1
|
Singh MK, Shin Y, Han S, Ha J, Tiwari PK, Kim SS, Kang I. Molecular Chaperonin HSP60: Current Understanding and Future Prospects. Int J Mol Sci 2024; 25:5483. [PMID: 38791521 PMCID: PMC11121636 DOI: 10.3390/ijms25105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Molecular chaperones are highly conserved across evolution and play a crucial role in preserving protein homeostasis. The 60 kDa heat shock protein (HSP60), also referred to as chaperonin 60 (Cpn60), resides within mitochondria and is involved in maintaining the organelle's proteome integrity and homeostasis. The HSP60 family, encompassing Cpn60, plays diverse roles in cellular processes, including protein folding, cell signaling, and managing high-temperature stress. In prokaryotes, HSP60 is well understood as a GroEL/GroES complex, which forms a double-ring cavity and aids in protein folding. In eukaryotes, HSP60 is implicated in numerous biological functions, like facilitating the folding of native proteins and influencing disease and development processes. Notably, research highlights its critical involvement in sustaining oxidative stress and preserving mitochondrial integrity. HSP60 perturbation results in the loss of the mitochondria integrity and activates apoptosis. Currently, numerous clinical investigations are in progress to explore targeting HSP60 both in vivo and in vitro across various disease models. These studies aim to enhance our comprehension of disease mechanisms and potentially harness HSP60 as a therapeutic target for various conditions, including cancer, inflammatory disorders, and neurodegenerative diseases. This review delves into the diverse functions of HSP60 in regulating proteo-homeostasis, oxidative stress, ROS, apoptosis, and its implications in diseases like cancer and neurodegeneration.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Centre for Genomics, SOS Zoology, Jiwaji University, Gwalior 474011, India;
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Pramod K. Tiwari
- Centre for Genomics, SOS Zoology, Jiwaji University, Gwalior 474011, India;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Cinone M, Albrizio M, Guaricci AC, Lacitignola L, Desantis S. Testicular expression of heat SHOCK proteins 60, 70, and 90 in cryptorchid horses. Theriogenology 2024; 217:83-91. [PMID: 38262223 DOI: 10.1016/j.theriogenology.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Heat shock proteins are the most evolutionarily conserved protein families induced by stressors including hyperthermia. In the context of pathologies of the male reproductive tract, cryptorchidism is the most common genital defect that compromises the reproductive potential of the male because it induces an increase in intratesticular temperature. In equine species, cryptorchidism affects almost 9 % of newborns and few studies have been carried out on the molecular aspects of the retained testis. In this study, the expression pattern of HSP60, 70, and 90 in abdominal and inguinal testes, in their contralateral descended normally testes, and in testes of normal horses were investigated by Western blot and immunohistochemistry. The histomorphological investigation of retained and scrotal testes was also investigated. The seminiferous epithelium of the retained testes showed a vacuolized appearance and displayed a completely blocked spermatogenesis for lacking meiotic and spermiogenetic cells. On the contrary, the contralateral scrotal testes did not show morphological damage and the seminiferous epithelium displayed all phases of the spermatogenetic cycle as in the normal testes. The morphology of Leydig cells was not affected by the cryptorchid state. Western blot and immunohistochemistry evidenced that equine testis (both scrotal and retained) expresses the three investigated HSPs. More in detail, the Western blot evidenced that HSP70 is the more expressed chaperone and that together with HSP90 it is highly expressed in the retained gonad (P < 0.05). The immunohistochemistry revealed the presence of the three HSPs in the spermatogonia of normal and cryptorchid testes. Spermatogonia of retained testes showed the lowest expression of HSP60 and the highest expression of HSP90. Spermatocytes, spermatids of scrotal testes, and the Sertoli cells of retained and scrotal testes did not display HSP60 whereas expressed HSP70 and HSP90. These two proteins were also localized in the nucleus of the premeiotic cells. The Leydig cells displayed the three HSPs with the higher immunostaining of HSP70 and 90 in the cryptorchid testes. The results indicate that the heat stress condition occurring in the cryptorchid testis influences the expression of HSPs.
Collapse
Affiliation(s)
- Mario Cinone
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy
| | - Maria Albrizio
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy
| | - Antonio Ciro Guaricci
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy
| | - Luca Lacitignola
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy
| | - Salvatore Desantis
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy.
| |
Collapse
|
3
|
Flores-Montero K, Frontini-Lopez YR, Fontecilla-Escobar J, Ruete MC. Sperm proteostasis: Can-nabinoids be chaperone's partners? Life Sci 2023; 333:122167. [PMID: 37827231 DOI: 10.1016/j.lfs.2023.122167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
The male gamete is a highly differentiated cell that aims to fuse with the oocyte in fertilization. Sperm have silenced the transcription and translational processes, maintaining proteostasis to guarantee male reproductive health. Despite the information about the implication of molecular chaperones as orchestrators of protein folding or aggregation, and the handling of body homeostasis by the endocannabinoid system, there is still a lack of basic investigation and random controlled clinical trials that deliver more evidence on the involvement of cannabinoids in reproductive function. Besides, we noticed that the information regarding whether recreational marijuana affects male fertility is controversial and requires further investigation. In other cell models, it has recently been evidenced that chaperones and cannabinoids are intimately intertwined. Through a literature review, we aim to explore the interaction between chaperones and cannabinoid signaling in sperm development and function. To untangle how or whether this dialogue happens within the sperm proteostasis. We discuss the action of chaperones, the endocannabinoid system and phytocannabinoids in sperm proteostasis. Reports of some heat shock and lipid proteins interacting with cannabinoid receptors prove that chaperones and the endocannabinoid system are in an intimate dialogue. Meanwhile, advancing the evidence to decipher these mechanisms for introducing innovative interventions into routine clinical settings becomes crucial. We highlight the potential interaction between chaperones and cannabinoid signaling in regulating proteostasis in male reproductive health.
Collapse
Affiliation(s)
- Karina Flores-Montero
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza M5500, Argentina
| | - Yesica Romina Frontini-Lopez
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza M5500, Argentina
| | - Javiera Fontecilla-Escobar
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza M5500, Argentina
| | - María Celeste Ruete
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza M5500, Argentina.
| |
Collapse
|
4
|
Kirat D, Alahwany AM, Arisha AH, Abdelkhalek A, Miyasho T. Role of Macroautophagy in Mammalian Male Reproductive Physiology. Cells 2023; 12:cells12091322. [PMID: 37174722 PMCID: PMC10177121 DOI: 10.3390/cells12091322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Physiologically, autophagy is an evolutionarily conserved and self-degradative process in cells. Autophagy carries out normal physiological roles throughout mammalian life. Accumulating evidence shows autophagy as a mechanism for cellular growth, development, differentiation, survival, and homeostasis. In male reproductive systems, normal spermatogenesis and steroidogenesis need a balance between degradation and energy supply to preserve cellular metabolic homeostasis. The main process of autophagy includes the formation and maturation of the phagophore, autophagosome, and autolysosome. Autophagy is controlled by a group of autophagy-related genes that form the core machinery of autophagy. Three types of autophagy mechanisms have been discovered in mammalian cells: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy is classified as non-selective or selective. Non-selective macroautophagy randomly engulfs the cytoplasmic components in autophagosomes that are degraded by lysosomal enzymes. While selective macroautophagy precisely identifies and degrades a specific element, current findings have shown the novel functional roles of autophagy in male reproduction. It has been recognized that dysfunction in the autophagy process can be associated with male infertility. Overall, this review provides an overview of the cellular and molecular basics of autophagy and summarizes the latest findings on the key role of autophagy in mammalian male reproductive physiology.
