1
|
Brysch-Herzberg M, Jia GS, Seidel M, Assali I, Du LL. Insights into the ecology of Schizosaccharomyces species in natural and artificial habitats. Antonie van Leeuwenhoek 2022; 115:661-695. [PMID: 35359202 PMCID: PMC9007792 DOI: 10.1007/s10482-022-01720-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
The fission yeast genus Schizosaccharomyces contains important model organisms for biological research. In particular, S. pombe is a widely used model eukaryote. So far little is known about the natural and artificial habitats of species in this genus. Finding out where S. pombe and other fission yeast species occur and how they live in their habitats can promote better understanding of their biology. Here we investigate in which substrates S. pombe, S. octosporus, S. osmophilus and S. japonicus are present. To this end about 2100 samples consisting of soil, tree sap fluxes, fresh fruit, dried fruit, honey, cacao beans, molasses and other substrates were analyzed. Effective isolation methods that allow efficient isolation of the above mentioned species were developed. Based on the frequency of isolating different fission yeast species in various substrates and on extensive literature survey, conclusions are drawn on their ecology. The results suggest that the primary habitat of S. pombe and S. octosporus is honeybee honey. Both species were also frequently detected on certain dried fruit like raisins, mango or pineapple to which they could be brought by the honey bees during ripening or during drying. While S. pombe was regularly isolated from grape mash and from fermented raw cacao beans S. octosporus was never isolated from fresh fruit. The main habitat of S. osmophilus seems to be solitary bee beebread. It was rarely isolated from raisins. S. japonicus was mainly found in forest substrates although it occurs on fruit and in fruit fermentations, too.
Collapse
Affiliation(s)
- Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Guo-Song Jia
- National Institute of Biological Sciences, Beijing, 102206 China
| | - Martin Seidel
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Imen Assali
- Department of Bioengineering, National Engineering School of Sfax, University of Sfax, Soukra, km 4, 3038 Sfax, Tunisia
| | - Li-Lin Du
- National Institute of Biological Sciences, Beijing, 102206 China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206 China
| |
Collapse
|
2
|
McCarthy GC, Morgan SC, Martiniuk JT, Newman BL, McCann SE, Measday V, Durall DM. An indigenous Saccharomyces uvarum population with high genetic diversity dominates uninoculated Chardonnay fermentations at a Canadian winery. PLoS One 2021; 16:e0225615. [PMID: 33539404 PMCID: PMC7861373 DOI: 10.1371/journal.pone.0225615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/29/2020] [Indexed: 01/04/2023] Open
Abstract
Saccharomyces cerevisiae is the primary yeast species responsible for most fermentations in winemaking. However, other yeasts, including Saccharomyces uvarum, have occasionally been found conducting commercial fermentations around the world. S. uvarum is typically associated with white wine fermentations in cool-climate wine regions, and has been identified as the dominant yeast in fermentations from France, Hungary, northern Italy, and, recently, Canada. However, little is known about how the origin and genetic diversity of the Canadian S. uvarum population relates to strains from other parts of the world. In this study, a highly diverse S. uvarum population was found dominating uninoculated commercial fermentations of Chardonnay grapes sourced from two different vineyards. Most of the strains identified were found to be genetically distinct from S. uvarum strains isolated globally. Of the 106 strains of S. uvarum identified in this study, four played a dominant role in the fermentations, with some strains predominating in the fermentations from one vineyard over the other. Furthermore, two of these dominant strains were previously identified as dominant strains in uninoculated Chardonnay fermentations at the same winery two years earlier, suggesting the presence of a winery-resident population of indigenous S. uvarum. This research provides valuable insight into the diversity and persistence of non-commercial S. uvarum strains in North America, and a stepping stone for future work into the enological potential of an alternative Saccharomyces yeast species.
Collapse
Affiliation(s)
- Garrett C. McCarthy
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Sydney C. Morgan
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan T. Martiniuk
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brianne L. Newman
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Stephanie E. McCann
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Vivien Measday
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel M. Durall
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
3
|
Alterations in Yeast Species Composition of Uninoculated Wine Ferments by the Addition of Sulphur Dioxide. FERMENTATION 2020. [DOI: 10.3390/fermentation6020062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Uninoculated wine fermentations are conducted by a consortium of wine yeast and bacteria that establish themselves either from the grape surface or from the winery environment. Of the additives that are commonly used by winemakers, sulphur dioxide (SO2) represents the main antimicrobial preservative and its use can have drastic effects on the microbial composition of the fermentation. To investigate the effect of SO2 on the resident yeast community of uninoculated ferments, Chardonnay grape juice from 2018 and 2019 was treated with a variety of SO2 concentrations ranging up to 100 mg/L and was then allowed to undergo fermentation, with the yeast community structure being assessed via high-throughput meta-barcoding (phylotyping). While the addition of SO2 was shown to select against the presence of many species of non-Saccharomyces yeasts, there was a clear and increasing selection for the species Hanseniaspora osmophila as concentrations of SO2 rose above 40 mg/L in fermentations from both vintages. Chemical analysis of the wines resulting from these treatments showed significant increases in acetate esters, and specifically the desirable aroma compound 2-phenylethyl acetate, that accompanied the increase in abundance of H. osmophila. The ability to modulate the yeast community structure of an uninoculated ferment and the resulting chemical composition of the final wine, as demonstrated in this study, represents an important tool for winemakers to begin to be able to influence the organoleptic profile of uninoculated wines.
