1
|
Araújo AS, de Paula NZ, de Lima MAB, Farias Filho LEGF, Dos Santos Silva RC, Nogueira MCDBL, Hernández EP, Cavalcanti IMF, Carvalho RDSF, Stamford TCM. Influence of the addition of gum arabic and xanthan gum in the preparation of sodium alginate microcapsules coated with chitosan hydrochloride on the survival of Lacticaseibacillus rhamnosus GG. Int J Biol Macromol 2025; 294:139388. [PMID: 39743065 DOI: 10.1016/j.ijbiomac.2024.139388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
The microencapsulation of Lactocaseibacillus rhamnosus GG in a matrix of sodium alginate, xanthan gum, gum arabic and chitosan hydrochloride is a promising strategy for protecting this probiotic during passage through the gastrointestinal tract. This study evaluated the influence on the viability of Lactocaseibacillus rhamnosus GG encapsulated with these polymers by external ionic gelation with vibratory extrusion and the microcapsules that showed the best results of capsulation efficiency, viability, size and morphology were analyzed by Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and exposure to environmental stress conditions and gastrointestinal simulation. The result revealed encapsulation efficiency values above 95 % for all formulations and survival rate higher than 6 log CFU/mL for most analyzed groups. The lowest viability values after storage at 7 °C were presented by formulations prepared with Arabic Gum and Xanthan, as well as the largest sizes, expansion index, and physical integrity loss of the microcapsules. Sodium alginate microcapsules coated with chitosan hydrochloride demonstrated enhanced viability during storage at 7 °C and 25 °C, alongside superior cell survival rates under environmental stress conditions and simulated gastrointestinal environments indicating that sodium alginate-chitosan hydrochloride microparticles are expected to become an ideal carrier for the actives encapsulation in pharmaceutical and food and industries.
Collapse
Affiliation(s)
- Alessandra Silva Araújo
- Federal University of Pernambuco (UFPE), Av. Profª Morais Rego, 1235, University City, 50670-901 Recife, Brazil; Keizo Asami Institute (iLIKA), Av. Prof. Morais Rego, 1235, University City, 50670-901 Recife, Brazil.
| | - Nazareth Zimiani de Paula
- Federal University of Pernambuco (UFPE), Av. Profª Morais Rego, 1235, University City, 50670-901 Recife, Brazil.
| | - Marcos Antonio Barbosa de Lima
- Federal Rural University of Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife, PE 52171-900, Brazil.
| | | | | | - Mariane Cajuba de Britto Lira Nogueira
- Federal University of Pernambuco (UFPE), Av. Profª Morais Rego, 1235, University City, 50670-901 Recife, Brazil; Keizo Asami Institute (iLIKA), Av. Prof. Morais Rego, 1235, University City, 50670-901 Recife, Brazil
| | - Eduardo Padrón Hernández
- Federal University of Pernambuco (UFPE), Av. Profª Morais Rego, 1235, University City, 50670-901 Recife, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Federal University of Pernambuco (UFPE), Av. Profª Morais Rego, 1235, University City, 50670-901 Recife, Brazil; Keizo Asami Institute (iLIKA), Av. Prof. Morais Rego, 1235, University City, 50670-901 Recife, Brazil; Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, Pernambuco, Brazil.
| | | | - Thayza Christina Montenegro Stamford
- Federal University of Pernambuco (UFPE), Av. Profª Morais Rego, 1235, University City, 50670-901 Recife, Brazil; Keizo Asami Institute (iLIKA), Av. Prof. Morais Rego, 1235, University City, 50670-901 Recife, Brazil.
| |
Collapse
|
2
|
Effects of blueberry extract co-microencapsulation on the survival of Lactobacillus rhamnosus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Optimization of compatible solutes for improving survival of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus using Box-Behnken design. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Lactobacillus delbrueckii subsp. bulgaricus is widely used in yogurt as a starter. The freeze-drying process may cause bacteria death. In the present work, the effect of three solutes (NaCl, sorbitol, and sodium glutamate) in MRS on viability of L.bulgaricus during freeze-drying was investigated. The optimal combination of adequate solutes was chosen by Box-Behnken Design. The survival rate and viable counts in freeze-dried powder, as well as the viable counts in broth, were used as responses. The results revealed that the optimum combination of solutes in MRS broth were 0.50% NaCl, 0.19% sorbitol, and 0.06% sodium glutamate. Under these optimal conditions, the survival rate was 53.2±0.14%, the viable counts in freeze-dried powder was 8.51±0.23×1010 CFU/g, and the viable counts in broth was 6.05±0.19 ×108 CFU/mL, which were increased by 17.18%, 15.94%, and 17.31%, respectively, compared to the control. This research demonstrated the possibility of viability improvement of L.bulgaricus, which may provide a feasible reference for industrial development.