Collapse
Affiliation(s)
- Doaa Kirat
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed Mohamed Alahwany
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Ahmed Hamed Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Badr City 11829, Egypt
| | - Taku Miyasho
- Laboratory of Animal Biological Responses, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
5
|
GRP78 plays a key role in sperm function via the PI3K/PDK1/AKT pathway. Reprod Toxicol 2022; 113:103-109. [PMID: 35973673 DOI: 10.1016/j.reprotox.2022.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Glucose-regulated protein 78 (GRP78), which is commonly found in the endoplasmic reticulum (ER), is involved in stabilizing ER proteins and inducing the unfolded protein response. Furthermore, GRP78 is expressed on the surface of most common cancer cells, such as cells of breast, lung, liver, and prostate cancers, and plays a role in apoptosis and cell proliferation via the PI3K/PDK1/AKT signaling pathway. Therefore, various trials have been performed for evaluating cancer treatment by inhibiting GRP78. Moreover, GRP78 is expressed on the surface of spermatozoa; however, its role in spermatozoa physiology remains unclear. Therefore, this study was designed to investigate the effects of GRP78 on sperm function during capacitation and elucidate the underlying mechanisms. Boar spermatozoa were exposed to various concentrations of HA15, a GRP78 antagonist, and sperm kinematic parameters, capacitation status, cell viability, levels of PI3K/PDK1/AKT-pathway related proteins, and tyrosine phosphorylation were evaluated. GRP78 inhibition significantly decreased sperm motility, kinematic parameters, capacitated and acrosome-reacted spermatozoa counts, and cell viability. Moreover, GRP78 expression was significantly decreased in HA15-treated spermatozoa compared to that in the control group, and levels of PI3K/PDK1/AKT-pathway related proteins changed significantly. Furthermore, tyrosine phosphorylation was significantly altered in the HA15-treated group. The results of this study suggest that GRP78 inhibition in cancer therapy may negatively affect sperm function. These results lay a strong foundation for future studies aiming to identify the molecular mechanisms related to GRP78 in spermatozoa.
Collapse
|
6
|
Targeted Analysis of HSP70 Isoforms in Human Spermatozoa in the Context of Capacitation and Motility. Int J Mol Sci 2022; 23:ijms23126497. [PMID: 35742939 PMCID: PMC9224233 DOI: 10.3390/ijms23126497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
HSP70s constitute a family of chaperones, some isoforms of which appear to play a role in sperm function. Notably, global proteomic studies analyzing proteins deregulated in asthenozoospermia, a main cause of male infertility characterized by low sperm motility, showed the dysregulation of some HSP70 isoforms. However, to date, no clear trend has been established since the variations in the abundance of HSP70 isoforms differed between studies. The HSPA2 isoform has been reported to play a key role in fertilization, but its dysregulation and possible relocation during capacitation, a maturation process making the spermatozoon capable of fertilizing an oocyte, is debated in the literature. The aim of the present study was to investigate the fate of all sperm HSP70 isoforms during capacitation and in relation to sperm motility. Using Multiple-Reaction Monitoring (MRM) mass spectrometry, we showed that the relative abundance of all detected isoforms was stable between non-capacitated and capacitated spermatozoa. Immunofluorescence using two different antibodies also demonstrated the stability of HSP70 isoform localization during capacitation. We also investigated spermatozoa purified from 20 sperm samples displaying various levels of total and progressive sperm motility. We showed that the abundance of HSP70 isoforms is not correlated to sperm total or progressive motility.
Collapse
|
7
|
Chen X, Li Z, Lv Y, Han Y, Qu X, Zhang Y, Jin Y. Comparative proteomic identification of capacitated and non-capacitated sperm of Yanbian Yellow Cattle. Theriogenology 2022; 186:12-20. [DOI: 10.1016/j.theriogenology.2022.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
|
8
|
Gao Y, Wu H, Xu Y, Shen Q, Xu C, Geng H, Lv M, Tan Q, Li K, Tang D, Song B, Zhou P, Wei Z, He X, Cao Y. Novel biallelic mutations in SLC26A8 cause severe asthenozoospermia in humans owing to midpiece defects: Insights into a putative dominant genetic disease. Hum Mutat 2021; 43:434-443. [PMID: 34923715 DOI: 10.1002/humu.24322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
To investigate the genetic cause of male infertility characterized by severe asthenozoospermia, two unrelated infertile men with severe asthenozoospermia from nonconsanguineous Chinese families were enrolled, and whole exome sequencing were performed to identify the potential pathogenic mutations. Novel compound heterozygous mutations (NK062 III-1: c.290T>C, p.Leu97Pro; c.1664delT, p.Ile555Thrfs*11/NK038 III-1: c.212G>T, p.Arg71Leu; c.290T>C, p.Leu97Pro) in SLC26A8 were identified. All mutations were inherited from their heterozygous parents and are predicted to be disease-causing by sorts intolerant from tolerant, PolyPhen-2, Mutation Taster, and Combined Annotation Dependent Depletion. In silico mutant SLC26A8 models predict that mutations p.Leu97Pro and p.Arg71Leu cause changes in the α-helix, which may result in functional defects in the protein. Notably, heterozygous male carriers of each mutation in both families were able to reproduce naturally, which is inconsistent with previous reports. Ultrastructural analysis revealed severe asthenozoospermia associated with absence of the mitochondrial sheath and annulus in spermatozoa from both the probands, and both structural defects were verified by HSP60 and SEPT4 immunofluorescence analysis. SLC26A8 levels were significantly reduced in spermatozoa from patients harboring biallelic SLC26A8 mutations, and both patients achieved good prognosis following intracytoplasmic sperm injection. Our findings indicate that mutations in SLC26A8 could manifest as a recessive genetic cause of severe asthenozoospermia and male infertility.
Collapse
Affiliation(s)
- Yang Gao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Yuping Xu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Qunshan Shen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Chuan Xu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Hao Geng
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Mingrong Lv
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
| | - Qing Tan
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Provincial Human Sperm Bank, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kuokuo Li
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, China
| | - Dongdong Tang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Bing Song
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.,Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, China
| |
Collapse
|
9
|
Tomar AK, Rajak SK, Aslam Mk M, Chhikara N, Ojha SK, Nayak S, Chhillar S, Kumaresan A, Yadav S. Sub-fertility in crossbred bulls: Identification of proteomic alterations in spermatogenic cells using high throughput comparative proteomics approach. Theriogenology 2021; 169:65-75. [PMID: 33940217 DOI: 10.1016/j.theriogenology.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
The present study was carried out to compare the proteomic profiles of spermatogenic cells of crossbred and zebu cattle in an effort to understand the possible reasons for a higher incidence of sub-fertility in crossbred bulls. The spermatogenic cells collected from the testes of pre-pubertal (6 mo) and adult (24 mo) crossbred and zebu males through fine needle aspiration were proliferated in vitro, and proteomic profiling was done using a shotgun proteomics approach. The age- and species-specific variations in the expression level of proteins were identified in spermatogenic cells. The number of differentially expressed proteins (DEPs) identified in pre-pubertal zebu and crossbred was 546, while 579 DEPs were identified between adult zebu and crossbred bulls. Out of these, 194 DEPS were common to these groups and 40 DEPs displayed a fold change ≥2. However, only 20 proteins exhibited similar expression variation trends (upregulated or downregulated) among pre-pubertal as well as adult zebu and crossbred bulls. Out of these 20 DEPs, 13 proteins were upregulated, and 7 proteins were downregulated in spermatogenic cells of zebu compared to crossbred bulls. Among the upregulated proteins were RPLP2, PAXIP1, calumenin, prosaposin, GTF2F1, TMP2, ubiquitin conjugation factor E4A, COL1A2, vimentin, protein FAM13A, peripherin, GFPT2, and GRP78. Seven proteins that were downregulated in zebu bulls compared to crossbred included APOA1, G patch domain-containing protein 1, NAD P transhydrogenase mitochondrial, glutamyl aminopeptidase, synaptojanin 1 fragment, Arf GAP with SH3 domain ANK repeat and PH domain-containing protein 1, and protein transport protein sec16B. It was inferred that the proteins associated with sperm function and fertilization processes, such as calumenin, prosaposin, vimentin, GRP78, and APOA1 could be studied further to understand the precise cause of subfertility in crossbred bulls.
Collapse
Affiliation(s)
- Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shailendra Kumar Rajak
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Muhammad Aslam Mk
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Nirmal Chhikara
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sanjay Kumar Ojha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Samiksha Nayak
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Shivani Chhillar
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
10
|
Santiago J, Santos MAS, Fardilha M, Silva JV. Stress response pathways in the male germ cells and gametes. Mol Hum Reprod 2021; 26:1-13. [PMID: 31814009 DOI: 10.1093/molehr/gaz063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
The unfolded protein response (UPR) is a conserved and essential cellular pathway involved in protein quality control that is activated in response to several cellular stressors such as diseases states, ageing, infection and toxins. The cytosol, endoplasmic reticulum (ER) and mitochondria are continuously exposed to new proteins and in situations of aberrant protein folding; one of three lines of defence may be activated: (i) heat-shock response, (ii) mitochondrial UPR and (iii) ER UPR. These pathways lead to different signal transduction mechanisms that activate or upregulate transcription factors that, in turn, regulate genes that increase the cell's ability to correct the conformation of poorly folded proteins or, ultimately, lead to apoptosis. Despite the recent progress in understanding such biological processes, few studies have focused on the implications of the UPR in male infertility, highlighting the need for a first approach concerning the presence of these components in the male reproductive system. In testis, there is a high rate of protein synthesis, and the UPR mechanisms are well described. However, the presence of these mechanisms in spermatozoa, apparently transcriptionally inactive cells, is contentious, and it is unclear how sperm cells deal with stress. Here, we review current concepts and mechanisms of the UPR and highlight the relevance of these stress response pathways in male fertility, especially the presence and functional activation of those components in male germinal cells and spermatozoa.
