1
|
Liu J, Zhang W, Liu Y, Zhu W, Yuan Z, Su X, Ding C. Differences in phyllosphere microbiomes among different Populus spp. in the same habitat. FRONTIERS IN PLANT SCIENCE 2023; 14:1143878. [PMID: 37063209 PMCID: PMC10098339 DOI: 10.3389/fpls.2023.1143878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION The above-ground parts of terrestrial plants are collectively known as the phyllosphere. The surface of the leaf blade is a unique and extensive habitat for microbial communities. Phyllosphere bacteria are the second most closely associated microbial group with plants after fungi and viruses, and are the most abundant, occupying a dominant position in the phyllosphere microbial community. Host species are a major factor influencing the community diversity and structure of phyllosphere microorganisms. METHODS In this study, six Populus spp. were selected for study under the same site conditions and their phyllosphere bacterial community DNA fragments were paired-end sequenced using 16S ribosomal RNA (rRNA) gene amplicon sequencing. Based on the distribution of the amplicon sequence variants (ASVs), we assessed the alpha-diversity level of each sample and further measured the differences in species abundance composition among the samples, and predicted the metabolic function of the community based on the gene sequencing results. RESULTS The results revealed that different Populus spp. under the same stand conditions resulted in different phyllosphere bacterial communities. The bacterial community structure was mainly affected by the carbon and soluble sugar content of the leaves, and the leaf nitrogen, phosphorus and carbon/nitrogen were the main factors affecting the relative abundance of phyllosphere bacteria. DISCUSSION Previous studies have shown that a large proportion of the variation in the composition of phyllosphere microbial communities was explained by the hosts themselves. In contrast, leaf-borne nutrients were an available resource for bacteria living on the leaf surface, thus influencing the community structure of phyllosphere bacteria. These were similar to the conclusions obtained in this study. This study provides theoretical support for the study of the composition and structure of phyllosphere bacterial communities in woody plants and the factors influencing them.
Collapse
Affiliation(s)
- Jiaying Liu
- College of Forestry, Shenyang Agriculture University, Shenyang, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yuting Liu
- College of Forestry, Shenyang Agriculture University, Shenyang, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agriculture University, Shenyang, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), College of Forestry, Shenyang Agricultural University, Tieling, China
| | - Zhengsai Yuan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
2
|
Impact of Plant-Beneficial Bacterial Inocula on the Resident Bacteriome: Current Knowledge and Future Perspectives. Microorganisms 2022; 10:microorganisms10122462. [PMID: 36557714 PMCID: PMC9781654 DOI: 10.3390/microorganisms10122462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The inoculation of plant growth-promoting bacteria (PGPB) as biofertilizers is one of the most efficient and sustainable strategies of rhizosphere manipulation leading to increased plant biomass and yield and improved plant health, as well as the ameliorated nutritional value of fruits and edible seeds. During the last decades, exciting, but heterogeneous, results have been obtained growing PGPB inoculated plants under controlled, stressful, and open field conditions. On the other hand, the possible impact of the PGPB deliberate release on the resident microbiota has been less explored and the little available information is contradictory. This review aims at filling this gap: after a brief description of the main mechanisms used by PGPB, we focus our attention on the process of PGPB selection and formulation and we provide some information on the EU regulation for microbial inocula. Then, the concept of PGPB inocula as a tool for rhizosphere engineering is introduced and the possible impact of bacterial inoculant on native bacterial communities is discussed, focusing on those bacterial species that are included in the EU regulation and on other promising bacterial species that are not yet included in the EU regulation.