Collapse
|
4
|
E J, Chen J, Chen Z, Ma R, Zhang J, Yao C, Wang R, Zhang Q, Yang Y, Li J, Wang J. Effects of different initial pH values on freeze-drying resistance of Lactiplantibacillus plantarum LIP-1 based on transcriptomics and proteomics. Food Res Int 2021; 149:110694. [PMID: 34600689 DOI: 10.1016/j.foodres.2021.110694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/15/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
The growth and the resistance to adverse environments of lactic acid bacteria would be affected by adjusting the initial pH of the medium. In order to explore the effect of changing the initial pH of culture medium on the freeze-drying survival rate of the Lactiplantibacillus plantarum LIP-1, the effect of initial pH on cell membrane fatty acid composition and key enzyme activity were mainly determined, and the internal mechanism was studied by transcriptomics and proteomics methods. We found that compared with initial pH 7.4 group, initial pH 6.8 group could improve the freeze-drying survival rate of the L. plantarum LIP-1. It was possibly due to the lactate dehydrogenase (LDH) was upregulated in the initial pH6.8 group, which led to a rapid decrease in culture pH. To reduce the inhibitory effect of long-term acid environment on growth, the strain upregulated the expression of fatty acid synthesis-related genes and proteins, promoted the relative content of cyclopropane and unsaturated fatty acids, improved integrity of the cell membranes. The adjustment of fatty acid composition maintained the integrity of the cell membrane in a freeze-drying environment to improve the freeze-drying survival rate of the initial pH6.8 group. In addition, the long-term acid environment stimulated a cross-stress tolerance mechanism that significantly upregulated the expression of a cold stress protein. The results indicated that the optimal initial pH of the medium could improve the ability of L. plantarum LIP-1 to resist freeze-drying.
Collapse
Affiliation(s)
- Jingjing E
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Jing Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zichao Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Rongze Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Jingya Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Caiqing Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Ruixue Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Qiaoling Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Ying Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Jing Li
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Junguo Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| |
Collapse
|
5
|
Gao X, Kong J, Zhu H, Mao B, Cui S, Zhao J. Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: Mechanisms and application of cross-protection to improve resistance against freeze-drying. J Appl Microbiol 2021; 132:802-821. [PMID: 34365708 DOI: 10.1111/jam.15251] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/12/2021] [Accepted: 07/07/2021] [Indexed: 01/30/2023]
Abstract
The review deals with lactic acid bacteria in characterizing the stress adaptation with cross-protection effects, mainly associated with Lactobacillus, Bifidobacterium and Lactococcus. It focuses on adaptation and cross-protection in Lactobacillus, Bifidobacterium and Lactococcus, including heat shocking, cold stress, acid stress, osmotic stress, starvation effect, etc. Web of Science, Google Scholar, Science Direct, and PubMed databases were used for the systematic search of literature up to the year 2020. The literature suggests that a lower survival rate during freeze-drying is linked to environmental stress. Protective pretreatment under various mild stresses can be applied to lactic acid bacteria which may enhance resistance in a strain-dependent manner. We investigate the mechanism of damage and adaptation under various stresses including heat, cold, acidic, osmotic, starvation, oxidative and bile stress. Adaptive mechanisms include synthesis of stress-induced proteins, adjusting the composition of cell membrane fatty acids, accumulating compatible substances, etc. Next, we reveal the cross-protective effect of specific stress on the other environmental stresses. Freeze-drying is discussed from three perspectives including the regulation of membrane, accumulation of compatible solutes and the production of chaperones and stress-responsive proteases. The resistance of lactic acid bacteria against technological stress can be enhanced via cross-protection, which improves industrial efficiency concerning the survival of probiotics. However, the adaptive responses and cross-protection are strain-dependent and should be optimized case by case.
