concentration of 0.001 nmol/L and EC50 at around 0.118-1.229 nmol/L, exhibiting comparable or higher sensitivity than previously reported assays. We further validated the efficiency of the developed assay by detecting the TH signaling disrupting activity of tetrabromobisphenol A (TBBPA), a known TH signaling disruptor. In accordance with previous reports, we found a weak TH agonistic activity for TBBPA in the absence of T3, whereas a TH antagonistic activity was found for TBBPA at higher concentrations in the presence of T3, showing that the P. nigromaculatus assay is effective for detecting TH signaling disrupting activity. Importantly, we observed non-monotonic dose-dependent disrupting activity of TBBPA in the presence of T3, which is difficult to detect with in vitro reporter gene assays. Overall, the developed P. nigromaculatus assay can be used to screen TH signaling disrupting activity of environmental chemicals with high sensitivity.
Collapse
Affiliation(s)
- Yinfeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.; Department of Environmental Bio-Technology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China..
| | - Huili Wang
- Department of Environmental Bio-Technology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianzhong Li
- Department of Environmental Bio-Technology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Recher G, Coumailleau P, Rouède D, Tiaho F. Structural origin of the drastic modification of second harmonic generation intensity pattern occurring in tail muscles of climax stages xenopus tadpoles. J Struct Biol 2015; 190:1-10. [PMID: 25770062 DOI: 10.1016/j.jsb.2015.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/08/2015] [Accepted: 03/04/2015] [Indexed: 01/27/2023]
Abstract
Second harmonic generation (SHG) microscopy is a powerful tool for studying submicron architecture of muscles tissues. Using this technique, we show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of premetamorphic xenopus tadpole tail muscles is converted to double frequency (2f) sarcomeric SHG-IP in metamorphic climax stages due to massive physiological muscle proteolysis. This conversion was found to rise from 7% in premetamorphic muscles to about 97% in fragmented muscular apoptotic bodies. Moreover a 66% conversion was also found in non-fragmented metamorphic tail muscles. Also, a strong correlation between predominant 2f sarcomeric SHG-IPs and myofibrillar misalignment is established with electron microscopy. Experimental and theoretical results demonstrate the higher sensitivity and the supra resolution power of SHG microscopy over TPEF to reveal 3D myofibrillar misalignment. From this study, we suggest that 2f sarcomeric SHG-IP could be used as signature of triad defect and disruption of excitation-contraction coupling. As the mechanism of muscle proteolysis is similar to that found in mdx mouse muscles, we further suggest that xenopus tadpole tail resorption at climax stages could be used as an alternative or complementary model of Duchene muscular dystrophy.
Collapse
Affiliation(s)
- Gaëlle Recher
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Pascal Coumailleau
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France
| | - Denis Rouède
- IPR, CNRS, UMR-CNRS UR1-6251, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France
| | - François Tiaho
- UMR CNRS 6026, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France; IRSET, INSERM, U1085, Université de Rennes1, Campus de Beaulieu, Rennes F-35000, France.
| |
Collapse
|
22
|
Choi J, Suzuki KIT, Sakuma T, Shewade L, Yamamoto T, Buchholz DR. Unliganded thyroid hormone receptor α regulates developmental timing via gene repression in Xenopus tropicalis. Endocrinology 2015; 156:735-44. [PMID: 25456067 PMCID: PMC4298327 DOI: 10.1210/en.2014-1554] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thyroid hormone (TH) receptor (TR) expression begins early in development in all vertebrates when circulating TH levels are absent or minimal, yet few developmental roles for unliganded TRs have been established. Unliganded TRs are expected to repress TH-response genes, increase tissue responsivity to TH, and regulate the timing of developmental events. Here we examined the role of unliganded TRα in gene repression and development in Xenopus tropicalis. We used transcription activator-like effector nuclease gene disruption technology to generate founder animals with mutations in the TRα gene and bred them to produce F1 offspring with a normal phenotype and a mutant phenotype, characterized by precocious hind limb development. Offspring with a normal phenotype had zero or one disrupted TRα alleles, and tadpoles with the mutant hind limb phenotype had two truncated TRα alleles with frame shift mutations between the two zinc fingers followed by 40-50 mutant amino acids and then an out-of-frame stop codon. We examined TH-response gene expression and early larval development with and without exogenous TH in F1 offspring. As hypothesized, mutant phenotype tadpoles had increased expression of TH-response genes in the absence of TH and impaired induction of these same genes after exogenous TH treatment, compared with normal phenotype animals. Also, mutant hind limb phenotype animals had reduced hind limb and gill responsivity to exogenous TH. Similar results in methimazole-treated tadpoles showed that increased TH-response gene expression and precocious development were not due to early production of TH. These results indicate that unliganded TRα delays developmental progression by repressing TH-response genes.