Collapse
|
3
|
Endophytic PGPR from Tomato Roots: Isolation, In Vitro Characterization and In Vivo Evaluation of Treated Tomatoes (Solanum lycopersicum L.). Microorganisms 2022; 10:microorganisms10040765. [PMID: 35456815 PMCID: PMC9031218 DOI: 10.3390/microorganisms10040765] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Plant-growth-promoting rhizobacteria (PGPR) are soil bacteria colonizing the rhizosphere and the rhizoplane which have an effect on plant growth through multiple chemical compounds. Rhizobacteria with beneficial effects for plants could therefore be used to reduce the dependence on synthetic chemical fertilizers in conventional agriculture. Within this study, 67 endophytic fungi and 49 bacteria were isolated from root samples from 3 different commercial productions: an off-ground tomato production in a greenhouse, an organic production and a conventional production, both in a soil tunnel. Following morphological selection, 12 fungal and 33 bacterial isolates were genetically identified. Thirteen bacterial isolates belonging to nine potential PGPR species were then applied to tomato seedlings established in sterile substrate. The ability of these bacteria to produce indole acetic acid (IAA) and solubilize phosphate was also evaluated. They all were IAA producers and solubilized phosphate. The most interesting strains for growth promotion were found to be the isolates Pseudomonas palleroniana B10, Bacillus subtilis B25, Bacillus aryabhattai B29 and Pseudomonas fluorescens B17. The isolates P. fluorescens B17, B. aryabhattai B29, B. subtilis B18 and Pseudomonas moraviensis B6 also increased root growth. This study proposed a quick protocol for isolating and testing potential endophytic PGPR that should be characterized further for the direct and indirect mechanisms of growth promotion.
Collapse
|
4
|
Renoud S, Vacheron J, Abrouk D, Prigent-Combaret C, Legendre L, Muller D, Moënne-Loccoz Y. Field Site-Specific Effects of an Azospirillum Seed Inoculant on Key Microbial Functional Groups in the Rhizosphere. Front Microbiol 2022; 12:760512. [PMID: 35154023 PMCID: PMC8825484 DOI: 10.3389/fmicb.2021.760512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/03/2021] [Indexed: 01/05/2023] Open
Abstract
The beneficial effects of plant growth–promoting Rhizobacteria (PGPR) entail several interaction mechanisms with the plant or with other root-associated microorganisms. These microbial functions are carried out by multiple taxa within functional groups and contribute to rhizosphere functioning. It is likely that the inoculation of additional PGPR cells will modify the ecology of these functional groups. We also hypothesized that the inoculation effects on functional groups are site specific, similarly as the PGPR phytostimulation effects themselves. To test this, we assessed in the rhizosphere of field-grown maize the effect of seed inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the size and/or diversity of selected microbial functional groups important for plant growth, using quantitative polymerase chain reaction and/or Illumina MiSeq metabarcoding. The functional groups included bacteria able to fix nitrogen (a key nutrient for plant growth), producers of 1-aminocyclopropane-1-carboxylate (ACC) deaminase (which modulate ethylene metabolism in plant and stimulate root growth), and producers of 2,4-diacetylphloroglucinol (an auxinic signal enhancing root branching). To test the hypothesis that such ecological effects were site-specific, the functional groups were monitored at three different field sites, with four sampling times over two consecutive years. Despite poor inoculant survival, inoculation enhanced maize growth. It also increased the size of functional groups in the three field sites, at the maize six-leaf and flowering stages for diazotrophs and only at flowering stage for ACC deaminase and 2,4-diacetylphloroglucinol producers. Sequencing done in the second year revealed that inoculation modified the composition of diazotrophs (and of the total bacterial community) and to a lesser extent of ACC deaminase producers. This study revealed an ecological impact that was field specific (even though a few taxa were impacted in all fields) and of unexpected magnitude with the phytostimulatory Azospirillum inoculant, when considering microbial functional groups. Further methodological developments are needed to monitor additional functional groups important for soil functioning and plant growth under optimal or stress conditions.