Collapse
|
4
|
Xu W, Liu B, Wang C, Kong X. Organic cultivation of grape affects yeast succession and wine sensory quality during spontaneous fermentation. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Morgan SC, McCarthy GC, Watters BS, Tantikachornkiat M, Zigg I, Cliff MA, Durall DM. Effect of sulfite addition and pied de cuve inoculation on the microbial communities and sensory profiles of Chardonnay wines: dominance of indigenous Saccharomyces uvarum at a commercial winery. FEMS Yeast Res 2019; 19:foz049. [PMID: 31344230 PMCID: PMC6666381 DOI: 10.1093/femsyr/foz049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023] Open
Abstract
The microbial consortium of wine fermentations is highly dependent upon winemaking decisions made at crush, including the decision to inoculate and the decision to add sulfur dioxide (SO2) to the must. To investigate this, Chardonnay grape juice was subjected to two inoculation treatments (uninoculated and pied de cuve inoculation) as well as two SO2 addition concentrations (0 and 40 mg/L). The bacterial communities, fungal communities and Saccharomyces populations were monitored throughout fermentation using culture-dependent and culture-independent techniques. After fermentation, the wines were evaluated by a panel of experts. When no SO2 was added, the wines underwent alcoholic fermentation and malolactic fermentation simultaneously. Tatumella bacteria were present in significant numbers, but only in the fermentations to which no SO2 was added, and were likely responsible for the malolactic fermentation observed in these treatments. All fermentations were dominated by a genetically diverse indigenous population of Saccharomyces uvarum, the highest diversity of S. uvarum strains to be identified to date; 150 unique strains were identified, with differences in strain composition as a result of SO2 addition. This is the first report of indigenous S. uvarum strains dominating and completing fermentations at a commercial winery in North America.
Collapse
Affiliation(s)
- Sydney C Morgan
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Garrett C McCarthy
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Brittany S Watters
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Mansak Tantikachornkiat
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Ieva Zigg
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Margaret A Cliff
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada, V0H 1Z0
| | - Daniel M Durall
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| |
Collapse
|
6
|
Grangeteau C, Roullier-Gall C, Rousseaux S, Gougeon RD, Schmitt-Kopplin P, Alexandre H, Guilloux-Benatier M. Wine microbiology is driven by vineyard and winery anthropogenic factors. Microb Biotechnol 2016; 10:354-370. [PMID: 27778455 PMCID: PMC5328833 DOI: 10.1111/1751-7915.12428] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/02/2016] [Accepted: 09/20/2016] [Indexed: 02/02/2023] Open
Abstract
The effects of different anthropic activities (vineyard: phytosanitary protection; winery: pressing and sulfiting) on the fungal populations of grape berries were studied. The global diversity of fungal populations (moulds and yeasts) was performed by pyrosequencing. The anthropic activities studied modified fungal diversity. Thus, a decrease in biodiversity was measured for three successive vintages for the grapes of the plot cultivated with Organic protection compared to plots treated with Conventional and Ecophyto protections. The fungal populations were then considerably modified by the pressing‐clarification step. The addition of sulfur dioxide also modified population dynamics and favoured the domination of the species Saccharomyces cerevisiae during fermentation. The non‐targeted chemical analysis of musts and wines by FT‐ICR‐MS showed that the wines could be discriminated at the end of alcoholic fermentation as a function of adding SO2 or not, but also and above all as a function of phytosanitary protection, regardless of whether these fermentations took place in the presence of SO2 or not. Thus, the existence of signatures in wines of chemical diversity and microbiology linked to vineyard protection has been highlighted.