Collapse
Affiliation(s)
- J Santiago
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal
| | - M A S Santos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal
| | - J V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal.,Reproductive Genetics and Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, 4200-135, Porto, Portugal.,Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Distinct expression and localization patterns of HSP70 in developmental reproductive organs of rams. Gene 2020; 760:145029. [PMID: 32758578 DOI: 10.1016/j.gene.2020.145029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/15/2020] [Accepted: 08/01/2020] [Indexed: 11/21/2022]
Abstract
Heat shock protein 70 (HSP70) has been widely reported to play a vital role in maintaining intracellular homeostasis, mainly through cellular protection and immune regulation. The expression and function of HSP70 can vary depending upon species and age. To explore the expression signatures and regulatory functions of HSP70 in the reproductive organs of male sheep, we evaluated the expression and distribution patterns of HSP70 in the testes and epididymides (caput, corpus, and cauda) of Tibetan sheep at three developmental stages (i.e., 3 months, 1 year and 3 years after birth) by qRT-PCR, Western blot and immunofluorescence. HSP70 was found to be expressed in testes, caput, corpus, and cauda epididymides throughout the developmental stages but is mainly expressed postpuberty (1 year and 3 years old). Immunofluorescence results revealed that in the testes, a positive reaction for HSP70 protein was mainly seen in round spermatids and luminal sperms from the groups aged 1 year and 3 years. In caput epididymides, the positive signals for HSP70 protein was notably observed in sperm and principal cells of the epididymal epithelium from the groups aged 1 year and 3 years, and positive signals in the epididymal interstitium were found in all three age groups. In corpus and cauda epididymides, HSP70 protein was present in the epididymal epithelium and interstitium, and the positive signals gradually increased with age. In conclusion, these findings suggest that Tibetan sheep HSP70 may play a crucial role in further development and maturation of postmeiotic germ cells and participate in regulation of intraepididymal homeostasis maintenance in Tibetan sheep.
Collapse
|
12
|
van Son M, Tremoen NH, Gaustad AH, Våge DI, Zeremichael TT, Myromslien FD, Grindflek E. Transcriptome profiling of porcine testis tissue reveals genes related to sperm hyperactive motility. BMC Vet Res 2020; 16:161. [PMID: 32456687 PMCID: PMC7249385 DOI: 10.1186/s12917-020-02373-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sperm hyperactive motility has previously been shown to influence litter size in pigs, but little is known about the underlying biological mechanisms. The aim of this study was to use RNA sequencing to investigate gene expression differences in testis tissue from Landrace and Duroc boars with high and low levels of sperm hyperactive motility. Boars with divergent phenotypes were selected based on their sperm hyperactivity values at the day of ejaculation (day 0) (contrasts (i) and (ii) for Landrace and Duroc, respectively) and on their change in hyperactivity between day 0 and after 96 h liquid storage at 18 °C (contrast (iii)). RESULTS RNA sequencing was used to measure gene expression in testis. In Landrace boars, 3219 genes were differentially expressed for contrast (i), whereas 102 genes were differentially expressed for contrast (iii). Forty-one differentially expressed genes were identified in both contrasts, suggesting a functional role of these genes in hyperactivity regardless of storage. Zinc finger DNLZ was the most up-regulated gene in contrasts (i) and (iii), whereas the most significant differentially expressed gene for the two contrasts were ADP ribosylation factor ARFGAP1 and solute carrier SLC40A1, respectively. For Duroc (contrast (ii)), the clustering of boars based on their gene expression data did not reflect their difference in sperm hyperactivity phenotypes. No results were therefore obtained for this breed. A case-control analysis of variants identified in the Landrace RNA sequencing data showed that SNPs in NEU3, CHRDL2 and HMCN1 might be important for sperm hyperactivity. CONCLUSIONS Differentially expressed genes were identified in Landrace boars with high and low levels of sperm hyperactivity at the day of ejaculate collection and high and low change in hyperactivity after 96 h of sperm storage. The results point towards important candidate genes, biochemical pathways and sequence variants underlying sperm hyperactivity in pigs.
Collapse
Affiliation(s)
| | - Nina Hårdnes Tremoen
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Ann Helen Gaustad
- Norsvin SA, 2317 Hamar, Norway
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway
| | - Dag Inge Våge
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | | | | |
Collapse
|
13
|
Kumar A, Yadav B, Swain DK, Anand M, Madan AK, Yadav RKS, Kushawaha B, Yadav S. Dynamics of HSPA1A and redox status in the spermatozoa and fluid from different segments of goat epididymis. Cell Stress Chaperones 2020; 25:509-517. [PMID: 32207084 PMCID: PMC7193003 DOI: 10.1007/s12192-020-01102-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present study was attempted to investigate the dynamics of HSPA1A and redox status in the spermatozoa and fluid of different segments of buck epididymis. Testes were collected from sexually mature and healthy bucks aged between 2 and 3 years. The fluid and spermatozoa from different segments (caput, corpus and cauda) were harvested for further processing and analysis. The concentration of HSPA1A in spermatozoa lysate and epididymal fluid and its relative mRNA expression in spermatozoa from different segments of epididymis were studied. The HSPA1A concentration in epididymal fluid was significantly (P < 0.01) higher in the corpus as compared with caput and cauda, whereas, its concentration and relative mRNA expression decreased significantly (P < 0.01) in the spermatozoa from caput to cauda. The activities of SOD, GR, GST, and concentrations of manoldialdehyde and ROS decreased significantly (P < 0.01) in the spermatozoa from caput to cauda. The glutathione concentration and GPx activity decreased significantly (P < 0.01) in the spermatozoa of cauda as compared with the corpus. The SOD activity and ROS concentration were significantly (P < 0.01) higher in corpus, and GR and GST activity were significantly (P < 0.01) higher in caput fluid as compared with corpus and cauda. It may be concluded that HSPA1A concentration and its relative mRNA expression in spermatozoa decreased progressively, and redox status was altered during transit from caput to cauda.
Collapse
Affiliation(s)
- Akhilesh Kumar
- College of Biotechnology, Veterinary University, Mathura, Uttar Pradesh, India
| | - Brijesh Yadav
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, Uttar Pradesh, India.
| | - Dilip Kumar Swain
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, Uttar Pradesh, India
| | - Mukul Anand
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, Uttar Pradesh, India
| | - Arun Kumar Madan
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, Uttar Pradesh, India
| | - Raj Kumar Singh Yadav
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, Uttar Pradesh, India
| | - Bhawna Kushawaha
- College of Biotechnology, Veterinary University, Mathura, Uttar Pradesh, India
| | - Sarvajeet Yadav
- Department of Veterinary Physiology, College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, Uttar Pradesh, India
| |
Collapse
|
14
|
Abdi Z, Mohsenzadeh S, Jafari Anarkooli I, Ahmadi A, Ghorbanlou M, Arianmanesh M. THE EFFECT OF HSP60 ON FERTILIZATION AND PRE-IMPLANTATION EMBRYO DEVELOPMENT IN MICE: AN IN VITRO STUDY. ACTA ENDOCRINOLOGICA-BUCHAREST 2019; 15:153-157. [PMID: 31508170 DOI: 10.4183/aeb.2019.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context Heat Shock Protein 60 (HSP60) is a chaperone protein which is involved in proteins transfer and re-folding of proteins. Objective Importance of HSP60 in sperm capacitation and facility of sperm-oocyte membrane binding was confirmed, therefore in this study the effect of HSP60 on the rate of in vitro fertilization and the cleavage rate in mouse embryo was investigated. Design Ten male mice and twenty five female mice were involved to collect sperms and oocytes required for this study. Subjects and Methods Sperms were collected from the epididymis of male mouse and oocytes were collected from the oviduct of female mouse following ovarian hyperstimulation. Then, capacitated sperms and oocytes were placed together in fertilization medium in four groups in the presence of different concentrations of HSP60 (10, 50 and 100 ng/mL) and in the absence of HSP60. After calculation of the fertilization rate, zygotes were transformed into the other medium for development and the cleavage rate was monitored to blastocyst stage. Results There was not a significant difference in the rate of fertilization between 10 ng/mL HSP60 group and the control group. The rate of fertilization and two-cell embryo development decreased significantly (P≤0.05) in 100 ng/mL HSP60 compared to other experimental and control groups. Further, the rate of two-cell embryo development increased significantly (P≤0.05) in 10 ng/mL HSP60 compared to other experimental and control groups. Conclusions The present study demonstrated that HSP60 in low dose had a positive effect on two-cell embryo development, however it did not have any significant effect on the fertilization rate. Conversely, HSP60 had adverse effects on the fertilization and cleavage rates at higher doses.
