1
|
Lim WW, Leung JH, Xie C, Cheng AWT, Su L, Lum LN, Toh A, Kong SC, Takano AM, Hausenloy DJ, Chua YC. Circulating Interleukins as Biomarkers in Non-Small Cell Lung Cancer Patients: A Pilot Study Compared to Normal Individuals. Diseases 2024; 12:221. [PMID: 39329890 PMCID: PMC11430979 DOI: 10.3390/diseases12090221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Identifying biomarkers in non-small cell lung cancer (NSCLC) can improve diagnosis and patient stratification. We evaluated plasmas and sera for interleukins (IL)-11, IL-6, IL-8, IL-17A, and IL-33 as biomarkers in primary NSCLC patients undergoing surgical treatment against normal volunteers. Exhaled-breath condensates (EBCs), a potential source without invasive procedures, were explored in normal individuals. Due to separate recruitment criteria and intrinsic cohort differences, the NSCLC and control cohorts were not well matched for age (median age: 65 vs. 40 years; p < 0.0001) and smoking status (p = 0.0058). Interleukins were first assessed through conventional ELISA. IL-11 was elevated in NSCLC plasma compared to controls (49.71 ± 16.90 vs. 27.67 ± 14.06 pg/mL, respectively, p < 0.0001) but undetectable in sera and EBCs by conventional ELISA. Therefore, high-sensitivity PCR-based IL-11 ELISA was repeated, albeit with concentration discrepancies. IL11 gene and protein upregulation by RT-qPCR and immunohistochemistry, respectively, were validated in NSCLC tumors. The lack of detection sensitivity across IL-6, IL-8, IL-17A, and IL-33 suggests the need for further, precise assays. Surprisingly, biomarker concentrations can be dissimilar across paired plasmas and sera. Our results identified a need to optimize detection limits for biomarker detection and caution against over-reliance on just one form of blood sample for biomarker assessment.
Collapse
Affiliation(s)
- Wei-Wen Lim
- National Heart Research Institute of Singapore, National Heart Center Singapore, Singapore 169609, Singapore
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Jason H Leung
- Department of Cardiothoracic Surgery, National Heart Center Singapore, Singapore 169609, Singapore
| | - Chen Xie
- National Heart Research Institute of Singapore, National Heart Center Singapore, Singapore 169609, Singapore
| | - Angelina W T Cheng
- National Heart Research Institute of Singapore, National Heart Center Singapore, Singapore 169609, Singapore
| | - Liping Su
- National Heart Research Institute of Singapore, National Heart Center Singapore, Singapore 169609, Singapore
| | - Luh-Nah Lum
- Clinical and Translational Research Office, National Heart Center Singapore, Singapore 169609, Singapore
| | - Aishah Toh
- Clinical and Translational Research Office, National Heart Center Singapore, Singapore 169609, Singapore
| | - Siew-Ching Kong
- Clinical and Translational Research Office, National Heart Center Singapore, Singapore 169609, Singapore
| | - Angela M Takano
- Department of Anatomical Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Derek J Hausenloy
- National Heart Research Institute of Singapore, National Heart Center Singapore, Singapore 169609, Singapore
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore 117597, Singapore
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
| | - Yang C Chua
- Department of Cardiothoracic Surgery, National Heart Center Singapore, Singapore 169609, Singapore
| |
Collapse
|
2
|
Wu J, Ma W, Qiu Z, Zhou Z. Roles and mechanism of IL-11 in vascular diseases. Front Cardiovasc Med 2023; 10:1171697. [PMID: 37304948 PMCID: PMC10250654 DOI: 10.3389/fcvm.2023.1171697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Vascular diseases are the leading cause of morbidity and mortality worldwide. Therefore, effective treatment strategies that can reduce the risk of vascular diseases are urgently needed. The relationship between Interleukin-11 (IL-11) and development of vascular diseases has gained increasing attention. IL-11, a target for therapeutic research, was initially thought to participate in stimulating platelet production. Additional research concluded that IL-11 is effective in treating several vascular diseases. However, the function and mechanism of IL-11 in these diseases remain unknown. This review summarizes IL-11 expression, function, and signal transduction mechanism. This study also focuses on the role of IL-11 in coronary artery disease, hypertension, pulmonary hypertension, cerebrovascular disease, aortic disease, and other vascular diseases and its potential as a therapeutic target. Consequently, this study provides new insight into the clinical diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenrui Ma
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Wuhan, China
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Nguyen A, Repesse Y, Ebbo M, Allenbach Y, Benveniste O, Vallat JM, Magy L, Deshayes S, Maigné G, de Boysson H, Karnam A, Delignat S, Lacroix-Desmazes S, Bayry J, Aouba A. IVIg increases interleukin-11 levels, which in turn contribute to increased platelets, VWF and FVIII in mice and humans. Clin Exp Immunol 2021; 204:258-266. [PMID: 33512707 DOI: 10.1111/cei.13580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/23/2023] Open
Abstract