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Biological Sciences (J.C., L.S., D.R.B.), University of Cincinnati, Cincinnati, Ohio 45221; and Department of Mathematical and Life Sciences (K.T.S., T.S., T.Y.), Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Dong W, Macaulay LJ, Kwok KW, Hinton DE, Ferguson PL, Stapleton HM. The PBDE metabolite 6-OH-BDE 47 affects melanin pigmentation and THRβ MRNA expression in the eye of zebrafish embryos. ACTA ACUST UNITED AC 2014; 2. [PMID: 25767823 PMCID: PMC4354867 DOI: 10.4161/23273739.2014.969072] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polybrominated diphenyl ethers and their hydroxyl-metabolites (OH-BDEs) are commonly detected contaminants in human serum in the US population. They are also considered to be endocrine disruptors, and are specifically known to affect thyroid hormone regulation. In this study, we investigated and compared the effects of a PBDE and its OH-BDE metabolite on developmental pathways regulated by thyroid hormones using zebrafish as a model. Exposure to 6-OHBDE 47 (10–100 nM), but not BDE 47 (1–50 μM), led to decreased melanin pigmentation and increased apoptosis in the retina of zebrafish embryos in a concentration-dependent manner in short-term exposures (4 – 30 hours). Six-OH-BDE 47 exposure also significantly decreased thyroid hormone receptor β (THRβ) mRNA expression, which was confirmed using both RT-PCR and in situ hybridization (whole mount and paraffin- section). Interestingly, exposure to the native thyroid hormone, triiodothyronine (T3) also led to similar responses: decreased THRβ mRNA expression, decreased melanin pigmentation and increased apoptosis, suggesting that 6-OH-BDE 47 may be acting as a T3 mimic. To further investigate short-term effects that may be regulated by THRβ, experiments using a morpholino gene knock down and THRβ mRNA over expression were conducted. Knock down of THRβ led to decreases in melanin pigmentation and increases in apoptotic cells in the eye of zebrafish embryos, similar to exposure to T3 and 6-OH-BDE 47, but THRβ mRNA overexpression rescued these effects. Histological analysis of eyes at 22 hpf from each group revealed that exposure to T3 or to 6-OH-BDE 47 was associated with a decrease of melanin and diminished proliferation of cells in layers of retina near the choroid. This study suggests that 6-OH-BDE 47 disrupts the activity of THRβ in early life stages of zebrafish, and warrants further studies on effects in developing humans.
Collapse
Affiliation(s)
- Wu Dong
- Nicholas School of the Environment; Duke University; Durham, NC USA
| | - Laura J Macaulay
- Nicholas School of the Environment; Duke University; Durham, NC USA
| | - Kevin Wh Kwok
- Nicholas School of the Environment; Duke University; Durham, NC USA
| | - David E Hinton
- Nicholas School of the Environment; Duke University; Durham, NC USA
| | - P Lee Ferguson
- Nicholas School of the Environment; Duke University; Durham, NC USA
| | | |
Collapse
|
24
|
Mechanisms and consequences of developmental acceleration in tadpoles responding to pond drying. PLoS One 2013; 8:e84266. [PMID: 24358352 PMCID: PMC3865288 DOI: 10.1371/journal.pone.0084266] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/21/2013] [Indexed: 11/19/2022] Open
Abstract
Many amphibian species exploit temporary or even ephemeral aquatic habitats for reproduction by maximising larval growth under benign conditions but accelerating development to rapidly undergo metamorphosis when at risk of desiccation from pond drying. Here we determine mechanisms enabling developmental acceleration in response to decreased water levels in western spadefoot toad tadpoles (Pelobates cultripes), a species with long larval periods and large size at metamorphosis but with a high degree of developmental plasticity. We found that P. cultripes tadpoles can shorten their larval period by an average of 30% in response to reduced water levels. We show that such developmental acceleration was achieved via increased endogenous levels of corticosterone and thyroid hormone, which act synergistically to achieve metamorphosis, and also by increased expression of the thyroid hormone receptor TRΒ, which increases tissue sensitivity and responsivity to thyroid hormone. However, developmental acceleration had morphological and physiological consequences. In addition to resulting in smaller juveniles with proportionately shorter limbs, tadpoles exposed to decreased water levels incurred oxidative stress, indicated by increased activity of the antioxidant enzymes catalase, superoxide dismutase, and glutathione peroxidase. Such increases were apparently sufficient to neutralise the oxidative damage caused by presumed increased metabolic activity. Thus, developmental acceleration allows spadefoot toad tadpoles to evade drying ponds, but it comes at the expense of reduced size at metamorphosis and increased oxidative stress.