Collapse
Affiliation(s)
- Z Abdi
- Zanjan University of Medical Sciences - Department of Anatomical Sciences, School of Medicine, Zanjan, Iran
| | - S Mohsenzadeh
- Zanjan University of Medical Sciences - Department of Anatomical Sciences, School of Medicine, Zanjan, Iran
| | - I Jafari Anarkooli
- Zanjan University of Medical Sciences - Department of Anatomical Sciences, School of Medicine, Zanjan, Iran
| | - A Ahmadi
- Urmia University - Department of Basic Sciences, Histology and Embryology Section, Faculty of Veterinary Medicine, Urmia, Iran
| | - M Ghorbanlou
- Zanjan University of Medical Sciences - Department of Anatomical Sciences, School of Medicine, Zanjan, Iran
| | - M Arianmanesh
- Zanjan University of Medical Sciences - Department of Anatomical Sciences, School of Medicine, Zanjan, Iran
| |
Collapse
|
15
|
Association of GRP78 promoter polymorphisms and serum GRP78 level with risk of asthenozoospermia. J Assist Reprod Genet 2018; 35:2223-2231. [PMID: 30229503 DOI: 10.1007/s10815-018-1316-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The aim of this study was undertaken to investigate the association of 78-kDa glucose-regulated protein (GRP78) gene promoter polymorphisms with risk of asthenozoospermia (AZS) men. In addition, we performed association analysis between GRP78 promoter mutations and serum GRP78 level in asthenozoospermia. METHODS The study population comprised 400 subjects with AZS patients and 400 healthy controls. We assessed GRP78 rs3216733, rs17840761, and rs17840762 polymorphisms by using Snapshot SNP genotyping assays; serum GRP78 level was measured by enzyme-linked immunosorbent assay (ELISA). Semen quality was assessed by computer-assisted semen analysis. RESULTS We found that rs3216733 was associated with increased risk of AZS (Gd vs. dd: adjusted OR = 1.42, 95% CI, 1.06-1.93, P = 0.020; Gd/GG vs. dd: adjusted OR = 1.43, 95% CI, 1.08-1.91, P = 0.013; G vs. d adjusted OR = 1.26, 95% CI, 1.03-1.56, P = 0.027). The haplotype analyses showed the frequency of G-C-C haplotype was significantly higher in AZS (P = 0.026). The percentage of progressive motility sperm was lower in the asthenozoospermic men with Gd and Gd/GG genotypes than dd genotype (P = 0.003). Moreover, the serum GRP78 levels were significantly lower in rs3216733 Gd/GG genotypes compared with the dd genotype (P < 0.001). CONCLUSION Our findings suggest that rs3216733 Gd/GG genotypes contribute to poor sperm motility, probably by decreasing the level of GRP78.
Collapse
|
16
|
Liu P, Yu S, Cui Y, He J, Zhang Q, Sun J, Huang Y, Yang X, Cao M, Liao B, Ma J. Regulation by Hsp27/P53 in testis development and sperm apoptosis of male cattle (cattle-yak and yak). J Cell Physiol 2018; 234:650-660. [PMID: 30132847 DOI: 10.1002/jcp.26822] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/30/2018] [Indexed: 01/30/2023]
Abstract
Heat shock protein 27 (Hsp27)/protein 53 (P53) plays an important role in testis development and spermatozoa regulation, but the relationship between Hsp27/P53 and infertility in cattle is unclear. Here, we focus on male cattle-yak and yak to investigate the expression and localization of Hsp27/P53 in testis tissues and to explore the influence of Hsp27/P53 on infertility. In our study, a total of 54 cattle (24 cattle-yak and 30 yak) were examined. The Hsp27 and P53 messenger RNA (mRNA) of cattle-yak were cloned, and amino acid variations in Hsp27 and P53 were found; the variations led to differences in the protein spatial structure compared with yak. We used real-time quantitative polymerase chain reaction and western blot to investigate whether the expression of Hsp27/P53 mRNA and protein was different in cattle-yak and yak. We found that the expression levels of Hsp27/P53 mRNA and protein were different in the testis developmental stages and the highest expression was observed in testicles during adulthood. Moreover, the Hsp27 expression was significantly higher in yak, whereas P53 expression was higher in cattle-yak (p < 0.01). On this basis, we detected the location of Hsp27/P53 in the testis by immunohistochemistry and immunofluorescence. The results demonstrated that Hsp27 was located in spermatogenic cells at different developmental stages and mesenchymal cells of the yak testicles. However, P53 was located in the primary spermatocyte and interstitial cells of the cattle-yak testicles. In summary, our study proved that the expression of Hsp27/P53 differed across the testis developmental stages and the expression of P53 was higher in the testis of cattle-yak, which suggested that the infertility of cattle-yak may be caused by the upregulation of P53.
Collapse
Affiliation(s)
- Penggang Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Junfeng He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Juan Sun
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yufeng Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaoqing Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Mixia Cao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Bo Liao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Junxing Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
17
|
The Interplay between Glucose-Regulated Protein 78 (GRP78) and Steroids in the Reproductive System. Int J Mol Sci 2018; 19:ijms19071842. [PMID: 29932125 PMCID: PMC6073258 DOI: 10.3390/ijms19071842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
The glucose-regulated protein 78 (GRP78) is a molecular chaperone that is responsible for protein folding, which belongs to the heat shock protein 70 kDa (HSPA/HSP70). Because of the conjunction of GRP78 transcription with endoplasmic reticulum stress, the chaperone plays an important role in the unfolded protein response (UPR), which is induced after the accumulation of misfolded proteins. In the last years, a significant body of research concentrated on interplay between GRP78 and sexual steroid hormones. Throughout this review, we describe the mechanisms by which GRP78 regulates steroidogenesis at multiple levels and how steroids modulate GRP78 expression in different mammalian reproductive organs. Finally, we discuss the cooperation between GRP78 and steroids for cell survival and proliferation in the context of reproduction and tumorigenesis. This new paradigm offers significant opportunities for future exploration.
Collapse
|
18
|
Medini R, Bhagya M, Samson S. Identification and characterisation of the epididymal proteins in the lizard, Eutropis carinata (Reptilia, Squamata) (Schneider, 1801). Gen Comp Endocrinol 2018; 259:76-84. [PMID: 29155263 DOI: 10.1016/j.ygcen.2017.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 11/29/2022]
Abstract
Lizards are seasonal breeders. Cyclic reproductive nature makes lizard as a useful model for the study of the reproductively active protein secretions in the epididymis. During breeding season, the epididymides of the lizard secret proteins that mixes with the spermatozoa and create a favourable environment for sperm maturation. In this spectrum, the aim of this study is to identify and characterize proteins which are present in the lumen of the epididymis of the lizard, E. carinata during the active phase of reproduction. The identification and analysis of the proteins are done through the proteomic approaches. The epididymal luminal fluid sample was taken from the reproductively active and inactive phase and these are subjected to the size exclusion chromatography. Two major peaks (peak 1 and peak 2) were obtained in the epididymal luminal fluid sample taken during the reproductively active phase. On the other hand, the sample from the reproductively inactive phase showed one peak (peak 1) whereas, peak 2 is not present during this phase. The peak 2 belong to reproductively active phase was later subjected to the proteomic analysis. Appropriate gel electrophoresis separation and purification methods are combined with LC-MS/MS in order to identify and characterize the proteins that are presented during the reproductively active phase. Further, in this work, nine proteins are identified including three enzymes and three heat shock proteins. Among the identified proteins, bioinformatics analysis predicts that majority of them are localized in the cytoplasm. In addition to this, an observation is made in the endoplasmic reticulum where it is seen that a close protein-protein interaction network of three molecular chaperones are involved in protein processing. Overall, this paper opens up a new dimension search for epididymal markers for the first time in reptiles, particularly lizards.