Collapse
Affiliation(s)
- Sébastien Renoud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Jordan Vacheron
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Claire Prigent-Combaret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Laurent Legendre
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France.,Univ Lyon, Université de St Etienne, St Etienne, France
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR 5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
5
|
Li H, Luo L, Tang B, Guo H, Cao Z, Zeng Q, Chen S, Chen Z. Dynamic changes of rhizosphere soil bacterial community and nutrients in cadmium polluted soils with soybean-corn intercropping. BMC Microbiol 2022; 22:57. [PMID: 35168566 PMCID: PMC8845239 DOI: 10.1186/s12866-022-02468-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soybean-corn intercropping is widely practised by farmers in Southwest China. Although rhizosphere microorganisms are important in nutrient cycling processes, the differences in rhizosphere microbial communities between intercropped soybean and corn and their monoculture are poorly known. Additionally, the effects of cadmium (Cd) pollution on these differences have not been examined. Therefore, a field experiment was conducted in Cd-polluted soil to determine the effects of monocultures and soybean-corn intercropping systems on Cd concentrations in plants, on rhizosphere bacterial communities, soil nutrients and Cd availability. Plants and soils were examined five times in the growing season, and Illumina sequencing of 16S rRNA genes was used to analyze the rhizosphere bacterial communities. RESULTS Intercropping did not alter Cd concentrations in corn and soybean, but changed soil available Cd (ACd) concentrations and caused different effects in the rhizosphere soils of the two crop species. However, there was little difference in bacterial community diversity for the same crop species under the two planting modes. Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria and Firmicutes were the dominant phyla in the soybean and corn rhizospheres. In ecological networks of bacterial communities, intercropping soybean (IS) had more module hubs and connectors, whereas intercropped corn (IC) had fewer module hubs and connectors than those of corresponding monoculture crops. Soil organic matter (SOM) was the key factor affecting soybean rhizosphere bacterial communities, whereas available nutrients (N, P, K) were the key factors affecting those in corn rhizosphere. During the cropping season, the concentration of soil available phosphorus (AP) in the intercropped soybean-corn was significantly higher than that in corresponding monocultures. In addition, the soil available potassium (AK) concentration was higher in intercropped soybean than that in monocropped soybean. CONCLUSIONS Intercropped soybean-corn lead to an increase in the AP concentration during the growing season, and although crop absorption of Cd was not affected in the Cd-contaminated soil, soil ACd concentration was affected. Intercropped soybean-corn also affected the soil physicochemical properties and rhizosphere bacterial community structure. Thus, intercropped soybean-corn was a key factor in determining changes in microbial community composition and networks. These results provide a basic ecological framework for soil microbial function in Cd-contaminated soil.
Collapse
Affiliation(s)
- Han Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Luyun Luo
- Yangtze Normal University, Chongqing, China.
| | - Bin Tang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Huanle Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China.
| | - Zhongyang Cao
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Qiang Zeng
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Songlin Chen
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhihui Chen
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China.
| |
Collapse
|
6
|
Lebrun M, Miard F, Bucci A, Trupiano D, Nandillon R, Naclerio G, Scippa GS, Morabito D, Bourgerie S. Evaluation of direct and biochar carrier-based inoculation of Bacillus sp. on As- and Pb-contaminated technosol: effect on metal(loid) availability, Salix viminalis growth, and soil microbial diversity/activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11195-11204. [PMID: 33111230 DOI: 10.1007/s11356-020-11355-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Phytomanagement manipulates the soil-plant system to lower the risk posed by contaminated soils. In this process, the addition of amendments, such as biochar, and bacteria can improve the fertility of poor contaminated soils and consequently ameliorate plant growth. A number of studies based on the inoculation of soil with microorganisms of the genus Bacillus, previously isolated from contaminated sites, revealed positive effects on soil properties and plant growth. Furthermore, when the Bacillus isolates were used in association with biochar, better results were obtained, as biochar can ameliorate soil properties and serve as habitat for microorganisms. Accordingly, a mesocosm study was set-up using a mining technosol amended with biochar and inoculated with an endogenous Bacillus isolate, to evaluate the effect of inoculation on soil properties, metal(loid) immobilization, and Salix viminalis growth. Two inoculation methods were compared: (1) direct inoculation of bacteria (Bacillus sp.) and (2) inoculation using biochar as a carrier. Results showed that the Bacillus isolate modified soil properties and ameliorated plant growth, while having a reduced effect on metal(loid) accumulation. The microbial activity was also stimulated, and the community composition was shifted, more importantly when biochar was used as a carrier. In conclusion, this research revealed an improvement of the plant growth and microbial activity after the addition of the endogenous bacterium to the analyzed former mining soil, with better results recorded when a carrier was used.
