1
|
Cai R, Bai P, Quan M, Ding Y, Wei W, Liu C, Yang A, Xiong Z, Li G, Li B, Deng Y, Tian R, Zhao YG, Wu C, Sun Y. Migfilin promotes autophagic flux through direct interaction with SNAP29 and Vamp8. J Cell Biol 2024; 223:e202312119. [PMID: 39283311 PMCID: PMC11404564 DOI: 10.1083/jcb.202312119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/06/2024] [Accepted: 07/18/2024] [Indexed: 09/22/2024] Open
Abstract
Autophagy plays a crucial role in cancer cell survival by facilitating the elimination of detrimental cellular components and the recycling of nutrients. Understanding the molecular regulation of autophagy is critical for developing interventional approaches for cancer therapy. In this study, we report that migfilin, a focal adhesion protein, plays a novel role in promoting autophagy by increasing autophagosome-lysosome fusion. We found that migfilin is associated with SNAP29 and Vamp8, thereby facilitating Stx17-SNAP29-Vamp8 SNARE complex assembly. Depletion of migfilin disrupted the formation of the SNAP29-mediated SNARE complex, which consequently blocked the autophagosome-lysosome fusion, ultimately suppressing cancer cell growth. Restoration of the SNARE complex formation rescued migfilin-deficiency-induced autophagic flux defects. Finally, we found depletion of migfilin inhibited cancer cell proliferation. SNARE complex reassembly successfully reversed migfilin-deficiency-induced inhibition of cancer cell growth. Taken together, our study uncovers a new function of migfilin as an autophagy-regulatory protein and suggests that targeting the migfilin-SNARE assembly could provide a promising therapeutic approach to alleviate cancer progression.
Collapse
Affiliation(s)
- Renwei Cai
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Panzhu Bai
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Meiling Quan
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Yanyan Ding
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Wenjie Wei
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chengmin Liu
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Aihua Yang
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Zailin Xiong
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Guizhen Li
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Binbin Li
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Yi Deng
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, China
| | - Yan G. Zhao
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, School of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ying Sun
- Department of System Biology, School of Life Sciences, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
- Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Wang S, Fan G, Li L, He Y, Lou N, Xie T, Dai L, Gao R, Yang M, Shi Y, Han X. Integrative analyses of bulk and single-cell RNA-seq identified cancer-associated fibroblasts-related signature as a prognostic factor for immunotherapy in NSCLC. Cancer Immunol Immunother 2023; 72:2423-2442. [PMID: 37010552 PMCID: PMC10992286 DOI: 10.1007/s00262-023-03428-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
An emerging view regarding cancer-associated fibroblast (CAF) is that it plays a critical role in tumorigenesis and immunosuppression in the tumor microenvironment (TME), but the clinical significance and biological functions of CAFs in non-small cell lung cancer (NSCLC) are still poorly explored. Here, we aimed to identify the CAF-related signature for NSCLC through integrative analyses of bulk and single-cell genomics, transcriptomics, and proteomics profiling. Using CAF marker genes identified in weighted gene co-expression network analysis (WGCNA), we constructed and validated a CAF-based risk model that stratifies patients into two prognostic groups from four independent NSCLC cohorts. The high-score group exhibits a higher abundance of CAFs, decreased immune cell infiltration, increased epithelial-mesenchymal transition (EMT), activated transforming growth factor beta (TGFβ) signaling, and a limited survival rate compared with the low-score group. Considering the immunosuppressive feature in the high-score group, we speculated an inferior clinical response for immunotherapy in these patients, and this association was successfully verified in two NSCLC cohorts treated with immune checkpoint blockades (ICBs). Furthermore, single-cell RNA sequence datasets were used to clarify the molecular mechanisms underlying the aggressive and immunosuppressive phenotype in the high-score group. We found that one of the genes in the risk model, filamin binding LIM protein 1 (FBLIM1), is mainly expressed in fibroblasts and upregulated in CAFs compared to fibroblasts from normal tissue. FBLIM1-positive CAF subtype was correlated with increased TGFβ expression, higher mesenchymal marker level, and immunosuppressive tumor microenvironment. Finally, we demonstrated that FBLIM1 might serve as a poor prognostic marker for immunotherapy in clinical samples. In conclusion, we identified a novel CAF-based classifier with prognostic value in NSCLC patients and those treated with ICBs. Single-cell transcriptome profiling uncovered FBLIM1-positive CAFs as an aggressive subtype with a high abundance of TGFβ, EMT, and an immunosuppressive phenotype in NSCLC.