Collapse
Affiliation(s)
- Cédric Grangeteau
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.,IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078, Dijon Cedex, France
| | - Chloé Roullier-Gall
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354, Freising-Weihenstephan, Germany.,Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Sandrine Rousseaux
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.,IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078, Dijon Cedex, France
| | - Régis D Gougeon
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.,IUVV Equipe PAPC, rue Claude Ladrey, BP 27877, 21078, Dijon Cedex, France
| | - Philippe Schmitt-Kopplin
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354, Freising-Weihenstephan, Germany.,Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | - Hervé Alexandre
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.,IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078, Dijon Cedex, France
| | - Michèle Guilloux-Benatier
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.,IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078, Dijon Cedex, France
| |
Collapse
|
7
|
Synos K, Reynolds A, Bowen A. Effect of yeast strain on aroma compounds in Cabernet franc icewines. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.05.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Kachalkin AV, Abdullabekova DA, Magomedova ES, Magomedov GG, Chernov IY. Yeasts of the vineyards in Dagestan and other regions. Microbiology (Reading) 2015. [DOI: 10.1134/s002626171503008x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Barata A, Malfeito-Ferreira M, Loureiro V. The microbial ecology of wine grape berries. Int J Food Microbiol 2011; 153:243-59. [PMID: 22189021 DOI: 10.1016/j.ijfoodmicro.2011.11.025] [Citation(s) in RCA: 395] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/28/2011] [Accepted: 11/27/2011] [Indexed: 11/29/2022]
Abstract
Grapes have a complex microbial ecology including filamentous fungi, yeasts and bacteria with different physiological characteristics and effects upon wine production. Some species are only found in grapes, such as parasitic fungi and environmental bacteria, while others have the ability to survive and grow in wines, constituting the wine microbial consortium. This consortium covers yeast species, lactic acid bacteria and acetic acid bacteria. The proportion of these microorganisms depends on the grape ripening stage and on the availability of nutrients. Grape berries are susceptible to fungal parasites until véraison after which the microbiota of truly intact berries is similar to that of plant leaves, which is dominated by basidiomycetous yeasts (e.g. Cryptococcus spp., Rhodotorula spp. Sporobolomyces spp.) and the yeast-like fungus Aureobasidium pullulans. The cuticle of visually intact berries may bear microfissures and softens with ripening, increasing nutrient availability and explaining the possible dominance by the oxidative or weakly fermentative ascomycetous populations (e.g. Candida spp., Hanseniaspora spp., Metschnikowia spp., Pichia spp.) approaching harvest time. When grape skin is clearly damaged, the availability of high sugar concentrations on the berry surface favours the increase of ascomycetes with higher fermentative activity like Pichia spp. and Zygoascus hellenicus, including dangerous wine spoilage yeasts (e.g. Zygosaccharomyces spp., Torulaspora spp.), and of acetic acid bacteria (e.g. Gluconobacter spp., Acetobacter spp.). The sugar fermenting species Saccharomyces cerevisiae is rarely found on unblemished berries, being favoured by grape damage. Lactic acid bacteria are minor partners of grape microbiota and while being the typical agent of malolactic fermentation, Oenococcus oeni has been seldom isolated from grapes in the vineyard. Environmental ubiquitous bacteria of the genus Enterobacter spp., Enterococcus spp., Bacillus spp., Burkholderia spp., Serratia spp., Staphylococcus spp., among others, have been isolated from grapes but do not have the ability to grow in wines. Saprophytic moulds, like Botrytis cinerea, causing grey rot, or Aspergillus spp., possibly producing ochratoxin, are only active in the vineyard, although their metabolites may affect wine quality during grape processing. The impact of damaged grapes in yeast ecology has been underestimated mostly because of inaccurate grape sampling. Injured berries hidden in apparently sound bunches explain the recovery of a higher number of species when whole bunches are picked. Grape health status is the main factor affecting the microbial ecology of grapes, increasing both microbial numbers and species diversity. Therefore, the influence of abiotic (e.g. climate, rain, hail), biotic (e.g. insects, birds, phytopathogenic and saprophytic moulds) and viticultural (e.g. fungicides) factors is dependent on their primary damaging effect.
Collapse
Affiliation(s)
- A Barata
- Laboratório de Microbiologia, Centro de Botânica Aplicada à Agricultura, Technical University of Lisbon, 1349-017 Lisbon, Portugal.
| | | | | |
Collapse
|
10
|
Chovanová K, Kraková L, Ženišová K, Turcovská V, Brežná B, Kuchta T, Pangallo D. Selection and identification of autochthonous yeasts in Slovakian wine samples using a rapid and reliable three-step approach. Lett Appl Microbiol 2011; 53:231-7. [DOI: 10.1111/j.1472-765x.2011.03097.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Genetically modified wine yeasts and risk assessment studies covering different steps within the wine making process. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0088-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
12
|
Abstract
International competition within the wine market, consumer demands for newer styles of wines and increasing concerns about the environmental sustainability of wine production are providing new challenges for innovation in wine fermentation. Within the total production chain, the alcoholic fermentation of grape juice by yeasts is a key process where winemakers can creatively engineer wine character and value through better yeast management and, thereby, strategically tailor wines to a changing market. This review considers the importance of yeast ecology and yeast metabolic reactions in determining wine quality, and then discusses new directions for exploiting yeasts in wine fermentation. It covers criteria for selecting and developing new commercial strains, the possibilities of using yeasts other than those in the genus of Saccharomyces, the prospects for mixed culture fermentations and explores the possibilities for high cell density, continuous fermentations.
Collapse
Affiliation(s)
- Graham H Fleet
- Food Science, School of Chemical Sciences and Engineering, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Oliva D, Di Maio S, Sisino G, Bellavia D, Barbieri R. Increasing voltage gradient electrophoresis of DNA. J Chromatogr A 2008; 1187:205-8. [DOI: 10.1016/j.chroma.2008.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/07/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
|
14
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|