Collapse
Affiliation(s)
- Manhattan Lebrun
- University of Orléans, INRA USC1328, LBLGC EA1207, Orleans, France
- Department of Biosciences and Territory, University of Molise, Pesche, IS, Italy
| | - Florie Miard
- University of Orléans, INRA USC1328, LBLGC EA1207, Orleans, France
| | - Antonio Bucci
- Department of Biosciences and Territory, University of Molise, Pesche, IS, Italy
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, Pesche, IS, Italy
| | - Romain Nandillon
- University of Orléans, INRA USC1328, LBLGC EA1207, Orleans, France
- French Geological Survey (BRGM), Orleans, France
- IDDEA, Environmental consulting engineering, Olivet, France
- ISTO, UMR 7327, CNRS/Orleans University, Orleans, France
| | - Gino Naclerio
- Department of Biosciences and Territory, University of Molise, Pesche, IS, Italy
| | - Gabriella S Scippa
- Department of Biosciences and Territory, University of Molise, Pesche, IS, Italy
| | | | | |
Collapse
|
7
|
Mitter EK, Tosi M, Obregón D, Dunfield KE, Germida JJ. Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.606815] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Global population growth poses a threat to food security in an era of increased ecosystem degradation, climate change, soil erosion, and biodiversity loss. In this context, harnessing naturally-occurring processes such as those provided by soil and plant-associated microorganisms presents a promising strategy to reduce dependency on agrochemicals. Biofertilizers are living microbes that enhance plant nutrition by either by mobilizing or increasing nutrient availability in soils. Various microbial taxa including beneficial bacteria and fungi are currently used as biofertilizers, as they successfully colonize the rhizosphere, rhizoplane or root interior. Despite their great potential to improve soil fertility, biofertilizers have yet to replace conventional chemical fertilizers in commercial agriculture. In the last 10 years, multi-omics studies have made a significant step forward in understanding the drivers, roles, processes, and mechanisms in the plant microbiome. However, translating this knowledge on microbiome functions in order to capitalize on plant nutrition in agroecosystems still remains a challenge. Here, we address the key factors limiting successful field applications of biofertilizers and suggest potential solutions based on emerging strategies for product development. Finally, we discuss the importance of biosafety guidelines and propose new avenues of research for biofertilizer development.
Collapse
|
8
|
Microbial colonization on the leaf surfaces of different genotypes of Napier grass. Arch Microbiol 2020; 203:335-346. [PMID: 32945890 DOI: 10.1007/s00203-020-02025-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 01/06/2023]
Abstract
To address correlations between population sizes of microbes on the leaf surfaces and leaf morphological and physicochemical properties, various leaf morphological and physicochemical features as possible predictors of microbial population sizes on the leaf surfaces of four Napier grass cultivars were assessed. Results indicated microbes except for lactic acid bacteria (LAB) preferred to colonize the leaf surfaces bearing trichomes, and their population sizes were significantly correlated with trichomes, especially for yeasts. The population sizes of microbes were positively correlated with soluble sugar content (p < 0.05). Furthermore, no significant correlation was found between population sizes of microbes and wax content, except for yeasts. The multivariate regression trees (MRT) analysis showed different genotypes of leaf-microbe system could be characterized by four-leaf attributes with soluble sugar of leaf tissues being the primary explanatory attribute. Leaves with soluble sugar content below 9.72 mg g-1 fresh weight (FW) were rarely colonized. For leaves with soluble sugar content above 9.72 mg g-1 FW, water content was the next explanatory leaf attribute, followed by wax content on the leaf surfaces. Leaves with higher water content (> 73%) were more colonized, and small microbial population was associated with higher wax content (> 10.66 mg g-1 dry matter). In conclusion, leaf chemical attributes have a higher contribution than morphological structure properties in determining population sizes of microbes on the leaf surfaces. The exuded soluble sugar and protein promote the development of microbial populations. For different genotypes of leaf-microbe system, the relationship between microbial abundance on their leaf surfaces and leaf morphological structure or physicochemical properties may be predicted by the MRT. Population sizes of microbes are primarily influenced by soluble sugar content under the water-rich conditions.