Collapse
Affiliation(s)
- Shasha Wang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yajun He
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Ning Lou
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Liyuan Dai
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Ruyun Gao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Mengwei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Duan B, Qin Z, Gu X, Li Y. Migfilin: Cell Adhesion Effect and Comorbidities. Onco Targets Ther 2022; 15:411-422. [PMID: 35469339 PMCID: PMC9034862 DOI: 10.2147/ott.s357355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022] Open
Abstract
Cell adhesion manifests as cell linkages to neighboring cells and/or the extracellular matrix (ECM). Migfilin is a widely expressed adhesion protein. It comprises three LIM domains in the C-terminal region and one proline-rich sequence in the N-terminal region. Through interplay with its various binding partners, such as Kindlin-2, Filamin, vasodilator-stimulated phosphoprotein (VASP) protein and the transcription factor CSX, Migfilin facilitates the dynamic association of connecting actomyosin fibers, orchestrating cell morphogenetic movement and cell adhesion, proliferation, migration, invasion, differentiation and signal transduction. In this review, to further elucidate the functional contributions of and pathogenesis induced by Migfilin, we focused on the structure of Migfilin and the targets which it directly binds with. We also summarized the role of Migfilin and its binding partners in the progression of different diseases and malignancies. As a possible candidate for coordinating various cellular processes and because of its association with both the pathogenesis and progression of certain tumors, Migfilin likely has utility as a therapeutic target against multiple diseases in the clinic.
Collapse
Affiliation(s)
- Baoyu Duan
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Ziyao Qin
- Department of Research and Development, Shanghai Institute of Biological Products Co., Ltd., Shanghai, People’s Republic of China
| | - Xuefeng Gu
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
- Xuefeng Gu, Department of Pharmacy, 279 Zhouzhu Road, Shanghai, 201318, People’s Republic of China, Tel +86 21 6588 3180, Email
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, People’s Republic of China
- Correspondence: Yanfei Li, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Shanghai, 201318, People’s Republic of China, Tel +86 21 6588 3180 Email
| |
Collapse
|
4
|
Gkretsi V, Stylianopoulos T. Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell Invasion and Metastasis. Front Oncol 2018; 8:145. [PMID: 29780748 PMCID: PMC5945811 DOI: 10.3389/fonc.2018.00145] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/20/2018] [Indexed: 01/27/2023] Open
Abstract
Metastasis is a multistep process in which tumor extracellular matrix (ECM) and cancer cell cytoskeleton interactions are pivotal. ECM is connected, through integrins, to the cell’s adhesome at cell–ECM adhesion sites and through them to the actin cytoskeleton and various downstream signaling pathways that enable the cell to respond to external stimuli in a coordinated manner. Cues from cell-adhesion proteins are fundamental for defining the invasive potential of cancer cells, and many of these proteins have been proposed as potent targets for inhibiting cancer cell invasion and thus, metastasis. In addition, ECM accumulation is quite frequent within the tumor microenvironment leading in many cases to an intense fibrotic response, known as desmoplasia, and tumor stiffening. Stiffening is not only required for the tumor to be able to displace the host tissue and grow in size but also contributes to cell–ECM interactions and can promote cancer cell invasion to surrounding tissues. Here, we review the role of cell adhesion and matrix stiffness in cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Vasiliki Gkretsi
- Department of Life Sciences, Biomedical Sciences Program, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
5
|
Gkretsi V, Bogdanos DP. Experimental evidence of Migfilin as a new therapeutic target of hepatocellular carcinoma metastasis. Exp Cell Res 2015; 334:219-27. [PMID: 25773778 DOI: 10.1016/j.yexcr.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 02/07/2023]
Abstract
Migfilin is a novel cell-matrix adhesion protein known to interact with Vasodilator Stimulated Phosphoprotein (VASP) and be localized both at cell-matrix and cell-cell adhesions. To date there is nothing known about its role in hepatocellular carcinoma (HCC). As matrix is important in metastasis, we aimed to investigate the Migfilin׳s role in HCC metastasis using two human HCC cell lines that differ in their metastatic potential; non-invasive Alexander cells and the highly invasive HepG2 cells. We silenced Migfilin by siRNA and studied its effect on signaling and metastasis-related cellular properties. We show that Migfilin׳s expression is elevated in HepG2 cells and its silencing leads to upregulation of actin reorganization-related proteins, namely phosphor-VASP (Ser157 and Ser239), Fascin-1 and Rho-kinase-1, promoting actin polymerization and inhibiting cell invasion. Phosphor-Akt (Ser473) is decreased contributing to the upregulation of free and phosphor-β-catenin (Ser33/37Thr41) and inducing proliferation. Migfilin elimination upregulates Extracellular Signal-regulated kinase, which increases cell adhesion in HepG2 and reduces invasiveness. This is the first study to reveal that Migfilin inhibition can halt HCC metastasis in vitro, providing the molecular mechanism involved and presenting Migfilin as potential therapeutic target against HCC metastasis.