The mechanisms of action of intravenous immunoglobulins (IVIg) in autoimmune diseases are not fully understood. The fixed duration of efficacy and noncumulative effects of IVIg in immune thrombocytopenia (ITP) and acquired von Willebrand disease (AVWD) suggest other mechanisms besides immunological ones. Additionally to the peripheral destruction of platelets in ITP, their medullary hypoproduction emerged as a new paradigm with rescue of thrombopoietin receptor agonists (TPO-RA). In an ITP mouse model, interleukin (IL)-11 blood levels increase following IVIg. IL-11 stimulates the production of platelets and other haemostasis factors; recombinant IL-11 (rIL-11) is thus used as a growth factor in post-chemotherapy thrombocytopenia. We therefore hypothesized that IVIg induces IL-11 over-production, which increases platelets, VWF and factor VIII (FVIII) levels in humans and mice. First, in an ITP mouse model, we show that IVIg or rIL-11 induces a rapid increase (72 h) in platelets, FVIII and VWF levels, whereas anti-IL-11 antibody greatly decreased this effect. Secondly, we quantify for the first time in patients with ITP, AVWD, inflammatory myopathies or Guillain-Barré syndrome the dramatic IL-11 increase following IVIg, regardless of the disease. As observed in mice, platelets, VWF and FVIII levels increased following IVIg. The late evolution (4 weeks) of post-IVIg IL-11 levels overlapped with those of VWF and platelets. These data may explain thrombotic events following IVIg and open perspectives to monitor post-IVIg IL-11/thrombopoietin ratios, and to assess rIL-11 use with or without TPO-RA as megakaryopoiesis co-stimulating factors to overcome the relative hypoproduction of platelets or VWF in corresponding autoimmune diseases, besides immunosuppressant.
Collapse
Affiliation(s)
- A Nguyen
- Department of Internal Medicine and Clinical Immunology, Normandy University, Caen, France
| | - Y Repesse
- Laboratory of Haematology and Haemostasis, Normandy University, Caen, France
| | - M Ebbo
- Department of Internal Medicine, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, Aix Marseille University, Marseille, France
| | - Y Allenbach
- Département de Médecine Interne et Immunologie Clinique, Hôpital Pitié-Salpêtrière, Paris, France
| | - O Benveniste
- Département de Médecine Interne et Immunologie Clinique, Hôpital Pitié-Salpêtrière, Paris, France
| | - J M Vallat
- Centre de Référence 'Neuropathies Périphériques Rares' et Service de Neurologie, Hôpital Universitaire Limoges, Limoges, France
| | - L Magy
- Centre de Référence 'Neuropathies Périphériques Rares' et Service de Neurologie, Hôpital Universitaire Limoges, Limoges, France
| | - S Deshayes
- Department of Internal Medicine and Clinical Immunology, Normandy University, Caen, France
| | - G Maigné
- Department of Internal Medicine and Clinical Immunology, Normandy University, Caen, France
| | - H de Boysson
- Department of Internal Medicine and Clinical Immunology, Normandy University, Caen, France
| | - A Karnam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - S Delignat
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - S Lacroix-Desmazes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - J Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Indian Institute of Technology Palakkad, Palakkad, India
| | - A Aouba
- Department of Internal Medicine and Clinical Immunology, Normandy University, Caen, France
| |
Collapse
|
4
|
Emerging mechanisms to modulate VWF release from endothelial cells. Int J Biochem Cell Biol 2020; 131:105900. [PMID: 33301925 DOI: 10.1016/j.biocel.2020.105900] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Agonist-mediated exocytosis of Weibel-Palade bodies underpins the endothelium's ability to respond to injury or infection. Much of this important response is mediated by the major constituent of Weibel-Palade bodies: the ultra-large glycoprotein von Willebrand factor. Upon regulated WPB exocytosis, von Willebrand factor multimers unfurl into long, platelet-catching 'strings' which instigate the pro-haemostatic response. Accordingly, excessive levels of VWF are associated with thrombotic pathologies, including myocardial infarction and ischaemic stroke. Failure to appropriately cleave von Willebrand Factor strings results in thrombotic thrombocytopenic purpura, a life-threatening pathology characterised by tissue ischaemia and multiple microvascular occlusions. Historically, treatment of thrombotic thrombocytopenic purpura has relied heavily on plasma exchange therapy. However, the demonstrated efficacy of Rituximab and Caplacizumab in the treatment of acquired thrombotic thrombocytopenic purpura highlights how insights into pathophysiology can improve treatment options for von Willebrand factor-related disease. Directly limiting von Willebrand factor release from Weibel-Palade bodies has the potential as a therapeutic for cardiovascular disease. Cell biologists aim to map the WPB biogenesis and secretory pathways in order to find novel ways to control von Willebrand factor release. Emerging paradigms include the modulation of Weibel-Palade body size, trafficking and mechanism of fusion. This review focuses on the promise, progress and challenges of targeting Weibel-Palade bodies as a means to inhibit von Willebrand factor release from endothelial cells.