Collapse
Affiliation(s)
- R Medini
- Department of Zoology, University of Mysore, Mysuru 570006, Karnataka State, India
| | - M Bhagya
- Department of Zoology, University of Mysore, Mysuru 570006, Karnataka State, India.
| | - S Samson
- Department of Zoology, University of Mysore, Mysuru 570006, Karnataka State, India
| |
Collapse
|
19
|
He Y, Fang J, Xue L, Wu J, Dawar FU, Mei J. Potential contributions of heat shock proteins and related genes in sexual differentiation in yellow catfish (Pelteobagrus fulvidraco). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:465-475. [PMID: 28243861 DOI: 10.1007/s10695-016-0303-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Sex determination and differentiation in ectotherms are very complicated affairs and usually affected by both genetic and environmental factors. Because of their temperature-sensitive expression, heat shock proteins (HSPs) are good candidates for temperature-dependent sex determination (TSD). Similar to most thermosensitive fish species, the male to female ratio increases with temperature in yellow catfish (Pelteobagrus fulvidraco). Yellow catfish is also a type of sexual size dimorphic fish, and the male individuals grow much faster than females of the same age. Therefore, research of sex differentiation in yellow catfish is important in aquiculture. In this attempt, a total of seven HSPs and related genes were identified from transcriptomes of yellow catfish by 454 pyrosequencing and Solexa sequencing that we did previously, including five genes with complete open reading frame (ORF). Phylogenetically, all these genes were compared with their counterparts from other vertebrates. All these genes were sex-biased expressed in gonads. Hspa5, Hip, and Cdc37 were expressed more highly in ovary than in testis, whereas Hsp90α, Hspb2, Hspb8, and Hspbp1 were expressed more highly in testis than in ovary. Additionally, the expression of these genes was assessed after 17α-methyltestosterone (MT) and 17α-ethinylestradiol (EE2) treatment, respectively. Our result showed that working as co-chaperones, these HSPs and related genes may regulate sex steroid receptor activities to influence gonad development in yellow catfish. Our work would help in the understanding of the mechanism of sexual differentiation in teleosts.
Collapse
Affiliation(s)
- Yan He
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jie Fang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liyao Xue
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjie Wu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Farman Ullah Dawar
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Majewska AM, Kordan W, Koziorowska-Gilun M, Wysocki P. Identification and changes in the seasonal concentrations of heat shock proteins in roe deer (Capreolus capreolus
) epididymides. Reprod Domest Anim 2016; 52:107-114. [DOI: 10.1111/rda.12816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/01/2016] [Indexed: 11/29/2022]
Affiliation(s)
- AM Majewska
- Department of Animal Biochemistry and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - W Kordan
- Department of Animal Biochemistry and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - M Koziorowska-Gilun
- Department of Animal Biochemistry and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| | - P Wysocki
- Department of Animal Biochemistry and Biotechnology; University of Warmia and Mazury in Olsztyn; Olsztyn Poland
| |
Collapse
|
21
|
Terayama H, Hirai S, Naito M, Qu N, Katagiri C, Nagahori K, Hayashi S, Sasaki H, Moriya S, Hiramoto M, Miyazawa K, Hatayama N, Li ZL, Sakabe K, Matsushita M, Itoh M. Specific autoantigens identified by sera obtained from mice that are immunized with testicular germ cells alone. Sci Rep 2016; 6:35599. [PMID: 27752123 PMCID: PMC5067510 DOI: 10.1038/srep35599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
There are various autoimmunogenic antigens (AIs) in testicular germ cells (TGCs) recognized as foreign by the body's immune system. However, there is little information of TGC-specific AIs being available. The aim of this study is to identify TGC-specific AIs. We have previously established that immunization using viable syngeneic TGC can also induce murine experimental autoimmune orchitis (EAO) without using any adjuvant. This study is to identify TGC-specific AIs by TGC liquid chromatography-tandem mass spectrometry analysis, followed by two-dimensional gel electrophoresis that reacted with serum IgG from EAO mice. In this study, we identified 11 TGC-specific AIs that reacted with serum from EAO mice. Real-time RT-PCR analysis showed that the mRNA expressions of seven TGC-specific AIs were significantly higher in only mature testis compared to other organs. Moreover, the recombinant proteins of identified 10 (except unnamed protein) TGC-specific AIs were created by using human embryonic kidney 293 (HEK293) cells and these antigencities were reconfirmed by Western blot using EAO serum reaction. These results indicated Atp6v1a, Hsc70t, Fbp1 and Dazap1 were candidates for TGC-specific AIs. Identification of these AIs will facilitate new approaches for understanding infertility and cancer pathogenesis and may provide a basis for the development of novel therapies.
Collapse
Affiliation(s)
- Hayato Terayama
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan.,Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Shuichi Hirai
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Munekazu Naito
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Ning Qu
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Chiaki Katagiri
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kenta Nagahori
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Shogo Hayashi
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Hiraku Sasaki
- Department of Health Science, School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Naoyuki Hatayama
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Zhong-Lian Li
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Kou Sakabe
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
22
|
Aghaie S, Nikzad H, Mahabadi JA, Taghizadeh M, Azami-Tameh A, Taherian A, Sajjadian SMS, Kamani M. Protective effect of combined pumpkin seed and ginger extracts on sperm characteristics, biochemical parameters and epididymal histology in adult male rats treated with cyclophosphamide. Anat Sci Int 2016; 91:382-90. [PMID: 26714700 DOI: 10.1007/s12565-015-0314-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022]
Abstract
Reproductive toxicity is one of the side effects of cyclophosphamide (CP) in cancer treatment. Pumpkin seeds and Zingiber officinale are natural sources of antioxidants. We investigated the possible protective effect of combined pumpkin seed and Zingiber officinale extracts on sperm characteristics, epididymal histology and biochemical parameters of CP-treated rats. Male adult Wistar rats were divided randomly into six groups. Group 1, as a control, received an isotonic saline solution injection intraperitoneally (IP). Group 2 were injected IP with a single dose of CP (100 mg/kg) once. Groups 3 and 4 received CP plus 300 and 600 mg/kg combined pumpkin seed and Zingiber officinale extract (50:50). Groups 5 and 6 received only 300 and 600 mg/kg combined pumpkin seed and Zingiber officinale extract. Six weeks after treatment, sperm characteristics, histopathological changes and biochemical parameters were assessed. In CP-treated rats, motile spermatozoa were decreased, and abnormal or dead spermatozoa increased significantly (P < 0.001) but administration of the mixed extract improved sperm parameters. Epididymal epithelium and fibromascular thickness were also improved in extract-treated rats compared to control or CP groups. Biochemical analysis showed that the administration of combined extracts could increase the total antioxidant capacity (TAC) level significantly in groups 3, 4, 5 and 6. Interestingly, the mixed extract could decrease most of the side effects of CP such as vacuolization and separation of epididymal tissue. Our findings indicated that the combined extracts might be used as a protective agent against CP-induced reproductive toxicity.