Collapse
|
9
|
Arrigoni E, Albanese D, Longa CMO, Angeli D, Donati C, Ioriatti C, Pertot I, Perazzolli M. Tissue age, orchard location and disease management influence the composition of fungal and bacterial communities present on the bark of apple trees. Environ Microbiol 2020; 22:2080-2093. [PMID: 32114708 DOI: 10.1111/1462-2920.14963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/09/2023]
Abstract
Plants host microbial communities that can be affected by environmental conditions and agronomic practices. Despite the role of bark as a reservoir of plant pathogens and beneficial microorganisms, no information is available on the effects of disease management on the taxonomic composition of the bark-associated communities of apple trees. We assessed the impact of disease management strategies on fungal and bacterial communities on the bark of a scab-resistant apple cultivar in two orchard locations and for two consecutive seasons. The amplicon sequencing revealed that bark age and orchard location strongly affected fungal and bacterial diversity. Microbiota dissimilarity between orchards evolved during the growing season and showed specific temporal series for fungal and bacterial populations in old and young bark. Disease management did not induce global changes in the microbial populations across locations and seasons, but specifically affected the abundance of some taxa according to bark age, orchard location and sampling time. Therefore, the disease management applied to scab-resistant cultivars, which is based on a limited use of fungicides, partially changed the taxonomic composition of bark-associated fungal and bacterial communities, suggesting the need for a more accurate risk assessment regarding possible pathogen outbreaks.
Collapse
Affiliation(s)
- Elena Arrigoni
- Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy.,Department of Agricultural and Environmental Sciences, University of Udine, 33100, Udine, Italy
| | - Davide Albanese
- Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | | | - Dario Angeli
- Technology Transfer Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | - Claudio Ioriatti
- Technology Transfer Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, 38010, San Michele all'Adige, Italy
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, 38010, San Michele all'Adige, Italy
| |
Collapse
|
10
|
Nerva L, Pagliarani C, Pugliese M, Monchiero M, Gonthier S, Gullino ML, Gambino G, Chitarra W. Grapevine Phyllosphere Community Analysis in Response to Elicitor Application against Powdery Mildew. Microorganisms 2019; 7:microorganisms7120662. [PMID: 31817902 PMCID: PMC6956034 DOI: 10.3390/microorganisms7120662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 12/23/2022] Open
Abstract
The reduction of antimicrobial treatments and mainly the application of environmentally friendly compounds, such as resistance elicitors, is an impelling challenge to undertake more sustainable agriculture. We performed this research to study the effectiveness of non-conventional compounds in reducing leaf fungal attack and to investigate whether they influence the grape phyllosphere. Pathogenicity tests were conducted on potted Vitis vinifera "Nebbiolo" and "Moscato" cultivars infected with the powdery mildew agent (Erysiphe necator) and treated with three elicitors. Differences in the foliar microbial community were then evaluated by community-level physiological profiling by using BiologTM EcoPlates, high throughput sequencing of the Internal Transcribed Spacer (ITS) region, and RNA sequencing for the viral community. In both cultivars, all products were effective as they significantly reduced pathogen development. EcoPlate analysis and ITS sequencing showed that the microbial communities were not influenced by the alternative compound application, confirming their specific activity as plant defense elicitors. Nevertheless, "Moscato" plants were less susceptible to the disease and presented different phyllosphere composition, resulting in a richer viral community, when compared with the "Nebbiolo" plants. The observed effect on microbial communities pointed to the existence of distinct genotype-specific defense mechanisms independently of the elicitor application.
Collapse
Affiliation(s)
- Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, Italy
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy; (C.P.); (S.G.); (G.G.)
- Correspondence: (L.N.); (W.C.); Tel.: +39-04-3845-6712 (W.C.); Fax: +39-04-3845-0773 (W.C.)
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy; (C.P.); (S.G.); (G.G.)
| | - Massimo Pugliese
- Centre of Competence for the Innovation in the Agro-Environmental Sector (AGROINNOVA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy; (M.P.); (M.L.G.)
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | | | - Solène Gonthier
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy; (C.P.); (S.G.); (G.G.)
- Biocomputing and Modelling Department, National Institute of Applied Sciences, INSA Lyon, 69621 Villeurbanne cedex, France
| | - Maria Lodovica Gullino
- Centre of Competence for the Innovation in the Agro-Environmental Sector (AGROINNOVA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy; (M.P.); (M.L.G.)
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy; (C.P.); (S.G.); (G.G.)
| | - Walter Chitarra
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, Italy
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Strada delle Cacce 73, 10135 Torino, Italy; (C.P.); (S.G.); (G.G.)