Collapse
Affiliation(s)
- Xinwei Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Kong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Jiang X, Shekarforoush E, Muhammed MK, Whitehead K, Simonsen AC, Arneborg N, Risbo J. Efficient chemical hydrophobization of lactic acid bacteria - One-step formation of double emulsion. Food Res Int 2021; 147:110460. [PMID: 34399460 DOI: 10.1016/j.foodres.2021.110460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
A novel concept of stabilizing multiple-phase food structure such as emulsion using solely the constitutional bacteria enables an all-natural food grade formulation and thus a clean label declaration. In this paper, we propose an efficient approach to hydrophobically modifying the surface of lactic acid bacteria Lactobacillus rhamnosus (LGG) using lauroyl ahloride (LC) in non-aqueous media. Compared to the unmodified bacteria, cell hydrophobicity was dramatically altered upon modification, according to the higher percentages of microbial adhesion to hexadecane (MATH) and water contact angles (WCA) of LC-modified bacteria. No evident changes were found in bacterial surface charge before and after LC modification. By using one-step homogenization, all the modified bacteria were able to generate stabile water-in-oil-in-water (W/O/W) double emulsions where bacteria were observed on oil-water interfaces of the primary and secondary droplets. Modification using high LC concentrations (10 and 20 w/w%) led to rapid autoaggregation of bacteria in aqueous solution. A long-term lethal effect of modification primarily came from lyophilization and no apparent impact was detected on the instantaneous culturability of modified bacteria.
Collapse
Affiliation(s)
- Xiaoyi Jiang
- University of Copenhagen, Department of Food Science, Rolighedsvej 30, DK-1958 Copenhagen, Denmark
| | | | - Musemma Kedir Muhammed
- University of Copenhagen, Department of Food Science, Rolighedsvej 30, DK-1958 Copenhagen, Denmark
| | - Kathryn Whitehead
- Manchester Metropolitan University, Department of Life Sciences, Chester St, Manchester M15GD, United Kingdom
| | - Adam Cohen Simonsen
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy (FKF), Campusvej 55, DK-5230 Odense M, Denmark
| | - Nils Arneborg
- University of Copenhagen, Department of Food Science, Rolighedsvej 30, DK-1958 Copenhagen, Denmark
| | - Jens Risbo
- University of Copenhagen, Department of Food Science, Rolighedsvej 30, DK-1958 Copenhagen, Denmark.
| |
Collapse
|
7
|
Lactic fermentation of cooked navy beans by
Lactobacillus paracasei
CBA L74
aimed at a potential production of functional legume‐based foods. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Bellali S, Bou Khalil J, Fontanini A, Raoult D, Lagier JC. A new protectant medium preserving bacterial viability after freeze drying. Microbiol Res 2020; 236:126454. [PMID: 32200250 DOI: 10.1016/j.micres.2020.126454] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022]
Abstract
Freeze-drying technology has been widely considered for decades as a suitable technique to preserve microorganisms. However, protective agents must be added prior to freeze drying to improve the survival and storage stability of the bacteria. The objective of our study was to evaluate the effect of a new protectant medium containing sucrose (10 %), trehalose (10 %), skimmed milk (10 %) and antioxidants on the viability of gut bacteria under different storage conditions. Two strains were tested, Escherichia coli and Akkermansia muciniphila, as examples of facultative aerobic and anaerobic bacteria, respectively. We studied the cell viability and bacterial morphology in 5 fecal samples in the presence and absence of this protectant medium using plating technique, flow cytometry and scanning electron microscopy. The results of bacterial viability assessed by plating method showed that the protectant medium yielded higher survival rates for both strains whatever the storage conditions (85-93 %) compared to normal saline solution (0.36-37.50 %). It also showed its effectiveness on fecal samples, where bacterial viability after freeze-drying was 89.47 ± 7.63 % and 84.01 ± 7.44 %, as evidenced by flow cytometry analysis and plating method. However unprotected samples showed the lowest cell viability at 19.01 ± 12.88 % and 13.23 ± 9.56 %, as measured by flow cytometry and plating method. In addition, bacterial size and shape were conserved in the protectant medium. In contrast, storage without protectant medium severely damaged bacterial morphology. In conclusion, our study is the first to use morphological features as well as culture-dependant and culture-independent tests to evaluate the effectiveness of a new protectant medium.