Collapse
Affiliation(s)
- Vasiliki Gkretsi
- Department of Biomedical Research and Technology, Institute for Research and Technology-Thessaly, Centre for Research and Technology-Hellas (CE.R.T.H.), Larissa 41222, Greece.
| | - Dimitrios P Bogdanos
- Department of Biomedical Research and Technology, Institute for Research and Technology-Thessaly, Centre for Research and Technology-Hellas (CE.R.T.H.), Larissa 41222, Greece; Department of Rheumatology, School of Medicine, University of Thessaly, University Hospital of Larissa, 41110 Larissa, Greece; Institute of Liver Studies, King׳s College Hospital, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
6
|
He H, Ding F, Li S, Chen H, Liu Z. Expression of migfilin is increased in esophageal cancer and represses the Akt-β-catenin activation. Am J Cancer Res 2014; 4:270-278. [PMID: 24959381 PMCID: PMC4065407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023] Open
Abstract
Cell adhesion proteins that connect each cell to neighboring cells and the extracellular matrix are an important determinant of cell morphology and metastasis. Migfilin is a member of LIM-containing protein family, mediated the linkage between cytoskeleton and focal adhesion through interacting with other proteins and involved in cell adhesion and motility. The present study used immunohistochemistry and Western blot analysis of migfilin in clinical specimens of esophageal squamous cell carcinoma (ESCC) to identify that the expression of migfilin was significantly upregulated in ESCC in concomitance with a nuclear-cytoplasm translocation compared to normal adjacent tissue. Alternately, using the published datasets we identified that the expression of β-catenin was upregulated in esophageal cancer cells with focal invasion, while inversely correlated with migfilin in esophageal cancer cell lines. We demonstrated that the reduced expression of β-catenin by migfilin was through the inhibition of Akt activation. In conclusion, these results illustrated that migfilin upregulated in ESCCs and repressed β-catenin in an Akt-GSK3β signaling dependent manner.
Collapse
Affiliation(s)
- Huan He
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100021, China
| | - Fang Ding
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100021, China
| | - Sheng Li
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100021, China
| | - Hongyan Chen
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100021, China
| | - Zhihua Liu
- The State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100021, China
| |
Collapse
|
7
|
Brahme NN, Harburger DS, Kemp-O'Brien K, Stewart R, Raghavan S, Parsons M, Calderwood DA. Kindlin binds migfilin tandem LIM domains and regulates migfilin focal adhesion localization and recruitment dynamics. J Biol Chem 2013; 288:35604-16. [PMID: 24165133 DOI: 10.1074/jbc.m113.483016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Focal adhesions (FAs), sites of tight adhesion to the extracellular matrix, are composed of clusters of transmembrane integrin adhesion receptors and intracellular proteins that link integrins to the actin cytoskeleton and signaling pathways. Two integrin-binding proteins present in FAs, kindlin-1 and kindlin-2, are important for integrin activation, FA formation, and signaling. Migfilin, originally identified in a yeast two-hybrid screen for kindlin-2-interacting proteins, is a LIM domain-containing adaptor protein found in FAs and implicated in control of cell adhesion, spreading, and migration. By binding filamin, migfilin provides a link between kindlin and the actin cytoskeleton. Here, using a combination of kindlin knockdown, biochemical pulldown assays, fluorescence microscopy, fluorescence resonance energy transfer (FRET), and fluorescence recovery after photobleaching (FRAP), we have established that the C-terminal LIM domains of migfilin dictate its FA localization, shown that these domains mediate an interaction with kindlin in vitro and in cells, and demonstrated that kindlin is important for normal migfilin dynamics in cells. We also show that when the C-terminal LIM domain region is deleted, then the N-terminal filamin-binding region of the protein, which is capable of targeting migfilin to actin-rich stress fibers, is the predominant driver of migfilin localization. Our work details a correlation between migfilin domains that drive kindlin binding and those that drive FA localization as well as a kindlin dependence on migfilin FA recruitment and mobility. We therefore suggest that the kindlin interaction with migfilin LIM domains drives migfilin FA recruitment, localization, and mobility.