- Correspondence: (L.N.); (W.C.); Tel.: +39-04-3845-6712 (W.C.); Fax: +39-04-3845-0773 (W.C.)
| |
Collapse
|
11
|
Krishnamoorthy R, Kwon SW, Kumutha K, Senthilkumar M, Ahmed S, Sa T, Anandham R. Diversity of culturable methylotrophic bacteria in different genotypes of groundnut and their potential for plant growth promotion. 3 Biotech 2018; 8:275. [PMID: 29868313 PMCID: PMC5971017 DOI: 10.1007/s13205-018-1291-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/17/2018] [Indexed: 11/25/2022] Open
Abstract
This study aimed at documenting the culturable methylotrophic bacterial diversity across different groundnut genotypes and evaluating their effect on the growth of groundnut. 80 methylotrophic bacterial isolates were obtained from the phyllosphere of 15 groundnut genotypes collected from Tamil Nadu, India. The bacterial isolates were identified through sequencing of the 16S rDNA and were tested for their plant growth-promoting properties. Groundnut seeds were inoculated with methylotrophic bacteria and their effect on growth was evaluated via in vitro and pot experiments. Molecular identification revealed that the isolates belonged to 30 different species. A higher diversity of methylotrophic bacteria at genus and species level was found in groundnut genotype TMV2. Shannon diversity index was the highest in genotype TMV7, followed by VRI2 and TMV2. Similarly, geographical location also influenced the diversity of methylotrophic bacteria. In vitro seed germination assay revealed that methylotrophic isolates enhanced root growth and improved formation of root hair. The radicle length of treated seeds ranged from 2.7 to 8.4 cm. A higher shoot length was observed in the plants from seeds treated with Methylobacterium radiotolerans VRI8-A4 (27.3 cm), followed by Pseudomonas psychrotolerans TMV13-A1 (26.3 cm) and Bacillus aryabhattai K-CO3-3 (23 cm). The findings of this study strongly suggest that beneficial methylotrophic bacteria associated with the phyllosphere of groundnut play a major role in regulating plant growth.
Collapse
Affiliation(s)
- R. Krishnamoorthy
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625 104 India
| | - Soon-Wo Kwon
- Korean Agricultural Culture Collection, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 565 851 Republic of Korea
| | - K. Kumutha
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625 104 India
| | - M. Senthilkumar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu India
| | - S. Ahmed
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| | - R. Anandham
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625 104 India
| |
Collapse
|
12
|
Arrigoni E, Antonielli L, Pindo M, Pertot I, Perazzolli M. Tissue age and plant genotype affect the microbiota of apple and pear bark. Microbiol Res 2018; 211:57-68. [PMID: 29705206 DOI: 10.1016/j.micres.2018.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/06/2018] [Indexed: 01/16/2023]
Abstract
Plant tissues host complex fungal and bacterial communities, and their composition is determined by host traits such as tissue age, plant genotype and environmental conditions. Despite the importance of bark as a possible reservoir of plant pathogenic microorganisms, little is known about the associated microbial communities. In this work, we evaluated the composition of fungal and bacterial communities in the pear (Abate and Williams cultivars) and apple (Golden Delicious and Gala cultivars) bark of three/four-year-old shoots (old bark) or one-year-old shoots (young bark), using a meta-barcoding approach. The results showed that both fungal and bacterial communities are dominated by genera with ubiquitous attitudes, such as Aureobasidium, Cryptococcus, Deinococcus and Hymenobacter, indicating intense microbial migration to surrounding environments. The shoot age, plant species and plant cultivar influenced the composition of bark fungal and bacterial communities. In particular, bark communities included potential biocontrol agents that could maintain an equilibrium with potential plant pathogens. The abundance of fungal (e.g. Alternaria, Penicillium, Rosellinia, Stemphylium and Taphrina) and bacterial (e.g. Curtobacterium and Pseudomonas) plant pathogens was affected by bark age and host genotype, as well as those of fungal genera (e.g. Arthrinium, Aureobasidium, Rhodotorula, Sporobolomyces) and bacterial genera (e.g. Bacillus, Brevibacillus, Methylobacterium, Sphingomonas and Stenotrophomonas) with possible biocontrol and plant growth promotion properties.