Collapse
Affiliation(s)
- Sara Bellali
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | | | | | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | | |
Collapse
|
9
|
Gaucher F, Kponouglo K, Rabah H, Bonnassie S, Ossemond J, Pottier S, Jardin J, Briard-Bion V, Marchand P, Blanc P, Jeantet R, Jan G. Propionibacterium freudenreichii CIRM-BIA 129 Osmoadaptation Coupled to Acid-Adaptation Increases Its Viability During Freeze-Drying. Front Microbiol 2019; 10:2324. [PMID: 31681198 PMCID: PMC6797830 DOI: 10.3389/fmicb.2019.02324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Propionibacterium freudenreichii is a beneficial bacterium with documented effects on the gut microbiota and on inflammation. Its presence within the animal and human intestinal microbiota was correlated with immunomodulatory effects, mediated by both propionibacterial surface components and by secreted metabolites. It is widely implemented, both in the manufacture of fermented dairy products such as Swiss-type cheeses, and in the production of probiotic food complements, under the form of freeze-dried powders. The bottleneck of this drying process consists in the limited survival of bacteria during drying and storage. Protective pre-treatments have been applied to other bacteria and may, in a strain-dependent manner, confer enhanced resistance. However, very little information was yet published on P. freudenreichii adaptation to freeze-drying. In this report, an immunomodulatory strain of this probiotic bacterium was cultured under hyperosmotic constraint in order to trigger osmoadaptation. This adaptation was then combined with acid or thermal pre-treatment. Such combination led to accumulation of key stress proteins, of intracellular compatible solute glycine betaine, to modulation of the propionibacterial membrane composition, and to enhanced survival upon freeze-drying. This work opens new perspectives for efficient production of live and active probiotic propionibacteria.
Collapse
Affiliation(s)
- Floriane Gaucher
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
- Bioprox, Levallois-Perret, France
| | | | - Houem Rabah
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
- Bba, Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, Rennes, France
| | - Sylvie Bonnassie
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
- Université de Rennes I, Rennes, France
| | | | - Sandrine Pottier
- CNRS, ISCR – UMR 6226, PRISM, BIOSIT – UMS 3480 Université de Rennes I, Rennes, France
| | | | | | | | | | | | - Gwénaël Jan
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
| |
Collapse
|
10
|
Gaucher F, Bonnassie S, Rabah H, Marchand P, Blanc P, Jeantet R, Jan G. Review: Adaptation of Beneficial Propionibacteria, Lactobacilli, and Bifidobacteria Improves Tolerance Toward Technological and Digestive Stresses. Front Microbiol 2019; 10:841. [PMID: 31068918 PMCID: PMC6491719 DOI: 10.3389/fmicb.2019.00841] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/02/2019] [Indexed: 01/15/2023] Open
Abstract
This review deals with beneficial bacteria, with a focus on lactobacilli, propionibacteria, and bifidobacteria. As being recognized as beneficial bacteria, they are consumed as probiotics in various food products. Some may also be used as starters in food fermentation. In either case, these bacteria may be exposed to various environmental stresses during industrial production steps, including drying and storage, and during the digestion process. In accordance with their adaptation to harsh environmental conditions, they possess adaptation mechanisms, which can be induced by pretreatments. Adaptive mechanisms include accumulation of compatible solutes and of energy storage compounds, which can be largely modulated by the culture conditions. They also include the regulation of energy production pathways, as well as the modulation of the cell envelop, i.e., membrane, cell wall, surface layers, and exopolysaccharides. They finally lead to the overexpression of molecular chaperones and of stress-responsive proteases. Triggering these adaptive mechanisms can improve the resistance of beneficial bacteria toward technological and digestive stresses. This opens new perspectives for the improvement of industrial processes efficiency with regard to the survival of beneficial bacteria. However, this bibliographical survey evidenced that adaptive responses are strain-dependent, so that growth and adaptation should be optimized case-by-case.