Collapse
|
5
|
Kovacevic KD, Mayer FJ, Jilma B, Buchtele N, Obermayer G, Binder CJ, Blann AD, Minar E, Schillinger M, Hoke M. Von Willebrand factor antigen levels predict major adverse cardiovascular events in patients with carotid stenosis of the ICARAS study. Atherosclerosis 2019; 290:31-36. [DOI: 10.1016/j.atherosclerosis.2019.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/26/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
|
6
|
Jin C, Wang Y, Cheng H, Liu H, Liu T, Ke B, Li A, Yang L, Zhu Q, Ding W, Luo M, Wei Y, Kong C. Platelet and peripheral white blood cell counts at diagnosis predict the response of adult immune thrombocytopenia to recombinant human interleukin-11: A retrospective, single-center, case-control study. Medicine (Baltimore) 2019; 98:e15195. [PMID: 31008943 PMCID: PMC6494275 DOI: 10.1097/md.0000000000015195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study evaluated the effectiveness of recombinant human interleukin-11 (rhIL-11) in the treatment of immune thrombocytopenia (ITP) and determined whether clinical and laboratory findings predicted the treatment response.This retrospective, single-center, case-control study included 103 adult patients with ITP treated between July 2010 and April 2014 at Jiangxi Province People's Hospital. About 49 patients in the pred+IL group received prednisone (conventional dose) combined with an rhIL-11 regimen, and 54 patients in the pred alone group received prednisone (conventional dose) alone. Demographic data, initial and follow-up platelet counts, proportions of patients achieving platelet counts ≥30 × 10/L (response) and ≥100 × 10/L (complete response) at different time points, and adverse reactions were compared between groups.Complete response rates were similar between groups overall but higher in the pred+IL group than in the pred alone group for newly diagnosed patients and those with severe ITP (P < .05). Proportions of patients achieving response or complete response at different time points were similar between groups overall but higher in the pred+IL group than in the pred alone group for newly diagnosed patients and those with severe ITP (P < .05). Posttreatment platelet count correlated negatively with platelet count at diagnosis and white blood cell (WBC) count at diagnosis in patients with newly diagnosed ITP (r = -0.337, P = .073 and r = -0.367, P = .050, respectively) or ITP with bleeding-related episodes (r = -0.357, P = .020 and r = -0.434, P = .004, respectively). No immediate or postinfusion severe adverse reactions were observed.rhIL-11 increased CR and improved hemostasis in patients with newly diagnosed or severe ITP. Platelet and WBC counts at diagnosis can predict the response to rhIL-11.