Collapse
|
8
|
Mahawithitwong P, Ohuchida K, Ikenaga N, Fujita H, Zhao M, Kozono S, Shindo K, Ohtsuka T, Mizumoto K, Tanaka M. Kindlin-2 expression in peritumoral stroma is associated with poor prognosis in pancreatic ductal adenocarcinoma. Pancreas 2013; 42:663-9. [PMID: 23508013 DOI: 10.1097/mpa.0b013e318279bd66] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Kindlin-2 is a novel focal adhesion protein reported to be expressed in breast, lung, and gastric cancers. This study aimed to investigate the significance of kindlin-2 expression in pancreatic ductal adenocarcinomas (PDACs). METHODS We performed immunohistochemical analysis on kindlin-2 on PDAC samples from 95 patients. We investigated the association between kindlin-2 expression and clinicopathological parameters of PDAC and the survival time of patients with PDAC who underwent pancreatectomy. RESULTS Kindlin-2 was highly expressed in the peritumoral stroma of PDACs. Stromal kindlin-2 expression was related to nodal metastasis (P = 0.03). Univariate analysis showed that patients with positive kindlin-2 expression had significantly shorter survival times than those with negative kindlin-2 expression (P = 0.01). In addition, multivariate analysis revealed that kindlin-2 expression was an independent factor of poor prognosis in patients with PDAC after R0 resection (RR = 2.15; P = 0.04). CONCLUSIONS Kindlin-2 expression in stromal components is significantly associated with poor prognosis of patients with PDAC, suggesting that kindlin-2 is a prognostic marker for patients with PDAC.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Female
- Humans
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Multivariate Analysis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Stromal Cells/metabolism
- Stromal Cells/pathology
Collapse
|
9
|
MAHAWITHITWONG PRAWEJ, OHUCHIDA KENOKI, IKENAGA NAOKI, FUJITA HAYATO, ZHAO MING, KOZONO SHINGO, SHINDO KOJI, OHTSUKA TAKAO, AISHIMA SHINICHI, MIZUMOTO KAZUHIRO, TANAKA MASAO. Kindlin-1 expression is involved in migration and invasion of pancreatic cancer. Int J Oncol 2013; 42:1360-6. [DOI: 10.3892/ijo.2013.1838] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/30/2012] [Indexed: 11/06/2022] Open
|
10
|
Kjellqvist S, Maleki S, Olsson T, Chwastyniak M, Branca RMM, Lehtiö J, Pinet F, Franco-Cereceda A, Eriksson P. A combined proteomic and transcriptomic approach shows diverging molecular mechanisms in thoracic aortic aneurysm development in patients with tricuspid- and bicuspid aortic valve. Mol Cell Proteomics 2012. [PMID: 23184916 DOI: 10.1074/mcp.m112.021873] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thoracic aortic aneurysm is a pathological local dilatation of the aorta, potentially leading to aortic rupture or dissection. The disease is a common complication of patients with bicuspid aortic valve, a congenital disorder present in 1-2% of the population. Using two dimensional fluorescence difference gel electrophoresis proteomics followed by mRNA expression, and alternative splicing analysis of the identified proteins, differences in dilated and nondilated aorta tissues between 44 patients with bicuspid and tricuspid valves was examined. The pattern of protein expression was successfully validated with LC-MS/MS. A multivariate analysis of protein expression data revealed diverging protein expression fingerprints in patients with tricuspid compared with the patients with bicuspid aortic valves. From 302 protein spots included in the analysis, 69 and 38 spots were differentially expressed between dilated and nondilated aorta specifically in patients with tricuspid and bicuspid aortic valve, respectively. 92 protein spots were differentially expressed between dilated and nondilated aorta in both phenotypes. Similarly, mRNA expression together with alternative splicing analysis of the identified proteins also showed diverging fingerprints in the two patient groups. Differential splicing was abundant but the expression levels of differentially spliced mRNA transcripts were low compared with the wild type transcript and there was no correlation between splicing and the number of spots. Therefore, the different spots are likely to represent post-translational modifications. The identification of differentially expressed proteins suggests that dilatation in patients with a tricuspid aortic valve involves inflammatory processes whereas aortic aneurysm in patients with BAV may be the consequence of impaired repair capacity. The results imply that aortic aneurysm formation in patients with bicuspid and tricuspid aortic valves involve different biological pathways leading to the same phenotype.