Collapse
Affiliation(s)
- Floriane Gaucher
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Bioprox, Levallois-Perret, France
| | - Sylvie Bonnassie
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Science de la Vie et de la Terre, Université de Rennes 1, Rennes, France
| | - Houem Rabah
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
- Pôle Agronomique Ouest, Bba, Rennes, France
| | | | | | - Romain Jeantet
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| | - Gwénaël Jan
- STLO, Agrocampus Ouest, Institut National de la Recherche Agronomique, Paris, France
| |
Collapse
|
11
|
Zhou F, Jiang X, Wang T, Zhang B, Zhao H. Lyciumbarbarum Polysaccharide (LBP): A Novel Prebiotics Candidate for Bifidobacterium and Lactobacillus. Front Microbiol 2018; 9:1034. [PMID: 29867910 PMCID: PMC5968096 DOI: 10.3389/fmicb.2018.01034] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Lycium barbarum is a boxthorn that produces the goji berries. The aim of the current study was to evaluate the proliferative effect of L. barbarum polysaccharides (LBP) on probiotics. LBP was extracted from goji berries and its monosaccharide composition characterized by gas chromatography (GC). The LBP extract contained arabinose, rhamnose, xylose, mannose, galactose, and glucose. LBP obviously promoted the proliferation of lactic acid bacteria (LAB) strains, especially Bifidobacterium longum subsp. infantis Bi-26 and Lactobacillus acidophilus NCFM. In the presence of LBP in the growth medium, the β-galactosidase (β-GAL) and lactate dehydrogenase (LDH) activities of strain Bi-26 significantly increased. The activities of β-GAL, LDH, hexokinase (HK), 6-phosphofructokinase (PFK), and pyruvate kinase (PK) of strain NCFM significantly increased under those conditions. LAB transcriptome sequencing analysis was performed to elucidate the mechanism responsible for the proliferative effect of LBP. The data revealed that LBP promoted the bacterial biosynthetic and metabolic processes, gene expression, transcription, and transmembrane transport. Pyruvate metabolism, carbon metabolism, phosphotransferase system (PTS), and glycolysis/gluconeogenesis genes were overexpressed. Furthermore, LBP improved cell vitality during freeze-drying and tolerance of the gastrointestinal environment. In summary, LBP can be used as a potential prebiotic for Bifidobacterium and Lactobacillus.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaoying Jiang
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Tao Wang
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Bolin Zhang
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Hongfei Zhao
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
12
|
Dianawati D, Mishra V, Shah NP. Survival of Microencapsulated Probiotic Bacteria after Processing and during Storage: A Review. Crit Rev Food Sci Nutr 2017; 56:1685-716. [PMID: 25853290 DOI: 10.1080/10408398.2013.798779] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The use of live probiotic bacteria as food supplement has become popular. Capability of probiotic bacteria to be kept at room temperature becomes necessary for customer's convenience and manufacturer's cost reduction. Hence, production of dried form of probiotic bacteria is important. Two common drying methods commonly used for microencapsulation are freeze drying and spray drying. In spite of their benefits, both methods have adverse effects on cell membrane integrity and protein structures resulting in decrease in bacterial viability. Microencapsulation of probiotic bacteria has been a promising technology to ensure bacterial stability during the drying process and to preserve their viability during storage without significantly losing their functional properties such acid tolerance, bile tolerance, surface hydrophobicity, and enzyme activities. Storage at room temperatures instead of freezing or low temperature storage is preferable for minimizing costs of handling, transportation, and storage. Concepts of water activity and glass transition become important in terms of determination of bacterial survival during the storage. The effectiveness of microencapsulation is also affected by microcapsule materials. Carbohydrate- and protein-based microencapsulants and their combination are discussed in terms of their protecting effect on probiotic bacteria during dehydration, during exposure to harsh gastrointestinal transit and small intestine transit and during storage.
Collapse
Affiliation(s)
- Dianawati Dianawati
- a School of Biomedical and Health Sciences, Victoria University , Werribee Campus, Melbourne , Victoria , Australia
| | - Vijay Mishra
- a School of Biomedical and Health Sciences, Victoria University , Werribee Campus, Melbourne , Victoria , Australia
| | - Nagendra P Shah
- a School of Biomedical and Health Sciences, Victoria University , Werribee Campus, Melbourne , Victoria , Australia.,b Food and Nutritional Science, School of Biological Science, The University of Hong Kong , Hong Kong
| |
Collapse
|
13
|
Haffner FB, van de Wiele T, Pasc A. Original behavior of L. rhamnosus GG encapsulated in freeze-dried alginate–silica microparticles revealed under simulated gastrointestinal conditions. J Mater Chem B 2017; 5:7839-7847. [DOI: 10.1039/c7tb02190a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolically inactive in the upper GIT, encapsulated LGG boost their metabolism and better colonize the colon compared with free bacteria.
Collapse
Affiliation(s)
| | - Tom van de Wiele
- Center for Microbial Ecology and Technology (CMET)
- Ghent University
- Ghent
- Belgium
| | - Andreea Pasc
- SRSMC UMR 7565
- CNRS-Université de Lorraine
- 54506 Vandoeuvre les Nancy
- France
| |
Collapse
|
14
|
Jofré A, Aymerich T, Garriga M. Impact of different cryoprotectants on the survival of freeze-dried Lactobacillus rhamnosus and Lactobacillus casei/paracasei during long-term storage. Benef Microbes 2016; 6:381-6. [PMID: 25380798 DOI: 10.3920/bm2014.0038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The production of long shelf-life highly concentrated dried probiotic/starter cultures is of paramount importance for the food industry. The aim of the present study was to evaluate the protective effect of glucose, lactose, trehalose, and skim milk applied alone or combined upon the survival of potentially probiotic Lactobacillus rhamnosus CTC1679, Lactobacillus casei/paracasei CTC1677 and L. casei/paracasei CTC1678 during freeze-drying and after 39 weeks of storage at 4 and 22 °C. Immediately after freeze-drying, the percentage of survivors was very high (≥ 94%) and only slight differences were observed among strains and cryoprotectants. In contrast, during storage, survival in the dried state depended on the cryoprotectant, temperature and strain. For all the protectants assayed, the stability of the cultures was remarkably higher when stored under refrigeration (4 °C). Under these conditions, skim milk alone or supplemented with trehalose or lactose showed the best performance (reductions ≤ 0.9 log units after 39 weeks of storage). The lowest survival was observed during non-refrigerated storage and with glucose and glucose plus milk; no viable cells left at the end of the storage period. Thus, freeze-drying in the presence of appropriate cryoprotectants allows the production of long shelf-life highly concentrated dried cultures ready for incorporation in high numbers into food products as starter/potential probiotic cultures.