Collapse
Affiliation(s)
- Chenghao Jin
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yulu Wang
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hongbo Cheng
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University
| | - Haiyun Liu
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University
| | - Tingting Liu
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province
| | - Bo Ke
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province
| | - Anna Li
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province
| | - Liu Yang
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province
| | - Qingxiu Zhu
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province
| | - Weirong Ding
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University
- Key Biologic Laboratory of Blood Tumor Cell of Jiangxi Province
| | - Minzhi Luo
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University
| | - Yujing Wei
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University
| | - Chunfang Kong
- Department of Hematology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University
| |
Collapse
|
7
|
Heijdra JM, Cnossen MH, Leebeek FWG. Current and Emerging Options for the Management of Inherited von Willebrand Disease. Drugs 2017; 77:1531-1547. [PMID: 28791655 PMCID: PMC5585291 DOI: 10.1007/s40265-017-0793-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Von Willebrand disease (VWD) is the most common inherited bleeding disorder with an estimated prevalence of ~1% and clinically relevant bleeding symptoms in approximately 1:10,000 individuals. VWD is caused by a deficiency and/or defect of von Willebrand factor (VWF). The most common symptoms are mucocutaneous bleeding, hematomas, and bleeding after trauma or surgery. For decades, treatment to prevent or treat bleeding has consisted of desmopressin in milder cases and of replacement therapy with plasma-derived concentrates containing VWF and Factor VIII (FVIII) in more severe cases. Both are usually combined with supportive therapy, e.g. antifibrinolytic agents, and maximal hemostatic measures. Several developments such as the first recombinant VWF concentrate, which has been recently licensed for VWD, will make a more "personalized" approach to VWD management possible. As research on new treatment strategies for established therapies, such as population pharmacokinetic-guided dosing of clotting factor concentrates, and novel treatment modalities such as aptamers and gene therapy are ongoing, it is likely that the horizon to tailor therapy to the individual patients' needs will be extended, thus, further improving the already high standard of care in VWD in most high-resource countries.
Collapse
Affiliation(s)
- Jessica M Heijdra
- Department of Pediatric Hematology, Erasmus University Medical Center - Sophia Children's Hospital, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Marjon H Cnossen
- Department of Pediatric Hematology, Erasmus University Medical Center - Sophia Children's Hospital, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus University Medical Center, Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Towards personalised therapy for von Willebrand disease: a future role for recombinant products. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 14:262-76. [PMID: 27136426 DOI: 10.2450/2016.0258-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/04/2015] [Indexed: 11/21/2022]
Abstract
von Willebrand disease (VWD) is reportedly the most common bleeding disorder and is caused by deficiencies and/or defects in the adhesive plasma protein von Willebrand factor (VWF). Functionally, normal VWF prevents bleeding by promoting both primary and secondary haemostasis. In respect to primary haemostasis, VWF binds to both platelets and sub-endothelial matrix components, especially collagen, to anchor platelets to damaged vascular tissue and promote thrombus formation. VWF also stabilises and protects factor VIII in the circulation, delivering FVIII to the site of injury, which then facilitates secondary haemostasis and fibrin formation/thrombus stabilisation. As a result of this, patients with VWD suffer a bleeding diathesis reflective of a primary defect caused by defective/deficient VWF, which in some patients is compounded by a reduction in FVIII. Management of VWD, therefore, chiefly entails replacement of VWF, and sometimes also FVIII, to protect against bleeding. The current report principally focuses on the future potential for "personalised" management of VWD, given the emerging options in recombinant therapies. Recombinant VWF has been developed and is undergoing clinical trials, and this promising therapy may soon change the way in which VWD is managed. In particular, we can envisage a personalised treatment approach using recombinant VWF, with or without recombinant FVIII, depending on the type of VWD, the extent of deficiencies, and the period and duration of treatment.
Collapse
|
9
|
Nichols TC. Lessons Learned from Animal Models of Inherited Bleeding Disorders. HEMATOLOGY EDUCATION. EUROPEAN HEMATOLOGY ASSOCIATION. CONGRESS. EDUCATION PROGRAM 2014; 8:39-46. [PMID: 26052366 PMCID: PMC4457463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Advances in treatment of hemophilia and von Willebrand disease (VWD) depend heavily on the availability of well-characterized animal models. These animals faithfully recapitulate the severe bleeding phenotype that occurs in humans with these inherited bleeding disorders. Research in these animal models represents important early and intermediate steps of translational research aimed at addressing current limitations in treatment such as the development of inhibitory antibodies to coagulation factors VIII and IX (FVIII, FIX) or von Willebrand factor (VWF), the life-long need for frequent venous access, the expense of therapy, and the ongoing need for improved ex vivo coagulation assays and in vivo methods for assessing hemostasis. The primary strengths of research that utilizes these highly relevant animal models include the development of better and safer treatments for hemophilia and VWD. Careful consideration of the strengths and limitations of the specific models is essential for optimizing chances for successful translation of advances to clinical medicine that benefits humans and animals.