Collapse
Affiliation(s)
- Elena Arrigoni
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy; Department of Agricultural and Environmental Sciences, University of Udine, Via delle Scienze 206, 33100, Udine, Italy
| | - Livio Antonielli
- Department of Health and Environment, Bioresources Unit, Austrian Institute of Technology, Konrad-Lorenz-Strasse 24, 3430, Tulln an der Donau, Austria
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy; Centre for Agriculture, Food and the Environment, University of Trento, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy.
| |
Collapse
|
13
|
Malinich EA, Bauer CE. The plant growth promoting bacterium Azospirillum brasilense is vertically transmitted in Phaseolus vulgaris (common bean). Symbiosis 2018. [DOI: 10.1007/s13199-018-0539-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Han S, Micallef SA. Environmental Metabolomics of the Tomato Plant Surface Provides Insights on Salmonella enterica Colonization. Appl Environ Microbiol 2016; 82:3131-3142. [PMID: 26994076 PMCID: PMC4959065 DOI: 10.1128/aem.00435-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/14/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Foodborne illness-causing enteric bacteria are able to colonize plant surfaces without causing infection. We lack an understanding of how epiphytic persistence of enteric bacteria occurs on plants, possibly as an adaptive transit strategy to maximize chances of reentering herbivorous hosts. We used tomato (Solanum lycopersicum) cultivars that have exhibited differential susceptibilities to Salmonella enterica colonization to investigate the influence of plant surface compounds and exudates on enteric bacterial populations. Tomato fruit, shoot, and root exudates collected at different developmental stages supported growth of S. enterica to various degrees in a cultivar- and plant organ-dependent manner. S. enterica growth in fruit exudates of various cultivars correlated with epiphytic growth data (R(2) = 0.504; P = 0.006), providing evidence that plant surface compounds drive bacterial colonization success. Chemical profiling of tomato surface compounds with gas chromatography-time of flight mass spectrometry (GC-TOF-MS) provided valuable information about the metabolic environment on fruit, shoot, and root surfaces. Hierarchical cluster analysis of the data revealed quantitative differences in phytocompounds among cultivars and changes over a developmental course and by plant organ (P < 0.002). Sugars, sugar alcohols, and organic acids were associated with increased S. enterica growth, while fatty acids, including palmitic and oleic acids, were negatively correlated. We demonstrate that the plant surface metabolite landscape has a significant impact on S. enterica growth and colonization efficiency. This environmental metabolomics approach provides an avenue to understand interactions between human pathogens and plants that could lead to strategies to identify or breed crop cultivars for microbiologically safer produce. IMPORTANCE In recent years, fresh produce has emerged as a leading food vehicle for enteric pathogens. Salmonella-contaminated tomatoes represent a recurrent human pathogen-plant commodity pair. We demonstrate that Salmonella can utilize tomato surface compounds and exudates for growth. Surface metabolite profiling revealed that the types and amounts of compounds released to the plant surface differ by cultivar, plant developmental stage, and plant organ. Differences in exudate profiles explain some of the variability in Salmonella colonization susceptibility seen among tomato cultivars. Certain medium- and long-chain fatty acids were associated with restricted Salmonella growth, while sugars, sugar alcohols, and organic acids correlated with larger Salmonella populations. These findings uncover the possibility of selecting crop varieties based on characteristics that impair foodborne pathogen growth for enhanced safety of fresh produce.
Collapse
Affiliation(s)
- Sanghyun Han
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
15
|
Pascazio S, Crecchio C, Ricciuti P, Palese AM, Xiloyannis C, Sofo A. Phyllosphere and carposphere bacterial communities in olive plants subjected to different cultural practices. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2015. [DOI: 10.4081/pb.2015.6011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to characterize phyllosphere and carposphere bacterial communities of olive trees subjected for 13 years to two different soil management systems (sustainable and conventional) in a mature olive grove located in Southern Italy. Amplified DNA fragments of the 16S ribosomal RNA eubacterial gene (16S <em>rRNA</em>) of bacteria living on leaf and fruit surface, and in fruit pulp were analyzed by denaturing gradient gel electrophoresis (DGGE). A clone library of 16S <em>rRNA</em> amplicons extracted from the bacteria living in pulp homogenates and a phylogenetic analysis were performed. Generally, the DGGE patterns of the bacteria from both the treatments clustered separately. The medium-term sustainable orchard management resulted in a higher number of bacterial species from olive fruit pulp. Phyllosphere and carposphere communities evaluated by DGGE were affected by the type of the agricultural practices adopted. A better understanding of phyllosphere and carposphere microbiota of cultivated olive plants could be useful for the promotion of plant growth, a better plant protection and a higher crop quality.