Collapse
Affiliation(s)
- Somaieh Aghaie
- Anatomical Sciences Research Center, Kashan University of Medical Science, Kashan, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Disorders, Kashan University of Medical Science, Kashan, Iran
| | - Abolfazl Azami-Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Science, Kashan, Iran
| | - Aliakbar Taherian
- Anatomical Sciences Research Center, Kashan University of Medical Science, Kashan, Iran
| | | | - Mehran Kamani
- Anatomical Sciences Research Center, Kashan University of Medical Science, Kashan, Iran
| |
Collapse
|
23
|
Lobo V, Rao P, Gajbhiye R, Kulkarni V, Parte P. Glucose Regulated Protein 78 Phosphorylation in Sperm Undergoes Dynamic Changes during Maturation. PLoS One 2015; 10:e0141858. [PMID: 26618558 PMCID: PMC4664250 DOI: 10.1371/journal.pone.0141858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/14/2015] [Indexed: 12/02/2022] Open
Abstract
GRP78, a resident endoplasmic reticulum (ER) chaperone involved in protein transport, folding and assembly, has been reported in sperm. It is shown to be localized in the neck region of human sperm. We have previously reported GRP78 to be less phosphorylated in asthenozoosperm.The present study aimed to determine whether sperm GRP78 undergoes phosphorylation changes during epididymal maturation and whether there are any differences in GRP78 phosphoforms in asthenozoosperm vis-à-vis normozoosperm. Testicular- and cauda epididymal- sperm from adult male Holtzman rats, and semen ejaculates collected from normal and asthenozoospermic individuals were investigated. DIGE carried out to determine phosphorylation of GRP78 in asthenozoosperm and normal sperm reveals a shift in the location of GRP78 of asthenozoosperm towards the alkaline pH, indicative of reduced GRP78 phosphorylation. Immunoprecipitation studies using antibodies specific to GRP78, serine-, threonine-, and tyrosine phosphorylation and Pan phospho antibody demonstrates GRP78 to be phosphorylated at all three residues in rat spermatozoa. Phosphatase assays using Calf intestinal alkaline phosphatase and Lambda protein phosphatase followed by nanofluidic proteomic immunoassay (NIA) show that in rat, GP4.96, GP4.94 and GP4.85 are the three phosphoforms in mature (caudal) sperm as against two phosphoforms GP4.96and GP4.94in immature (testicular) sperm. In mature human sperm GP5.04, GP4.96, and GP4.94were the 3 phosphoforms observed. GP4.94[P = 0.014]andGP5.04 [P = 0.02] are significantly reduced in asthenozoosperm. Ours is the first report indicating GRP78 in sperm to be phosphorylated at serine, threonine and tyrosine residues contrary to published literature reporting GRP78 not to be tyrosine phosphorylated. We report the presence of GRP78 phosphoforms in rat- and human- sperm and our data suggest that GRP78 phosphorylation in sperm undergoes spatial reorganization during epididymal maturation. Significant differences observed in 2 out of 3 phosphoforms in asthenozoosperm suggest that GRP78 phosphorylation may have functional relevance in sperm with consequent clinical implications.
Collapse
Affiliation(s)
- Vivian Lobo
- Department of Gamete Immunobiology, National Institute for Research in Reproductive Health (ICMR), Mumbai, 400012, India
| | - Parimala Rao
- Department of Gamete Immunobiology, National Institute for Research in Reproductive Health (ICMR), Mumbai, 400012, India
| | - Rahul Gajbhiye
- Department of Reproductive Endocrinology and Infertility, National Institute for Research in Reproductive Health (ICMR), Mumbai, 400012, India
| | - Vijay Kulkarni
- Department of Reproductive Endocrinology and Infertility, National Institute for Research in Reproductive Health (ICMR), Mumbai, 400012, India
| | - Priyanka Parte
- Department of Gamete Immunobiology, National Institute for Research in Reproductive Health (ICMR), Mumbai, 400012, India
| |
Collapse
|
24
|
Molecular chaperones, cochaperones, and ubiquitination/deubiquitination system: involvement in the production of high quality spermatozoa. BIOMED RESEARCH INTERNATIONAL 2014; 2014:561426. [PMID: 25045686 PMCID: PMC4089148 DOI: 10.1155/2014/561426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/04/2014] [Indexed: 01/16/2023]
Abstract
Spermatogenesis is a complex process in which mitosis, meiosis, and cell differentiation events coexist. The need to guarantee the production of qualitatively functional spermatozoa has evolved into several control systems that check spermatogenesis progression/sperm maturation and tag aberrant gametes for degradation. In this review, we will focus on the importance of the evolutionarily conserved molecular pathways involving molecular chaperones belonging to the superfamily of heat shock proteins (HSPs), their cochaperones, and ubiquitination/deubiquitination system all over the spermatogenetic process. In this respect, we will discuss the conserved role played by the DNAJ protein Msj-1 (mouse sperm cell-specific DNAJ first homologue) and the deubiquitinating enzyme Ubpy (ubiquitin-specific processing protease-y) during the spermiogenesis in both mammals and nonmammalian vertebrates.
Collapse
|
25
|
Ji Z, Lu R, Mou L, Duan YG, Zhang Q, Wang Y, Gui Y, Cai Z. Expressions of miR-15a and its target gene HSPA1B in the spermatozoa of patients with varicocele. Reproduction 2014; 147:693-701. [PMID: 24481955 DOI: 10.1530/rep-13-0656] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hyperthermia and oxidative stresses are the two central elements contributing to varicocele-related sperm damage. Growing evidence indicates that microRNAs (miRNAs) are involved in the regulation of the heat and oxidative stress responses. In this study, we analyzed the expressions of several stress-related miRNAs in the sperm and found that the expression of miR-15a was significantly decreased in patients with varicocele compared with the control. Furthermore, miR-15a repressed the expression of HSPA1B, which is a typical stress-induced chaperone protein, through directly binding its 3'-UTR. The expressions of miR-15a and HSPA1B exhibited an inverse correlation in sperm. Our results provide a valuable insight into the varicocele-related sperm impairment and male infertility, and may help to develop potential therapeutic targets and novel biomarkers for male infertility.
Collapse
Affiliation(s)
- Ziliang Ji
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ashrafzadeh A, Karsani SA, Nathan S. Mammalian sperm fertility related proteins. Int J Med Sci 2013; 10:1649-57. [PMID: 24151436 PMCID: PMC3804790 DOI: 10.7150/ijms.6395] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/23/2013] [Indexed: 02/03/2023] Open
Abstract
Infertility is an important aspect of human and animal reproduction and still presents with much etiological ambiguity. As fifty percent of infertility is related to the male partner, molecular investigations on sperm and seminal plasma can lead to new knowledge on male infertility. Several comparisons between fertile and infertile human and other species sperm proteome have shown the existence of potential fertility markers. These proteins have been categorized into energy related, structural and other functional proteins which play a major role in sperm motility, capacitation and sperm-oocyte binding. The data from these studies show the impact of sperm proteome studies on identifying different valuable markers for fertility screening. In this article, we review recent development in unraveling sperm fertility related proteins.
Collapse
Affiliation(s)
- Ali Ashrafzadeh
- 1. School of Biosciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Selangor, Malaysia
| | - Saiful Anuar Karsani
- 2. Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Sheila Nathan
- 1. School of Biosciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Selangor, Malaysia
| |
Collapse
|
27
|
Ashrafzadeh A, Nathan S, Karsani SA. Comparative analysis of Mafriwal (Bos taurus × Bos indicus) and Kedah Kelantan (Bos indicus) sperm proteome identifies sperm proteins potentially responsible for higher fertility in a tropical climate. Int J Mol Sci 2013; 14:15860-77. [PMID: 23903046 PMCID: PMC3759890 DOI: 10.3390/ijms140815860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/24/2013] [Accepted: 07/22/2013] [Indexed: 02/07/2023] Open
Abstract
The fertility of zebu cattle (Bos indicus) is higher than that of the European purebred (Bos taurus) and crossbred (Bos taurus × Bos indicus) cattle in tropical areas. To identify proteins related to the higher thermo-tolerance and fertility of Zebu cattle, this study was undertaken to identify differences in sperm proteome between the high fertile Malaysian indigenous zebu cattle (Kedah Kelantan) and the sub-fertile crossbred cattle (Mafriwal). Frozen semen from three high performance bulls from each breed were processed to obtain live and pure sperm. Sperm proteins were then extracted, and two-dimensional gel electrophoresis performed to compare proteome profiles. Gel image analysis identified protein spots of interest which were then identified by liquid chromatography mass spectrometry quadrupole time-of-flight (LC MS/MS Q-TOF). STRING network analysis predicted interactions between at least 20 of the identified proteins. Among the identified proteins, a number of motility and energy related proteins were present in greater abundance in Kedah Kelantan. Sperm motility evaluation by Computer Assisted Semen Analysis (CASA) confirmed significantly higher motility in Kedah Kelantan. While results from this study do identify proteins that may be responsible for the higher fertility of Kedah Kelantan, functional characterization of these proteins is warranted to reinforce our understanding of their roles in sperm fertility.
Collapse
Affiliation(s)
- Ali Ashrafzadeh
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi UKM 43600, Selangor, Malaysia; E-Mails: (A.A.); (S.N.)
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi UKM 43600, Selangor, Malaysia; E-Mails: (A.A.); (S.N.)