Collapse
Affiliation(s)
- Timothy C Nichols
- University of North Carolina at Chapel Hill: Department of Pathology and Laboratory Medicine and Department of Medicine
| |
Collapse
|
10
|
Abstract
Animal models of hemophilia and related diseases are important for the development of novel treatments and to understand the pathophysiology of bleeding disorders in humans. Testing in animals with the equivalent human disorder provides informed estimates of doses and measures of efficacy, which aids in design of human trials. Many models of hemophilia A, hemophilia B, and von Willebrand disease (VWD) have been developed from animals with spontaneous mutations (hemophilia A dogs, rats, sheep; hemophilia B dogs; and VWD pigs and dogs), or by targeted gene disruption in mice to create hemophilia A, B, or VWD models. Animal models have been used to generate new insights into the pathophysiology of each bleeding disorder and also to perform preclinical assessments of standard protein replacement therapies, as well as novel gene transfer technology. The differences both between species and in underlying causative mutations must be considered in choosing the best animal for a specific scientific study.
Collapse
|
11
|
Cellular and molecular basis of von Willebrand disease: studies on blood outgrowth endothelial cells. Blood 2013; 121:2773-84. [PMID: 23355534 DOI: 10.1182/blood-2012-06-435727] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Von Willebrand disease (VWD) is a heterogeneous bleeding disorder caused by decrease or dysfunction of von Willebrand factor (VWF). A wide range of mutations in the VWF gene have been characterized; however, their cellular consequences are still poorly understood. Here we have used a recently developed approach to study the molecular and cellular basis of VWD. We isolated blood outgrowth endothelial cells (BOECs) from peripheral blood of 4 type 1 VWD and 4 type 2 VWD patients and 9 healthy controls. We confirmed the endothelial lineage of BOECs, then measured VWF messenger RNA (mRNA) and protein levels (before and after stimulation) and VWF multimers. Decreased mRNA levels were predictive of plasma VWF levels in type 1 VWD, confirming a defect in VWF synthesis. However, BOECs from this group of patients also showed defects in processing, storage, and/or secretion of VWF. Levels of VWF mRNA and protein were normal in BOECs from 3 type 2 VWD patients, supporting the dysfunctional VWF model. However, 1 type 2M patient showed decreased VWF synthesis and storage, indicating a complex cellular defect. These results demonstrate for the first time that isolation of endothelial cells from VWD patients provides novel insight into cellular mechanisms of the disease.
Collapse
|
12
|
Ragni MV, Novelli EM, Murshed A, Merricks EP, Kloos MT, Nichols TC. Phase II prospective open-label trial of recombinant interleukin-11 in desmopressin-unresponsive von Willebrand disease and mild or moderate haemophilia A. Thromb Haemost 2012; 109:248-54. [PMID: 23238591 DOI: 10.1160/th12-06-0447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 11/14/2012] [Indexed: 11/05/2022]
Abstract
Desmopressin (DDAVP) is the treatment of choice in those with mild von Willebrand disease (VWD), yet 20% are unresponsive to DDAVP, and among the 80% who respond, the response is transient, as endothelial stores are depleted after three days. We, therefore, conducted a single-center Phase II clinical trial to determine safety and biologic efficacy of recombinant interleukin-11 (rhIL-11, Neumega®) in patients with VWD unresponsive or allergic to DDAVP, or mild or moderate haemophilia A (HA). Increases in VWF:RCo wer e observed by 48 hours after rhIL-11, with a 1.54-fold increase by Day 4, 1.30-fold in VWD and 1.73-fold in HA. Similarly, by 48 hours, increases in VIII:C were observed, with a 1.65-fold increase by Day 4, 1.86-fold in VWD and 1.48-fold in HA. Platelet VWFmRNA expression by qPCR increased 0.81-fold but did not correlate with plasma VWF:Ag responses. rhIL-11 was well tolerated, with grade 1 or less fluid retention, flushing, conjunctival erythema, except for transient grade 3 hyponatraemia in one subject after excess fluid intake for diabetic hyperglycaemia, which resolved with fluid restriction. In summary, rhIL-11 increases VWF levels in two of four DDAVP-unresponsive or allergic VWD and F.VIII levels in four of five mild or moderate haemophilia A subjects, suggesting its potential use in treatment of these disorders.