Collapse
|
16
|
Composition and activity of endophytic bacterial communities in field-grown maize plants inoculated with Azospirillum brasilense. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1059-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Selection of potential biological control of Exserohilum turcicum with epiphytic microorganisms from maize. Rev Argent Microbiol 2015; 47:62-71. [PMID: 25771226 DOI: 10.1016/j.ram.2015.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 11/22/2022] Open
Abstract
The aims of this study were to select microbial isolates from phyllosphere of maize and to examine their antagonistic activity against Exserohilum turcicum. Selection was performed through the ability of isolates to compete with the pathogen using an index of dominance and to affect growth parameters of E. turcicum. Most of the epiphytic populations obtained for the screening were bacteria. These isolates were found in the order of 6 log CFU/g of leaf fresh weight. According to similar morphological characteristics and staining, 44 out of 111 isolates obtained were selected for testing antagonistic effects. At water potential, ψ, -1.38MPa and -4.19MPa, three Bacillus isolates showed dominance at a distance (5/0) and a significant reduction of growth rate of the pathogen. Three Bacillus isolates only decreased the growth rate of E. turcicum at -1.38MPa. At -4.19MPa the growth rate decreased with three isolates of Pantoea and three Bacillus. In this study a negative and significant correlation was observed between the growth rate of E. turcicum and the dominance index in the interaction of the pathogen with some bacteria. These results show that with decreasing growth rate of the pathogen the dominance index of the interaction increases. Eleven potential biocontrol agents against E. turcicum were selected.
Collapse
|
18
|
Romero FM, Marina M, Pieckenstain FL. The communities of tomato (Solanum lycopersicumL.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 2014; 351:187-94. [DOI: 10.1111/1574-6968.12377] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/05/2014] [Accepted: 01/05/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Fernando M. Romero
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús; Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET); Chascomús Argentina
| | - María Marina
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús; Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET); Chascomús Argentina
| | - Fernando L. Pieckenstain
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús; Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET); Chascomús Argentina
| |
Collapse
|
19
|
Kim M, Singh D, Lai-Hoe A, Go R, Abdul Rahim R, Ainuddin AN, Chun J, Adams JM. Distinctive phyllosphere bacterial communities in tropical trees. MICROBIAL ECOLOGY 2012; 63:674-681. [PMID: 21990015 DOI: 10.1007/s00248-011-9953-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/23/2011] [Indexed: 05/27/2023]
Abstract
Recent work has suggested that in temperate and subtropical trees, leaf surface bacterial communities are distinctive to each individual tree species and dominated by Alpha- and Gammaproteobacteria. In order to understand how general this pattern is, we studied the phyllosphere bacterial community on leaves of six species of tropical trees at a rainforest arboretum in Malaysia. This represents the first detailed study of 'true' tropical lowland tree phyllosphere communities. Leaf surface DNA was extracted and pyrosequenced targeting the V1-V3 region of 16S rRNA gene. As was previously found in temperate and subtropical trees, each tree species had a distinctive bacterial community on its leaves, clustering separately from other tree species in an ordination analysis. Bacterial communities in the phyllosphere were unique to plant leaves in that very few operational taxonomic units (0.5%) co-occurred in the surrounding soil environment. A novel and distinctive aspect of tropical phyllosphere communities is that Acidobacteria were one of the most abundant phyla across all samples (on average, 17%), a pattern not previously recognized. Sequences belonging to Acidobacteria were classified into subgroups 1-6 among known 24 subdivisions, and subgroup 1 (84%) was the most abundant group, followed by subgroup 3 (15%). The high abundance of Acidobacteria on leaves of tropical trees indicates that there is a strong relationship between host plants and Acidobacteria in tropical rain forest, which needs to be investigated further. The similarity of phyllosphere bacterial communities amongst the tree species sampled shows a significant tendency to follow host plant phylogeny, with more similar communities on more closely related hosts.
Collapse
Affiliation(s)
- Mincheol Kim
- School of Biological Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-747, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Whipps J, Hand P, Pink D, Bending G. Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 2008; 105:1744-55. [DOI: 10.1111/j.1365-2672.2008.03906.x] [Citation(s) in RCA: 332] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|