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- University of Malaya Centre for Proteomics Research, University of Malaya, Kuala Lumpur 50603, Malaysia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +603-7967-7139; Fax: +603-7967-4178
| |
Collapse
|
28
|
Bromfield EG, Nixon B. The function of chaperone proteins in the assemblage of protein complexes involved in gamete adhesion and fusion processes. Reproduction 2013; 145:R31-42. [PMID: 23166368 DOI: 10.1530/rep-12-0316] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The remarkable complexity of the molecular events governing adhesion and fusion of the male and female gametes is becoming apparent. Novel research suggests that these highly specific cellular interactions are facilitated by multiprotein complexes that are delivered to and/or assembled on the surface of the gametes by molecular chaperones in preparation for sperm-egg interaction. While the activation of these molecular chaperones and the mechanisms by which they shuttle proteins to the surface of the cell remain the subject of ongoing investigation, a compelling suggestion is that these processes are augmented by dynamic membrane microdomains or lipid rafts that migrate to the apical region of the sperm head after capacitation. Preliminary studies of the oocyte plasma membrane have also revealed the presence of lipid rafts comprising several molecular chaperones, raising the possibility that similar mechanisms may be involved in the activation of maternal fusion machinery and the regulation of oocyte plasma membrane integrity. Despite these findings, the analysis of oocyte surface multiprotein complexes is currently lacking. Further analyses of the intermediary proteins that facilitate the expression of key players in sperm-egg fusion are likely to deliver important insights into this unique event, which culminates in the cytoplasmic continuity of the male and female gametes.
Collapse
Affiliation(s)
- Elizabeth G Bromfield
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | |
Collapse
|
29
|
Aponte PM, Schlatt S, Franca LRD. Biotechnological approaches to the treatment of aspermatogenic men. Clinics (Sao Paulo) 2013; 68 Suppl 1:157-67. [PMID: 23503966 PMCID: PMC3583150 DOI: 10.6061/clinics/2013(sup01)18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 08/30/2012] [Indexed: 01/15/2023] Open
Abstract
Aspermatogenesis is a severe impairment of spermatogenesis in which germ cells are completely lacking or present in an immature form, which results in sterility in approximately 25% of patients. Because assisted reproduction techniques require mature germ cells, biotechnology is a valuable tool for rescuing fertility while maintaining biological fatherhood. However, this process involves, for instance, the differentiation of preexisting immature germ cells or the production/derivation of sperm from somatic cells. This review critically addresses four potential techniques: sperm derivation in vitro, germ stem cell transplantation, xenologous systems, and haploidization. Sperm derivation in vitro is already feasible in fish and mammals through organ culture or 3D systems, and it is very useful in conditions of germ cell arrest or in type II Sertoli-cell-only syndrome. Patients afflicted by type I Sertoli-cell-only syndrome could also benefit from gamete derivation from induced pluripotent stem cells of somatic origin, and human haploid-like cells have already been obtained by using this novel methodology. In the absence of alternative strategies to generate sperm in vitro, in germ cells transplantation fertility is restored by placing donor cells in the recipient germ-cell-free seminiferous epithelium, which has proven effective in conditions of spermatogonial arrest. Grafting also provides an approach for ex-vivo generation of mature sperm, particularly using prepubertal testis tissue. Although less feasible, haploidization is an option for creating gametes based on biological cloning technology. In conclusion, the aforementioned promising techniques remain largely experimental and still require extensive research, which should address, among other concerns, ethical and biosafety issues, such as gamete epigenetic status, ploidy, and chromatin integrity.
Collapse
Affiliation(s)
- Pedro Manuel Aponte
- Department of Morphology, Federal University of Minas Gerais, Minas Gerais, Brazil
| | | | | |
Collapse
|
30
|
Lin P, Chen F, Yang Y, Song Y, Li X, Lan X, Jin Y, Wang A. GRP78 expression and immunohistochemical localization in the female reproductive tract of mice. Theriogenology 2012; 78:1824-9. [DOI: 10.1016/j.theriogenology.2012.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/14/2012] [Accepted: 07/19/2012] [Indexed: 10/27/2022]
|
31
|
Parte PP, Rao P, Redij S, Lobo V, D'Souza SJ, Gajbhiye R, Kulkarni V. Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia. J Proteomics 2012; 75:5861-71. [PMID: 22796355 DOI: 10.1016/j.jprot.2012.07.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 11/30/2022]
Abstract
Sperm motility is an important prerequisite for successful fertilization and is regulated by cyclic AMP activated protein kinase A which phosphorylates flagella proteins like axonemal dynein and initiates motility. Increase in calcium influx reverses this process by dephosphorylation that is mediated by calcineurin. Analyzing the phosphoenriched fractions of spermatozoa lysates from eight normozoospermic-, and asthenozoospermic-samples, respectively, by Nano UPLC-MS(E), the present study investigates the phosphoproteins involved in sperm motility in an attempt to identify the key pathways regulating sperm motility and likely to be altered in spermatozoa of asthenozoospermic individuals. 66 phosphoproteins were differentially regulated in asthenozoospermia. The deregulated proteins comprised predominantly the HSPs, cytoskeletal proteins, proteins associated with the fibrous sheath, and those associated with energy metabolism. EM analysis of these spermatozoa demonstrated significant defects in mitochondria, and fibrous sheath and these defects could be correlated with the altered proteome. Pathway analysis revealed that carbohydrate and energy metabolism, cAMP mediated PKA signaling, PI3K/AKT signaling and pathway regulating actin based motility by Rho were significantly altered indicating that motility in spermatozoa is regulated through the concerted effort of these pathways. The data identified signature molecules that have the potential as biomarkers for diagnosing etiology of asthenozoospermia.
Collapse
Affiliation(s)
- Priyanka P Parte
- Dept. of Gamete Immunobiology, National Institute for Research in Reproductive Health (ICMR), Mumbai, India.
| | | | | | | | | | | | | |
Collapse
|
32
|
Caballero J, Frenette G, D'Amours O, Dufour M, Oko R, Sullivan R. ATP-binding cassette transporter G2 activity in the bovine spermatozoa is modulated along the epididymal duct and at ejaculation. Biol Reprod 2012; 86:181. [PMID: 22441796 DOI: 10.1095/biolreprod.111.097477] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During their epididymal maturation, stabilizing factors such as cholesterol sulfate are associated with the sperm plasma membrane. Cholesterol is sulfated in epididymal spermatozoa by the enzyme estrogen sulfotransferase. Because of its role in the efflux of sulfate conjugates formed intracellularly by sulfotransferases, the ATP-binding cassette membrane transporter G2 (ABCG2) might have a role in the translocation of this compound across the plasma membrane. In the present study we showed that ABCG2 is present in the plasma membrane overlaying the acrosomal region of spermatozoa recovered from testis, epididymis, and after ejaculation. Although ABCG2 is also present in epididymosomes, the transporter is not transferred to spermatozoa via this mechanism. Furthermore, although epididymal sperm ABCG2 was shown to be functional, as determined by its ability to extrude Hoechst 33342 in the presence of the specific inhibitor Fumitremorgin C, ABCG2 present in ejaculated sperm was found to be nonfunctional. Additional experiments demonstrated that phosphorylation of ABCG2 tyrosyl residues, but not its localization in lipid rafts, is the mechanism responsible for its functionality. Dephosphorylation of ABCG2 in ejaculated spermatozoa is proposed to cause a partial protein relocalization to other intracellular compartments. Prostasomes are proposed to have a role in this process because incubation with this fraction of seminal plasma induces a decrease in the amount of ABCG2 in the associated sperm membrane fraction. These results demonstrate that ABCG2 plays a role in epididymal sperm maturation, but not after ejaculation. The loss of ABCG2 function after ejaculation is proposed to be regulated by prostasomes.