Collapse
Affiliation(s)
- A Jofré
- IRTA-Food Safety Programme, Finca Camps i Armet, 17121 Monells, Spain
| | - T Aymerich
- IRTA-Food Safety Programme, Finca Camps i Armet, 17121 Monells, Spain
| | - M Garriga
- IRTA-Food Safety Programme, Finca Camps i Armet, 17121 Monells, Spain
| |
Collapse
|
15
|
Peiren J, Hellemans A, De Vos P. Impact of the freeze-drying process on product appearance, residual moisture content, viability, and batch uniformity of freeze-dried bacterial cultures safeguarded at culture collections. Appl Microbiol Biotechnol 2016; 100:6239-6249. [PMID: 26875878 DOI: 10.1007/s00253-016-7359-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 12/01/2022]
Abstract
In this study, causes of collapsed bacterial cultures in glass ampoules observed after freeze-drying were investigated as well as the influence of collapse on residual moisture content (RMC) and viability. Also, the effect of heat radiation and post freeze-drying treatments on the RMC was studied. Cake morphologies of 21 bacterial strains obtained after freeze-drying with one standard protocol could be classified visually into four major types: no collapse, porous, partial collapse, and collapse. The more pronounced the collapse, the higher residual moisture content of the freeze-dried product, ranging from 1.53 % for non-collapsed products to 3.62 % for collapsed products. The most important cause of collapse was the mass of the inserted cotton plug in the ampoule. Default cotton plugs with a mass between 21 and 30 mg inside the ampoule did not affect the viability of freeze-dried Aliivibrio fischeri LMG 4414(T) compared to ampoules without cotton plugs. Cotton plugs with a mass higher than 65 mg inside the ampoule induced a full collapsed product with rubbery look (melt-back) and decreasing viability during storage. Heat radiation effects in the freeze-drying chamber and post freeze-drying treatments such as exposure time to air after freeze-drying and manifold drying time prior to heat sealing of ampoules influenced the RMC of freeze-dried products. To produce uniform batches of freeze-dried bacterial strains with intact cake structures and highest viabilities, inserted cotton plugs should not exceed 21 mg per ampoule. Furthermore, heat radiation effects should be calculated in the design of the primary drying phase and manifold drying time before heat sealing should be determined as a function of exposure time to air.
Collapse
Affiliation(s)
- Jindrich Peiren
- Belgian Coordinated Collections of Microorganisms/Bacteria Collection (BCCM/LMG), Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium.
| | - Ann Hellemans
- Belgian Coordinated Collections of Microorganisms/Bacteria Collection (BCCM/LMG), Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Paul De Vos
- Belgian Coordinated Collections of Microorganisms/Bacteria Collection (BCCM/LMG), Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium.,Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| |
Collapse
|
16
|
Iravani S, Korbekandi H, Mirmohammadi SV. Technology and potential applications of probiotic encapsulation in fermented milk products. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:4679-96. [PMID: 26243890 PMCID: PMC4519473 DOI: 10.1007/s13197-014-1516-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/28/2013] [Accepted: 08/06/2014] [Indexed: 11/25/2022]
Abstract
Fermented milk products containing probiotics and prebiotics can be used in management, prevention and treatment of some important diseases (e.g., intestinal- and immune-associated diseases). Microencapsulation has been used as an efficient method for improving the viability of probiotics in fermented milks and gastrointestinal tract. Microencapsulation of probiotic bacterial cells provides shelter against adverse conditions during processing, storage and gastrointestinal passage. Important challenges in the field include survival of probiotics during microencapsulation, stability of microencapsulated probiotics in fermented milks, sensory quality of fermented milks with microencapsulated probiotics, and efficacy of microencapsulation to deliver probiotics and their controlled or targeted release in the gastrointestinal tract. This study reviews the current knowledge, and the future prospects and challenges of microencapsulation of probiotics used in fermented milk products. In addition, the influence of microencapsulation on probiotics viability and survival is reviewed.