Collapse
Affiliation(s)
- Margaret V Ragni
- Department of Medicine, Division of Hematology/Oncology and Vascular Medicine Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Demyanets S, Huber K, Wojta J. Vascular effects of glycoprotein130 ligands--part II: biomarkers and therapeutic targets. Vascul Pharmacol 2012; 57:29-40. [PMID: 22245786 DOI: 10.1016/j.vph.2011.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/15/2011] [Accepted: 12/25/2011] [Indexed: 12/13/2022]
Abstract
Glycoprotein130 (gp130) ligands are defined by the use of the common receptor subunit gp130 and comprise interleukin (IL)-6, oncostatin M (OSM), IL-11, leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine (CLC), ciliary neurotrophic factor (CNTF), IL-27 and neuropoietin (NP). In part I of this review we addressed the pathophysiological functions of gp130 ligands with respect to the vascular wall. In part II of this review on the vascular effects of gp130 ligands we will discuss data about possible use of these molecules as biomarkers to predict development or progression of cardiovascular diseases. Furthermore, the possibility to modulate circulating levels of gp130 ligands or their tissue expression by specific antibodies, soluble gp130 protein, renin-angiotensin-aldosterone system (RASS) inhibitors, statins, agonists of peroxisome proliferator-activated receptors (PPAR), hormone replacement therapy, nonsteroidal anti-inflammatory drugs (NSAID) or lifestyle modulating strategies are presented. Recent knowledge about the application of recombinant cytokines from the gp130 cytokine family as therapeutic agents in obesity or atherosclerosis is also summarized. Thus the purpose of this review is to cover a possible usefulness of gp130 ligands as biomarkers and targets for therapy in cardiovascular pathologies.
Collapse
Affiliation(s)
- Svitlana Demyanets
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
14
|
Sabatino DE, Nichols TC, Merricks E, Bellinger DA, Herzog RW, Monahan PE. Animal models of hemophilia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:151-209. [PMID: 22137432 PMCID: PMC3713797 DOI: 10.1016/b978-0-12-394596-9.00006-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in preclinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for long-term follow-up as well as for studies that require larger blood volumes.
Collapse
Affiliation(s)
- Denise E. Sabatino
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Timothy C. Nichols
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Elizabeth Merricks
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Dwight A. Bellinger
- Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Roland W. Herzog
- Department of Pediatrics, University of Florida, Gainesville, Florida 32610
| | - Paul E. Monahan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27516
| |
Collapse
|
15
|
Federici AB, James P. Current management of patients with severe von Willebrand disease type 3: a 2012 update. Acta Haematol 2012; 128:88-99. [PMID: 22722677 DOI: 10.1159/000338208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/05/2012] [Indexed: 11/19/2022]
Abstract
Von Willebrand disease type 3 (VWD3) is the most severe form of this bleeding disorder due to the almost complete deficiency of von Willebrand factor (VWF). VWD3 is inherited as an autosomal recessive trait. While heterozygous carriers exhibit mild or no bleeding symptoms, most patients with VWD3, which is characterized by undetectable levels of VWF antigen (VWF:Ag) and reduced concentrations (<20 IU/dl) of factor VIII (FVIII), show severe bleeding symptoms. Although the incidence of VWD3 is rare, the condition is of considerable interest because of its severe clinical presentation, the need for replacement therapy and the risk of alloantibodies following infusion of plasma-derived VWF concentrates. This review, based on clinical experience, provides an update on the clinical, laboratory and molecular markers of VWD3 that can be useful for determining the optimal therapeutic approach in these patients.
Collapse
Affiliation(s)
- Augusto B Federici
- Hematology and Transfusion Medicine, L. SACCO University Hospital and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | | |
Collapse
|
16
|
Ragni MV, Jankowitz RC, Jaworski K, Merricks EP, Kloos MT, Nichols TC. Phase II prospective open-label trial of recombinant interleukin-11 in women with mild von Willebrand disease and refractory menorrhagia. Thromb Haemost 2011; 106:641-5. [PMID: 21833452 DOI: 10.1160/th11-04-0274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/08/2011] [Indexed: 11/05/2022]
Abstract
Lack of effective treatment for menorrhagia is the greatest unmet healthcare need in women with von Willebrand disease (VWD). We conducted a single-centre phase II clinical trial to determine efficacy and safety of recombinant IL-11 (rhIL-11, Neumega®) given subcutaneously for up to seven days during six consecutive menstrual cycles each in seven women with mild VWD and menorrhagia refractory to haemostatic or hormonal agents. rhIL-11 reduced menstrual bleeding severity as measured by pictorial blood assessment chart (PBAC) ≥ 50% (to <100) in 71% of subjects, cycle severity ≥ 50% in 71%, and bleeding duration ≥ 2 days in 85%, all p ≤ 0.01. After rhIL-11, plasma VWF:RCo increased 1.1-fold, but did not correlate with PBAC, r=0.116, bleeding duration, r=0.318, or cycle severity, r=-0.295, or hsCRP, r=-0.003, all p>0.05. Platelet VWF mRNA expression by quantitative PCR increased mean four-fold (1.0-13.5). rhIL-11 was well tolerated with grade 1 or less fluid retention, flushing, conjunctival erythema, and local bruising. In summary, rhIL-11 reduces menorrhagia safely and warrants further study.