Collapse
Affiliation(s)
- Sanela Kjellqvist
- Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Davidson B, Holth A, Nguyen MTP, Tropé CG, Wu C. Migfilin, α-parvin and β-parvin are differentially expressed in ovarian serous carcinoma effusions, primary tumors and solid metastases. Gynecol Oncol 2012; 128:364-70. [PMID: 23099104 DOI: 10.1016/j.ygyno.2012.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/10/2012] [Accepted: 10/14/2012] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The objective of this study is to analyze the expression and clinical role of integrin-linked kinase (ILK), α-parvin, β-parvin and migfilin in advanced-stage serous ovarian carcinoma. METHODS Expression of these 4 proteins was investigated in 205 effusions and in 94 patient-matched solid lesions (33 primary tumors and 61 solid metastases) using immunohistochemistry. Protein expression was analyzed for association with clinicopathologic parameters and survival. RESULTS ILK, α-parvin, β-parvin and migfilin were expressed in tumor cells in 53%, 2%, 28% and 53% of effusions and 57%, 20%, 83% and 25% of solid lesions, respectively. Statistical analysis showed significantly higher α-parvin and β-parvin expression in primary carcinomas (p=0.02 and p=0.001, respectively) and solid metastases (p=0.001 and p<0.001, respectively), compared to effusions, with opposite findings for migfilin (p=0.006 and p=0.008 for primary carcinomas and solid metastases, respectively). ILK expression was comparable at all anatomic sites. β-Parvin expression in effusions was associated with better response to chemotherapy at diagnosis (p=0.014), with no other significant association with clinicopathologic parameters or survival. Expression in primary tumors and solid metastases was similarly unrelated to clinicopathologic parameters or survival. CONCLUSIONS This study provides further evidence to our previous observations that the adhesion profile of ovarian serous carcinoma cells in effusions differs from their counterparts in primary carcinomas and solid metastases. β-Parvin may be a novel marker of chemoresponse in metastatic ovarian carcinoma.
Collapse
Affiliation(s)
- Ben Davidson
- Division of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0424 Oslo, Norway.
| | | | | | | | | |
Collapse
|
12
|
Fan J, Ou YW, Wu CY, Yu CJ, Song YM, Zhan QM. Migfilin sensitizes cisplatin-induced apoptosis in human glioma cells in vitro. Acta Pharmacol Sin 2012; 33:1301-10. [PMID: 22983390 DOI: 10.1038/aps.2012.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM Filamin binding LIM protein 1, also known as migfilin, is a skeleton organization protein that binds to mitogen-inducible gene 2 at cell-extracellular matrix adhesions. The aim of this study was to investigate the role of migfilin in cisplatin-induced apoptosis in human glioma cells, to determine the functional domains of migfilin, and to elucidate the molecular mechanisms underlying the regulation of cisplatin-related chemosensitivity. METHODS The human glioma cell lines Hs683, H4, and U-87 MG were transfected with pEGFP-C2-migfilin to elevate the expression level of migfilin. RNA interference was used to reduce the expression of migfilin. To determine the functional domains of migfilin, U-87 MG cells were transfected with plasmids of migfilin deletion mutants. After treatment with cisplatin (40 μmol/L) for 24 h, the cell viability was assessed using the MTS assay, and the cell apoptotic was examined using the DAPI staining assay and TUNEL analysis. Expression levels of apoptosis-related proteins were detected by Western blot analysis. RESULTS Overexpression of migfilin significantly enhanced cisplatin-induced apoptosis in Hs683, H4, and U-87 MG cells, whereas downregulation of migfilin expression inhibited the chemosensitivity of these cell lines. The N-terminal region of migfilin alone was able to enhance the cisplatin-induced apoptosis. However, despite the existence of the N-terminal region, mutants of migfilin with any one of three LIM domains deleted led to a function loss. Furthermore, apoptotic proteins (PARP and caspase-3) and the anti-apoptotic protein Bcl-xL were modulated by the expression level of migfilin in combination with cisplatin. CONCLUSION The LIM1-3 domains of migfilin play a key role in sensitizing glioma cells to cisplatin-induced apoptosis through regulation of apoptosis-related proteins.