Collapse
Affiliation(s)
- Siavash Iravani
- />Biotechnology Department, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- />Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Korbekandi
- />Biotechnology Department, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Vahid Mirmohammadi
- />School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Ferrando V, Quiberoni A, Reinhemer J, Suárez V. Resistance of functional Lactobacillus plantarum strains against food stress conditions. Food Microbiol 2015; 48:63-71. [DOI: 10.1016/j.fm.2014.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/12/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
|
18
|
Pyar H, Peh KK. Cost effectiveness of cryoprotective agents and modified De-man Rogosa Sharpe medium on growth of Lactobacillus acidophilus. Pak J Biol Sci 2015; 17:462-71. [PMID: 25911832 DOI: 10.3923/pjbs.2014.462.471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of cryoprotective agents (namely, sodium chloride, sucrose, dextran, sorbitol, monosodium glutamate, glycerol, skim milk and skim milk with malt extract) and modified De-Man Rogosa Sharpe (MRS) medium, on the viability and stability of L. acidophilus ATCC 4962, was investigated. The modified MRS medium was not only economical, but it gave a relatively higher yield of L. acidophilus ATCC 4962 than the commercial MRS. Monosodium glutamate, skim milk and skim milk with malt extract provided significantly higher viable counts, with optimum concentration at 0.3%. Nevertheless, at concentration above 0.5%, there was a reduction in cell viability, which could be attributed to cell shrinkage associated with osmotic pressure changes inside the cells. It was also found that L. acidophilus ATCC 4962 was stable at 28 degrees C for eight weeks. Skim milk demonstrated a significant growth of probiotics. Skim milk was the preferred cryoprotective agent, as it is of low cost, easily available and demonstrated a significant growth of probiotics. In conclusion, modified MRS medium with skim milk is suggested for the remarkable growth and yield of L. acidophilus.
Collapse
|
19
|
Improving survival and storage stability of bacteria recalcitrant to freeze-drying: a coordinated study by European culture collections. Appl Microbiol Biotechnol 2015; 99:3559-71. [DOI: 10.1007/s00253-015-6476-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 10/23/2022]
|
20
|
Chen H, Chen S, Li C, Shu G. Response Surface Optimization of Lyoprotectant forLactobacillus bulgaricusDuring Vacuum Freeze-Drying. Prep Biochem Biotechnol 2014; 45:463-75. [DOI: 10.1080/10826068.2014.923451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
The Contribution of the Inherent Restricted Mobility of Glassy Sugar Matrices to the Overall Stability of Freeze-Dried Bacteria Determined by Low-Resolution Solid-State 1H-NMR. FOOD BIOPROCESS TECH 2013. [DOI: 10.1007/s11947-013-1095-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
|
23
|
Aschenbrenner M, Kulozik U, Foerst P. Evaluation of the relevance of the glassy state as stability criterion for freeze-dried bacteria by application of the Arrhenius and WLF model. Cryobiology 2012; 65:308-18. [PMID: 22964396 DOI: 10.1016/j.cryobiol.2012.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/11/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
The aim of this work was to describe the temperature dependence of microbial inactivation for several storage conditions and protective systems (lactose, trehalose and dextran) in relation to the physical state of the sample, i.e. the glassy or non-glassy state. The resulting inactivation rates k were described by applying two models, Arrhenius and Williams-Landel-Ferry (WLF), in order to evaluate the relevance of diffusional limitation as a protective mechanism. The application of the Arrhenius model revealed a significant decrease in activation energy E(a) for storage conditions close to T(g). This finding is an indication that the protective effect of a surrounding glassy matrix can, at least, partly be ascribed to its inherent restricted diffusion and mobility. The application of the WLF model revealed that the temperature dependence of microbial inactivation above T(g) is significantly weaker than predicted by the universal coefficients. Thus, it can be concluded that microbial inactivation is not directly linked with the mechanical relaxation behavior of the surrounding matrix as it was reported for viscosity and crystallization phenomena in case of disaccharide systems.