Collapse
Affiliation(s)
- Julieta Caballero
- Centre de Recherche du Centre Hospitalier de l'Université Laval, CHUQ-CHUL, Laval, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Dun MD, Aitken RJ, Nixon B. The role of molecular chaperones in spermatogenesis and the post-testicular maturation of mammalian spermatozoa. Hum Reprod Update 2012; 18:420-35. [DOI: 10.1093/humupd/dms009] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
34
|
Ji ZL, Duan YG, Mou LS, Allam JP, Haidl G, Cai ZM. Association of heat shock proteins, heat shock factors and male infertility. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2012. [DOI: 10.1016/s2305-0500(13)60053-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
35
|
Lachance C, Leclerc P. Mediators of the Jak/STAT signaling pathway in human spermatozoa. Biol Reprod 2011; 85:1222-31. [PMID: 21880948 DOI: 10.1095/biolreprod.111.092379] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In their journey to acquire the ability to fertilize the egg, numerous intracellular signaling systems are activated in spermatozoa, leading to an increase in protein tyrosine phosphorylation. Although the JAK/STAT signaling pathway is usually associated with the activation of transcription of specific genes, our laboratory previously demonstrated the presence of the IL6 receptor (IL6R) and the Janus kinase 1 (JAK1) in human spermatozoa, a cell that is mostly transcriptionally inactive. In order to determine the importance of the JAK/STAT signaling pathway, our objectives were to identify and characterize the mediators of this system in human sperm. Cell fractionation and surface biotinylation assays clearly demonstrated that IL6R is expressed at the sperm membrane surface. The kinase JAK1 is enriched in membrane fractions and is activated during human sperm capacitation as suggested by its increase in phosphotyrosine content. Many signal transducer and activator of transcription (STAT) proteins are expressed in human sperm, including STAT1, STAT3, STAT4, STAT5, and STAT6. Among them, only STAT1 and STAT5 were detected in the cytosolic fraction. All the detected STAT proteins were enriched in the cytoskeletal structures. STAT4 was present in the perinuclear theca, whereas JAK1, STAT1, and STAT5 were detected in the fibrous sheath. Indirect immunofluorescence studies showed that JAK1 and STAT1 colocalized in the neck region and that STAT4 is present at the equatorial segment and flagella. The presence of STAT proteins in sperm structural components suggests that their role is different from their well-known transcription factor activity in somatic cells, but further investigations are required to determine their role in sperm function.
Collapse
Affiliation(s)
- Catherine Lachance
- Département d'Obstétrique et de Gynécologie, Centre de recherche en biologie de la reproduction, Université Laval, Unité de recherche en Ontogénie et Reproduction, Centre de recherche du CHUQ-CHUL, Québec, Québec, Canada
| | | |
Collapse
|
36
|
Ijiri TW, Merdiushev T, Cao W, Gerton GL. Identification and validation of mouse sperm proteins correlated with epididymal maturation. Proteomics 2011; 11:4047-62. [PMID: 21805633 DOI: 10.1002/pmic.201100075] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/03/2011] [Accepted: 07/11/2011] [Indexed: 01/16/2023]
Abstract
Sperm need to mature in the epididymis to become capable of fertilization. To understand the molecular mechanisms of mouse sperm maturation, we conducted a proteomic analysis using saturation dye labeling to identify proteins of caput and cauda epididymal sperm that exhibited differences in amounts or positions on two-dimensional gels. Of eight caput epididymal sperm-differential proteins, three were molecular chaperones and three were structural proteins. Of nine cauda epididymal sperm-differential proteins, six were enzymes of energy metabolism. To validate these proteins as markers of epididymal maturation, immunoblotting and immunofluorescence analyses were performed. During epididymal transit, heat shock protein 2 was eliminated with the cytoplasmic droplet and smooth muscle γ-actin exhibited reduced fluorescence from the anterior acrosome while the signal intensity of aldolase A increased, especially in the principal piece. Besides these changes, we observed protein spots, such as glutathione S-transferase mu 5 and the E2 component of pyruvate dehydrogenase complex, shifting to more basic isoelectric points, suggesting post-translational changes such dephosphorylation occur during epididymal maturation. We conclude that most caput epididymal sperm-differential proteins contribute to the functional modification of sperm structures and that many cauda epididymal sperm-differential proteins are involved in ATP production that promotes sperm functions such as motility.
Collapse
Affiliation(s)
- Takashi W Ijiri
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6080, USA
| | | | | | | |
Collapse
|
37
|
Han C, Park I, Lee B, Jin S, Choi H, Kwon JT, Kwon YI, Kim DH, Park ZY, Cho C. Identification of heat shock protein 5, calnexin and integral membrane protein 2B as Adam7-interacting membrane proteins in mouse sperm. J Cell Physiol 2011; 226:1186-95. [PMID: 20945367 DOI: 10.1002/jcp.22444] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In mammals, sperm acquire their motility and ability to fertilize eggs in the epididymis. This maturation process involves the acquisition of particular proteins from the epididymis. One such secretory protein specifically expressed in the epididymis is Adam7 (a disintegrin and metalloprotease 7). Previous studies have shown that Adam7 that resides in an intracellular compartment of epididymal cells is transferred to sperm membranes, where its levels are dependent on the expression of Adam2 and Adam3, which have critical roles in fertilization. Here, using a proteomics approach based on mass spectrometry, we identified proteins that interact with Adam7 in sperm membranes. This analysis revealed that Adam7 forms complexes with calnexin (Canx), heat shock protein 5 (Hspa5), and integral membrane protein 2B (Itm2b). Canx and Hspa5 are molecular chaperones, and Itm2b is a type II integral membrane protein implicated in neurodegeneration. The interaction of Adam7 with these proteins was confirmed by immunoprecipitation-Western blot analysis. We found that Adam7 and Itm2b are located in detergent-resistant regions known to be highly correlated with membrane lipid rafts. We further found that the association of Adam7 with Itm2b is remarkably promoted during sperm capacitation owing to a conformational change of Adam7 that occurs in concert with the capacitation process. Thus, our results suggest that Adam7 functions in fertilization through the formation of a chaperone complex and enhanced association with Itm2b during capacitation in sperm.
Collapse
Affiliation(s)
- Cecil Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Heat shock factors form a family of transcription factors (four in mammals), which were named according to the first discovery of their activation by heat shock. As a result of the universality and robustness of their response to heat shock, the stress-dependent activation of heat shock factor became a ‘paradigm’: by binding to conserved DNA sequences (heat shock elements), heat shock factors trigger the expression of genes encoding heat shock proteins that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stress and in several pathological conditions. Besides their roles in the stress response, heat shock factors perform crucial roles during gametogenesis and development in physiological conditions. First, during these process, in stress conditions, they are either proactive for survival or, conversely, for apoptotic process, allowing elimination or, inversely, protection of certain cell populations in a way that prevents the formation of damaged gametes and secure future reproductive success. Second, heat shock factors display subtle interplay in a tissue- and stage-specific manner, in regulating very specific sets of heat shock genes, but also many other genes encoding growth factors or involved in cytoskeletal dynamics. Third, they act not only by their classical transcription factor activities, but are necessary for the establishment of chromatin structure and, likely, genome stability. Finally, in contrast to the heat shock gene paradigm, heat shock elements bound by heat shock factors in developmental process turn out to be extremely dispersed in the genome, which is susceptible to lead to the future definition of ‘developmental heat shock element’.
Collapse
Affiliation(s)
- Ryma Abane
- CNRS, UMR7216 Epigenetics and Cell Fate, Paris, France
| | | |
Collapse
|
39
|
Glucose-regulated protein precursor (GRP78) and tumor rejection antigen (GP96) are unique to hamster caput epididymal spermatozoa. Asian J Androl 2010; 12:344-55. [PMID: 20400973 DOI: 10.1038/aja.2010.19] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The immotile testicular mammalian spermatozoon gets transformed into a motile spermatozoon during 'epididymal maturation'. During this process, the spermatozoa transit from the caput to the cauda epididymis and undergo a number of distinct morphological, biophysical and biochemical changes, including changes in protein composition and protein modifications, which may be relevant to the acquisition of motility potential. The present proteome-based study of the hamster epididymal spermatozoa of caput and cauda led to the identification of 113 proteins spots using Matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS) analysis. Comparison of these 113 protein spots indicated that 30 protein spots (corresponding to 20 proteins) were significantly changed in intensity. Five proteins were increased and eleven were decreased in intensity in the cauda epididymal spermatozoa. In addition, two proteins, glucose-regulated protein precursor (GRP78) and tumor rejection antigen (GP96), were unique to the caput epididymal spermatozoa, while one protein, fibrinogen-like protein 1, was unique to cauda epididymal spermatozoa. A few of the five proteins, which increased in intensity, were related to sperm metabolism and ATP production during epididymal maturation. The changes in intensity of a few proteins such as ERp57, GRP78, GP96, Hsp60, Hsp70, and dihydrolipoamide S-acetyltransferase were validated by immunoblotting. The present study provides a global picture of the changes in protein composition occurring during hamster sperm epididymal maturation, besides being the first ever report on the proteome of hamster spermatozoa.
Collapse
|