Collapse
Affiliation(s)
- Margaret V Ragni
- Division Hematology/Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Nichols TC, Bellinger DA, Merricks EP, Raymer RA, Kloos MT, DeFriess N, Ragni MV, Griggs TR. Porcine and canine von Willebrand factor and von Willebrand disease: hemostasis, thrombosis, and atherosclerosis studies. THROMBOSIS 2011; 2010:461238. [PMID: 22091368 PMCID: PMC3211078 DOI: 10.1155/2010/461238] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/29/2010] [Indexed: 02/04/2023]
Abstract
Use of animal models of inherited and induced von Willebrand factor (VWF) deficiency continues to advance the knowledge of VWF-related diseases: von Willebrand disease (VWD), thrombotic thrombocytopenic purpura (TTP), and coronary artery thrombosis. First, in humans, pigs, and dogs, VWF is essential for normal hemostasis; without VWF bleeding events are severe and can be fatal. Second, the ADAMTS13 cleavage site is preserved in all three species suggesting all use this mechanism for normal VWF multimer processing and that all are susceptible to TTP when ADAMTS13 function is reduced. Third, while the role of VWF in atherogenesis is debated, arterial thrombosis complicating atherosclerosis appears to be VWF-dependent. The differences in the VWF gene and protein between humans, pigs, and dogs are relatively few but important to consider in the design of VWF-focused experiments. These homologies and differences are reviewed in detail and their implications for research projects are discussed. The current status of porcine and canine VWD are also reviewed as well as their potential role in future studies of VWF-related disorders of hemostasis and thrombosis.
Collapse
Affiliation(s)
- Timothy C. Nichols
- Department of Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Dwight A. Bellinger
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
- Division of Laboratory Animal Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Elizabeth P. Merricks
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Robin A. Raymer
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Mark T. Kloos
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Natalie DeFriess
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Margaret V. Ragni
- Medicine/Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
- Hemophilia Center of Western PA, Pittsburgh, PA 15213, USA
| | - Thomas R. Griggs
- Department of Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
- Pathology and Laboratory Medicine, Francis Owen Blood Research Laboratory, University of North Carolina, Chapel Hill, NC 27516, USA
| |
Collapse
|
18
|
Models for prediction of factor VIII half-life in severe haemophiliacs: distinct approaches for blood group O and non-O patients. PLoS One 2009; 4:e6745. [PMID: 19707594 PMCID: PMC2727052 DOI: 10.1371/journal.pone.0006745] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 07/22/2009] [Indexed: 11/19/2022] Open
Abstract
Background Von Willebrand factor (VWF) is critical for the in vivo survival of factor VIII (FVIII). Since FVIII half-life correlates with VWF-antigen pre-infusion levels, we hypothesized that VWF levels are useful to predict FVIII half-life. Methodology Standardized half-life studies and analysis of pre-infusion VWF and VWF-propeptide levels were performed in a cohort of 38 patients with severe haemophilia A (FVIII <1 IU/ml), aged 15–44 years. Nineteen patients had blood-group O. Using multivariate linear regression-analysis (MVLR-analysis), the association of VWF-antigen, VWF-propeptide, age and body-weight with FVIII half-life was evaluated. Principal Findings FVIII half-life was shorter in blood-group O-patients compared to non-O-patients (11.5±2.6 h versus 14.3±3.0 h; p = 0.004). VWF-antigen levels correlated with FVIII half-life considerably better in patients with blood-group non-O than O (Pearson-rank = 0.70 and 0.47, respectively). Separate prediction models evolved from MVLR-analysis for blood-group O and non-O patients, based on VWF-antigen and VWF/propeptide ratio. Predicted half-lives deviated less than 3 h of observed half-life in 34/38 patients (89%) or less than 20% in 31/38 patients (82%). Conclusion Our approach may identify patients with shorter FVIII half-lives, and adapt treatment protocols when half-life studies are unavailable. In addition, our data indicate that survival of FVIII is determined by survival of endogenous VWF rather than VWF levels per se.