Collapse
|
25
|
Dong W, Macaulay L, Kwok KWH, Hinton DE, Stapleton HM. Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 132-133:190-9. [PMID: 23531416 PMCID: PMC3642849 DOI: 10.1016/j.aquatox.2013.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 05/20/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their oxidative metabolites (hydroxylated PBDEs; OH-BDEs) are known endocrine disrupting contaminants that have been shown to disrupt thyroid hormone regulation both in mammals and in fish. The purpose of this study was to determine the precise organ and tissue locations that express genes critical to thyroid hormone regulation in developing zebrafish (Danio rerio), and to determine the effects of an OH-BDE on their expression. While RT-PCR can provide quantitative data on gene expression, it lacks spatial sensitivity to examine localized gene expression; and, isolation of organs from zebrafish embryos is technically difficult, if not impossible. For this reason, the present study used whole mount in situ hybridization to simultaneously localize and quantify gene expression in vivo. While PBDEs and OH-BDEs have been shown to inhibit the activity and expression of deiodionases, a family of enzymes that regulate thyroid hormone concentrations intracellularly, it is unclear whether or not they can affect regional expression of the different isoforms during early development. In this study we investigated deiodinase 1 (Dio1), deiodinase 2 (Dio2), and deiodinase 3 (Dio3) mRNA expression at the following life stages (2, 8, and 1k-cells; 50%-epiboly, 6 and 18-somites, 22, 24, 48, 72 hpf and/or 10 dpf) in zebrafish and found life stage specific expression of these genes that were highly localized. To demonstrate the use of this technique for investigating potential endocrine disrupting effects, zebrafish embryos were exposed to 1, 10 and 100nM 6-OH-BDE-47. Significant increases in mean intensity of Dio1 and Dio3 expression in the periventricular zone of brain and pronephric duct, respectively (quantified by measuring intensity of coloration using ImageJ analysis software) were observed, suggesting localized response at the HPT axis with the possibility of impacting neurodevelopment. Our results demonstrate effects of OH-BDEs on thyroid regulating gene expression and provide more insight into potential sites of injury during early life stages.
Collapse
Affiliation(s)
- Wu Dong
- To whom correspondence should be addressed. Heather Stapleton, Phone: 919-613-8717, Fax: (919) 684-8741.
| | | | | | | | - Heather M. Stapleton
- To whom correspondence should be addressed. Heather Stapleton, Phone: 919-613-8717, Fax: (919) 684-8741.
| |
Collapse
|
26
|
Kulkarni SS, Buchholz DR. Beyond synergy: corticosterone and thyroid hormone have numerous interaction effects on gene regulation in Xenopus tropicalis tadpoles. Endocrinology 2012; 153:5309-24. [PMID: 22968645 DOI: 10.1210/en.2012-1432] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hormones play critical roles in vertebrate development, and frog metamorphosis has been an excellent model system to study the developmental roles of thyroid hormone (TH) and glucocorticoids. Whereas TH regulates the initiation and rate of metamorphosis, the actions of corticosterone (CORT; the main glucocorticoid in frogs) are more complex. In the absence of TH during premetamorphosis, CORT inhibits development, but in the presence of TH during metamorphosis, CORT synergizes with TH to accelerate development. Synergy at the level of gene expression is known for three genes in frogs, but the nature and extent of TH and CORT cross talk is otherwise unknown. Therefore, to examine TH and CORT interactions, we performed microarray analysis on tails from Xenopus tropicalis tadpoles treated with CORT, TH, CORT+TH, or vehicle for 18 h. The expression of 5432 genes was significantly altered in response to either or both hormones. Using Venn diagrams and cluster analysis, we identified 16 main patterns of gene regulation due to up- or down-regulation by TH and/or CORT. Many genes were affected by only one of the hormones, and a large proportion of regulated genes (22%) required both hormones. We also identified patterns of additive or synergistic, inhibitory, subtractive, and annihilatory regulation. A total of 928 genes (17%) were regulated by novel interactions between the two hormones. These data expand our understanding of the hormonal cross talk underlying the gene regulation cascade directing tail resorption and suggest the possibility that CORT affects not only the timing but also the nature of TH-dependent tissue transformation.
Collapse
Affiliation(s)
- Saurabh S Kulkarni
- Department of Biological Sciences, University of Cincinnati, Ohio 45221, USA
| | | |
Collapse
|