Collapse
Affiliation(s)
- Mathias Aschenbrenner
- Food Process Engineering and Dairy Technology, Research Center for Nutrition and Food Sciences-ZIEL, Department Technology, TU München, Weihenstephaner Berg 1, 85354 Freising, Germany.
| | | | | |
Collapse
|
24
|
PYAR HASSAN, PEH KOKKHIANG. Effect of cryoprotective agents on survival and stability of Lactobacillus acidophilus cultured in food-grade medium. INT J DAIRY TECHNOL 2011. [DOI: 10.1111/j.1471-0307.2011.00715.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Peighambardoust S, Golshan Tafti A, Hesari J. Application of spray drying for preservation of lactic acid starter cultures: a review. Trends Food Sci Technol 2011. [DOI: 10.1016/j.tifs.2011.01.009] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Wang Y, Delettre J, Corrieu G, Béal C. Starvation induces physiological changes that act on the cryotolerance of Lactobacillus acidophilus RD758. Biotechnol Prog 2011; 27:342-50. [DOI: 10.1002/btpr.566] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 11/08/2010] [Indexed: 11/09/2022]
|
27
|
Heidebach T, Först P, Kulozik U. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J FOOD ENG 2010. [DOI: 10.1016/j.jfoodeng.2010.01.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
ABE FUMIAKI, MIYAUCHI HIROFUMI, UCHIJIMA AYAKO, YAESHIMA TOMOKO, IWATSUKI KEIJI. Effects of storage temperature and water activity on the survival of bifidobacteria in powder form. INT J DAIRY TECHNOL 2009. [DOI: 10.1111/j.1471-0307.2009.00464.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Siaterlis A, Deepika G, Charalampopoulos D. Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying. Lett Appl Microbiol 2009; 48:295-301. [DOI: 10.1111/j.1472-765x.2008.02529.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Oldenhof H, Wolkers WF, Fonseca F, Passot S, Marin M. Effect of Sucrose and Maltodextrin on the Physical Properties and Survival of Air-Dried Lactobacillus bulgaricus: An in Situ Fourier Transform Infrared Spectroscopy Study. Biotechnol Prog 2008; 21:885-92. [PMID: 15932269 DOI: 10.1021/bp049559j] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of sucrose, maltodextrin and skim milk on survival of L. bulgaricus after drying was studied. Survival could be improved from 0.01% for cells that were dried in the absence of protectants to 7.8% for cells dried in a mixture of sucrose and maltodextrin. Fourier transform infrared spectroscopy (FTIR) was used to study the effect of the protectants on the overall protein secondary structure and thermophysical properties of the dried cells. Sucrose, maltodextrin and skim milk were found to have minor effects on the membrane phase behavior and the overall protein secondary structure of the dried cells. FTIR was also used to show that the air-dried cell/protectant solutions formed a glassy state at ambient temperature. 1-Palmitoyl 2-oleoyl phosphatidyl choline (POPC) was used in order to determine if sucrose and maltodextrin have the ability to interact with phospholipids during drying. In addition, the glass transition temperature and strength of hydrogen bonds in the glassy state were studied using this model system. Studies using poly-L-lysine were done in order to determine if sucrose and maltodextrin are able to stabilize protein structure during drying. As expected, sucrose depressed the membrane phase transition temperature (Tm) of POPC in the dried state and prevented conformational changes of poly-L-lysine during drying. Maltodextrin, however, did not depress the Tm of dried POPC and was less effective in preventing conformational changes of poly-L-lysine during drying. We suggest that when cells are dried in the presence of sucrose and maltodextrin, sucrose functions by directly interacting with biomolecules, whereas maltodextrin functions as an osmotically inactive bulking compound causing spacing of the cells and strengthening of the glassy matrix.
Collapse
Affiliation(s)
- Harriëtte Oldenhof
- Laboratoire de Génie et Microbiologie des Procédés Alimentaires, Centre de Biotechnologie Agro-Industrielles, Institut National de la Recherche Agronomique, Institut National Agronomique Paris-Grignon, F78850 Thiverval-Grignon, France
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Santivarangkna C, Higl B, Foerst P. Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food Microbiol 2008; 25:429-41. [DOI: 10.1016/j.fm.2007.12.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/16/2007] [Accepted: 12/30/2007] [Indexed: 11/29/2022]
|
33
|
|
34
|
Venir E, Del Torre M, Stecchini ML, Maltini E, Di Nardo P. Preparation of freeze-dried yoghurt as a space food. J FOOD ENG 2007. [DOI: 10.1016/j.jfoodeng.2006.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Carvalho AS, Silva J, Ho P, Teixeira P, Malcata F, Gibbs P. Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int Dairy J 2004. [DOI: 10.1016/j.idairyj.2004.02.001] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|