Collapse
|
13
|
Ou Y, Ma L, Dong L, Ma L, Zhao Z, Ma L, Zhou W, Fan J, Wu C, Yu C, Zhan Q, Song Y. Migfilin protein promotes migration and invasion in human glioma through epidermal growth factor receptor-mediated phospholipase C-γ and STAT3 protein signaling pathways. J Biol Chem 2012; 287:32394-405. [PMID: 22843679 PMCID: PMC3463316 DOI: 10.1074/jbc.m112.393900] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Migfilin is critical for cell shape and motile regulation. However, its pathological role in glioma is unknown. Using an immunohistochemical staining assay, we demonstrate that there is a significant correlation between expression of Migfilin and pathological tumor grade in 217 clinical glioma samples. High Migfilin expression is associated with poor prognosis for patients with glioma. Investigation of the molecular mechanism shows that Migfilin promotes migration and invasion in glioma cells. Moreover, Migfilin positively modulates the expression and activity of epidermal growth factor receptor, and Migfilin-mediated migration and invasion depend on epidermal growth factor receptor-induced PLC-γ and STAT3-signaling pathways. Our results may provide significant clinical application, including use of Migfilin as a molecular marker in glioma for early diagnosis and as an indicator of prognosis.
Collapse
Affiliation(s)
- Yunwei Ou
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Papachristou DJ, Sklirou E, Corradi D, Grassani C, Kontogeorgakos V, Rao UNM. Immunohistochemical analysis of the endoribonucleases Drosha, Dicer and Ago2 in smooth muscle tumours of soft tissues. Histopathology 2012; 60:E28-36. [PMID: 22394132 DOI: 10.1111/j.1365-2559.2012.04192.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS The aims of the present study were to determine the protein levels and cellular distribution of the endoribonucleases Drosha, Dicer and Ago2, major components of the microRNA-processing machinery, in benign and malignant soft tissue smooth muscle tumours, and to correlate the cellular levels of these enzymes with clinicopathological parameters including tumour histopathological grade. METHODS AND RESULTS Cellular levels of Drosha, Dicer and Ago2 were evaluated in 110 soft tissue leiomyosarcomas (LMS), 31 leiomyomas (LM) and normal smooth muscle (NSM) using immunohistochemistry. Drosha and Dicer were barely detectable in NSM, while augmented levels of these enzymes were observed in LM and LMS. This finding suggests that Drosha and Dicer are implicated in the development of smooth muscle neoplasms. Notably, cellular levels of Dicer were significantly greater in high-grade compared to low-grade LMS, implying its participation in the progression of these neoplasms. Ago2 was detected in NSM, as well as LM and LMS; its cellular levels were not associated with tumour grade. CONCLUSIONS Our results provide novel evidence that Drosha, Dicer and Ago2 are probably involved in the pathobiology of human smooth muscle neoplasms and that Dicer could serve as potentially significant biomarker for LMS progression.
Collapse
|
15
|
Abstract
Integrating signals from the ECM (extracellular matrix) via the cell surface into the nucleus is an essential feature of multicellular life and often malfunctions in cancer. To date many signal transducers known as shuttle proteins have been identified that act as both: a cytoskeletal and a signalling protein. Here, we highlight the interesting member of the Zyxin family TRIP6 [thyroid receptor interactor protein 6; also designated ZRP-1 (zyxin-related protein 1)] and review current literature to define its role in cell physiology and cancer. TRIP6 is a versatile scaffolding protein at FAs (focal adhesions) involved in cytoskeletal organization, coordinated cell migration and tissue invasion. Via its LIM and TDC domains TRIP6 interacts with different components of the LPA (lysophosphatidic acid), NF-κB (nuclear factor κB), glucocorticoid and AMPK (AMP-activated protein kinase) signalling pathway and thereby modulates their activity. Within the nucleus TRIP6 acts as a transcriptional cofactor regulating the transcriptional responses of these pathways. Moreover, intranuclear TRIP6 associates with proteins ensuring telomere protection and hence may contribute to genome stability. Accordingly, TRIP6 is engaged in key cellular processes such as cell proliferation, differentiation and survival. These diverse functions of TRIP6 are found to be dysregulated in various cancers and may have pleiotropic roles in tumour initiation, tumour growth and metastasis, which turn TRIP6 into an attractive candidate for cancer diagnosis and targeted therapy.