Collapse
|
19
|
Abstract
von Willebrand disease (VWD), caused by quantitative or qualitative abnormalities in von Willebrand factor (VWF) is considered the most common inherited bleeding disorder in humans. Mild and severe quantitative defects in VWF cause VWD types 1 and 3 respectively, whereas qualitative abnormalities induce VWD type 2. VWD has also been diagnosed in a number of animal species such as dogs, pigs, cats and horses, as a result of naturally occurring mutations. More recently, murine models have drawn a great deal of attention. Their small size along with their well-defined genetic background makes them ideal tools to study the in vivo function of VWF. The most commonly used model is the VWF-deficient mouse engineered through homologous recombination. However, models resulting from changes in modifier genes indirectly affecting VWF have also been described. These various models have proven very useful in elucidating some aspects of VWF biology not easily addressed through in vitro approaches.
Collapse
Affiliation(s)
- R Pendu
- INSERM U770, Univ Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | |
Collapse
|
20
|
Nichols TC, Dillow AM, Franck HWG, Merricks EP, Raymer RA, Bellinger DA, Arruda VR, High KA. Protein replacement therapy and gene transfer in canine models of hemophilia A, hemophilia B, von willebrand disease, and factor VII deficiency. ILAR J 2009; 50:144-67. [PMID: 19293459 DOI: 10.1093/ilar.50.2.144] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dogs with hemophilia A, hemophilia B, von Willebrand disease (VWD), and factor VII deficiency faithfully recapitulate the severe bleeding phenotype that occurs in humans with these disorders. The first rational approach to diagnosing these bleeding disorders became possible with the development of reliable assays in the 1940s through research that used these dogs. For the next 60 years, treatment consisted of replacement of the associated missing or dysfunctional protein, first with plasma-derived products and subsequently with recombinant products. Research has consistently shown that replacement products that are safe and efficacious in these dogs prove to be safe and efficacious in humans. But these highly effective products require repeated administration and are limited in supply and expensive; in addition, plasma-derived products have transmitted bloodborne pathogens. Recombinant proteins have all but eliminated inadvertent transmission of bloodborne pathogens, but the other limitations persist. Thus, gene therapy is an attractive alternative strategy in these monogenic disorders and has been actively pursued since the early 1990s. To date, several modalities of gene transfer in canine hemophilia have proven to be safe, produced easily detectable levels of transgene products in plasma that have persisted for years in association with reduced bleeding, and correctly predicted the vector dose required in a human hemophilia B liver-based trial. Very recently, however, researchers have identified an immune response to adeno-associated viral gene transfer vector capsid proteins in a human liver-based trial that was not present in preclinical testing in rodents, dogs, or nonhuman primates. This article provides a review of the strengths and limitations of canine hemophilia, VWD, and factor VII deficiency models and of their historical and current role in the development of improved therapy for humans with these inherited bleeding disorders.
Collapse
Affiliation(s)
- Timothy C Nichols
- Department of Pathology, Francis Owen Blood Research Laboratory, Laboratory Medicine at the University of North Carolina at Chapel Hill, NC 27516-3114, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Abstractvon Willebrand factor (VWF) is a large multimeric adhesive glycoprotein with complex roles in thrombosis and hemostasis. Abnormalities in VWF give rise to a variety of bleeding complications, known as von Willebrand disease (VWD), the most common inherited bleeding disorder in humans. Current treatment of VWD is based on the replacement of the deficient or dysfunctional protein either by endogenous release from endothelial Weibel-Palade bodies or by administration of plasma-derived VWF concentrates. During the last years, several efforts have been made to optimize existing therapies for VWD, but also to devise new approaches, such as inducing endogenous expression with interleukin-11, administering exogenous recombinant VWF, or introducing the protein via gene delivery. Clearly, the efficacy of any strategy will depend on several factors, including, for example, the quantity, activity, and stability of the delivered VWF. The inherent complexity of VWF biosynthesis, which involves extensive posttranslational processing, may be limiting in terms of producing active VWF outside of its native cellular sources. This review summarizes recent progress in the development of different treatment strategies for VWD, including those that are established and those that are at the experimental stage. Potential pitfalls and benefits of each strategy are discussed.
Collapse
|