Collapse
|
16
|
He H, Ding F, Li Y, Luo A, Chen H, Wu C, Liu Z. Migfilin Regulates Esophageal Cancer Cell Motility through Promoting GSK-3β–Mediated Degradation of β-Catenin. Mol Cancer Res 2012; 10:273-81. [DOI: 10.1158/1541-7786.mcr-11-0419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Papachristou DJ, Rao UNM, Korpetinou A, Giannopoulou E, Sklirou E, Kontogeorgakos V, Kalofonos HP. Prognostic significance of Dicer cellular levels in soft tissue sarcomas. Cancer Invest 2011; 30:172-9. [PMID: 22149178 DOI: 10.3109/07357907.2011.633293] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the present study we assessed the expression and distribution of endoribonuclease Dicer in soft tissue tumors and correlated its cellular levels with clinicopathological parameters, including clinical outcome. Dicer was expressed in the tested cell line as well as in the majority of the sarcomas examined. Staining intensity was significantly higher in sarcomas compared with benign neoplasms and in high-grade compared with low-grade tumors. Elevated Dicer immunoreactivity was strongly associated with poor outcome and Dicer cellular levels were an independent negative prognostic factor.
Collapse
Affiliation(s)
- Dionysios J Papachristou
- Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, School of Medicine, University of Patras, Patras, Greece.
| | | | | | | | | | | | | |
Collapse
|
18
|
Qu H, Tu Y, Shi X, Larjava H, Saleem MA, Shattil SJ, Fukuda K, Qin J, Kretzler M, Wu C. Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. J Cell Sci 2011; 124:879-91. [PMID: 21325030 DOI: 10.1242/jcs.076976] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Kindlin-2 is a FERM and PH domain-containing integrin-binding protein that is emerging as an important regulator of integrin activation. How kindlin-2 functions in integrin activation, however, is not known. We report here that kindlin-2 interacts with multiple phosphoinositides, preferentially with phosphatidylinositol 3,4,5-trisphosphate. Although integrin-binding is essential for focal adhesion localization of kindlin-2, phosphoinositide-binding is not required for this process. Using biologically and clinically relevant glomerular podocytes as a model system, we show that integrin activation and dependent processes are tightly regulated by kindlin-2: depletion of kindlin-2 reduced integrin activation, matrix adhesion and fibronectin matrix deposition, whereas overexpression of kindlin-2 promoted these processes. Furthermore, we provide evidence showing that kindlin-2 is involved in phosphoinositide-3-kinase-mediated regulation of podocyte-matrix adhesion and fibronectin matrix deposition. Mechanistically, kindlin-2 promotes integrin activation and integrin-dependent processes through interacting with both integrins and phosphoinositides. TGF-β1, a mediator of progressive glomerular failure, markedly increased the level of kindlin-2 and fibronectin matrix deposition, and the latter process was reversed by depletion of kindlin-2. Our results reveal important functions of kindlin-2 in the regulation of podocyte-matrix adhesion and matrix deposition and shed new light on the mechanism whereby kindlin-2 functions in these processes.
Collapse
Affiliation(s)
- Hong Qu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Petricca G, Leppilampi M, Jiang G, Owen GR, Wiebe C, Tu Y, Koivisto L, Häkkinen L, Wu C, Larjava H. Localization and potential function of kindlin-1 in periodontal tissues. Eur J Oral Sci 2009; 117:518-27. [PMID: 19758247 DOI: 10.1111/j.1600-0722.2009.00651.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Kindlin-1 is an intracellular focal adhesion protein that regulates the actin cytoskeleton. Patients suffering from Kindler syndrome have a homologous mutation of the kindlin-1 gene and develop skin blisters, periodontal disease, and intestinal complications because of deficient adhesion of the basal epithelial cells. We investigated kindlin-1 localization in periodontal tissue and its functions in cultured keratinocytes and showed that kindlin-1 co-localizes with migfilin and paxillin in the basal epithelial cells of oral mucosa and in cultured keratinocytes. The kindlin-1-deficient oral mucosal tissue from a patient with Kindler syndrome showed a complete lack of paxillin and reduced migfilin immunostaining in the basal keratinocytes. Co-immunoprecipitation showed that migfilin directly interacted with kindlin-1. RNA interference-induced kindlin-1 deficiency in keratinocytes led to an altered distribution of migfilin-containing focal adhesions, reduced cell spreading, decreased cell proliferation, and decelerated cell migration. Disruption of microtubules in the kindlin-1-deficient cells further reduced cell spreading, suggesting that microtubules can partially compensate for kindlin-1 deficiency. Kindlin-1 supported mature cell-extracellular matrix adhesions of keratinocytes, as downregulation of kindlin-1 expression significantly reduced the cell-adhesion strength. In summary, kindlin-1 interacts with migfilin and plays a crucial role in actin-dependent keratinocyte cell adhesion essential for epidermal and periodontal health.
Collapse
Affiliation(s)
- Giorgio Petricca
- Laboratory of Periodontal Biology, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lad Y, Jiang P, Ruskamo S, Harburger DS, Ylänne J, Campbell ID, Calderwood DA. Structural basis of the migfilin-filamin interaction and competition with integrin beta tails. J Biol Chem 2008; 283:35154-63. [PMID: 18829455 DOI: 10.1074/jbc.m802592200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A link between sites of cell adhesion and the cytoskeleton is essential for regulation of cell shape, motility, and signaling. Migfilin is a recently identified adaptor protein that localizes at cell-cell and cell-extracellular matrix adhesion sites, where it is thought to provide a link to the cytoskeleton by interacting with the actin cross-linking protein filamin. Here we have used x-ray crystallography, NMR spectroscopy, and protein-protein interaction studies to investigate the molecular basis of migfilin binding to filamin. We report that the N-terminal portion of migfilin can bind all three human filamins (FLNa, -b, or -c) and that there are multiple migfilin-binding sites in FLNa. Human filamins are composed of an N-terminal actin-binding domain followed by 24 immunoglobulin-like (IgFLN) domains and we find that migfilin binds preferentially to IgFLNa21 and more weakly to IgFLNa19 and -22. The filamin-binding site in migfilin is localized between Pro(5) and Pro(19) and binds to the CD face of the IgFLNa21 beta-sandwich. This interaction is similar to the previously characterized beta 7 integrin-IgFLNa21 interaction and migfilin and integrin beta tails can compete with one another for binding to IgFLNa21. This suggests that competition between filamin ligands for common binding sites on IgFLN domains may provide a general means of modulating filamin interactions and signaling. In this specific case, displacement of integrin tails from filamin by migfilin may provide a mechanism for switching between different integrin-cytoskeleton linkages.
Collapse
Affiliation(s)
- Yatish Lad
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Papachristou DJ, Gkretsi V, Rao UNM, Papachristou GI, Papaefthymiou OA, Basdra EK, Wu C, Papavassiliou AG. Expression of integrin-linked kinase and its binding partners in chondrosarcoma: association with prognostic significance. Eur J Cancer 2008; 44:2518-25. [PMID: 18722108 DOI: 10.1016/j.ejca.2008.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Revised: 07/08/2008] [Accepted: 07/11/2008] [Indexed: 01/15/2023]
Abstract
Integrin-linked kinase (ILK) and its binding partners alpha-parvin, beta-parvin, Mig-2 and Migfilin are important components of the cell-matrix adhesions implicated in cell motility, growth, survival and ultimately carcinogenesis. Herein, we investigated immunohistochemically the expression of these molecules in cartilaginous neoplasms and explored their involvement in chondrosarcoma pathobiology and behaviour. Our analyses revealed that ILK, alpha-parvin, beta-parvin and Mig-2 are expressed in the majority of chondrosarcomas but in a small proportion of enchondromas, implying that these proteins might have a role in the development and progression of chondrogenic neoplasms. Moreover, our findings highlight the possibilities that ILK might serve as biological marker that could accurately predict a high-grade tumour and that Mig-2 may function as a promising prognostic indicator of high-risk patients.
Collapse
|