1
|
Sala-Comorera L, Muniesa M, Rodríguez-Rubio L. Detection and Quantification of Bacteriophages in Wastewater Samples by Culture and Molecular Methods. Methods Mol Biol 2024; 2738:155-173. [PMID: 37966598 DOI: 10.1007/978-1-0716-3549-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages are promising tools for the detection of fecal pollution in water bodies and particularly for viral pathogen risk assessment. Having similar morphological and biological characteristics, bacteriophages are perfect surrogates for the study of the fate and transport of enteric viruses, generally better than any other group of indicators.Different groups of bacteriophages, such as somatic coliphages, F-specific RNA bacteriophages, and bacteriophages infecting selected strains of Bacteroides, have been comprehensively tested as indicators of fecal pollution. Somatic coliphages and F-specific RNA bacteriophages can be used as indicators of general fecal contamination, whereas Bacteroides phages can be used to detect a particular fecal source, for instance, human, bovine, porcine, or poultry fecal contamination.Feasible and cost-effective protocols standardized by the International Standardization Organization and the United States Environmental Protection Agency for the detection of infectious bacteriophages belonging to these three groups are available. Molecular methods for the detection of some particular phages have also been developed. Here we introduce those methods for the detection, enumeration, and isolation of bacteriophages in wastewater samples.
Collapse
Affiliation(s)
- Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Rodríguez-Rubio
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Monteiro S, Machado-Moreira B, Linke R, Blanch AR, Ballesté E, Méndez J, Maunula L, Oristo S, Stange C, Tiehm A, Farnleitner AH, Santos R, García-Aljaro C. Performance of bacterial and mitochondrial qPCR source tracking methods: A European multi-center study. Int J Hyg Environ Health 2023; 253:114241. [PMID: 37611533 DOI: 10.1016/j.ijheh.2023.114241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
With the advent of molecular biology diagnostics, different quantitative PCR assays have been developed for use in Source Tracking (ST), with none of them showing 100% specificity and sensitivity. Most studies have been conducted at a regional level and mainly in fecal slurry rather than in animal wastewater. The use of a single molecular assay has most often proven to fall short in discriminating with precision the sources of fecal contamination. This work is a multicenter European ST study to compare bacterial and mitochondrial molecular assays and was set to evaluate the efficiency of nine previously described qPCR assays targeting human-, cow/ruminant-, pig-, and poultry-associated fecal contamination. The study was conducted in five European countries with seven fecal indicators and nine ST assays being evaluated in a total of 77 samples. Animal fecal slurry samples and human and non-human wastewater samples were analyzed. Fecal indicators measured by culture and qPCR were generally ubiquitous in the samples. The ST qPCR markers performed at high levels in terms of quantitative sensitivity and specificity demonstrating large geographical application. Sensitivity varied between 73% (PLBif) and 100% for the majority of the tested markers. On the other hand, specificity ranged from 53% (CWMit) and 97% (BacR). Animal-associated ST qPCR markers were generally detected in concentrations greater than those found for the respective human-associated qPCR markers, with mean concentration for the Bacteroides qPCR markers varying between 8.74 and 7.22 log10 GC/10 mL for the pig and human markers, respectively. Bacteroides spp. and mitochondrial DNA qPCR markers generally presented higher Spearman's rank coefficient in the pooled fecal samples tested, particularly the human fecal markers with a coefficient of 0.79. The evaluation of the performance of Bacteroides spp., mitochondrial DNA and Bifidobacterium spp. ST qPCR markers support advanced pollution monitoring of impaired aquatic environments, aiming to elaborate strategies for target-oriented water quality management.
Collapse
Affiliation(s)
- Sílvia Monteiro
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal; CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal; Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN. 10, 2695-066, Bobadela, Portugal.
| | - Bernardino Machado-Moreira
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Rita Linke
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Gumpendorferstr. 1a, 1060, Vienna, Austria
| | - Anicet R Blanch
- Dept. Genetics, Microbiology and Statistics, University of Barcelona, Catalonia, Spain
| | - Elisenda Ballesté
- Dept. Genetics, Microbiology and Statistics, University of Barcelona, Catalonia, Spain
| | - Javier Méndez
- Dept. Genetics, Microbiology and Statistics, University of Barcelona, Catalonia, Spain
| | - Leena Maunula
- Dept. Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Satu Oristo
- Dept. Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Claudia Stange
- Dept. Water Microbiology, DVGW-Technologiezentrum Wasser, Germany
| | - Andreas Tiehm
- Dept. Water Microbiology, DVGW-Technologiezentrum Wasser, Germany
| | - Andreas H Farnleitner
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Gumpendorferstr. 1a, 1060, Vienna, Austria; Karl Landsteiner University of Health Sciences, Research Division Water Quality and Health, Dr.- Karl-Dorrek-Straße 30, 3500, Krems an der Donau, Austria
| | - Ricardo Santos
- Laboratório de Análises, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal; CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal; Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN. 10, 2695-066, Bobadela, Portugal
| | | |
Collapse
|
3
|
Singh S, Pitchers R, Hassard F. Coliphages as viral indicators of sanitary significance for drinking water. Front Microbiol 2022; 13:941532. [PMID: 35958148 PMCID: PMC9362991 DOI: 10.3389/fmicb.2022.941532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Coliphages are virus that infect coliform bacteria and are used in aquatic systems for risk assessment for human enteric viruses. This mini-review appraises the types and sources of coliphage and their fate and behavior in source waters and engineered drinking water treatment systems. Somatic (cell wall infection) and F+ (male specific) coliphages are abundant in drinking water sources and are used as indicators of fecal contamination. Coliphage abundances do not consistently correlate to human enteric virus abundance, but they suitably reflect the risks of exposure to human enteric viruses. Coliphages have highly variable surface characteristics with respect to morphology, size, charge, isoelectric point, and hydrophobicity which together interact to govern partitioning and removal characteristics during water treatment. The groups somatic and F+ coliphages are valuable for investigating the virus elimination during water treatment steps and as indicators for viral water quality assessment. Strain level analyses (e.g., Qβ or GA-like) provide more information about specific sources of viral pollution but are impractical for routine monitoring. Consistent links between rapid online monitoring tools (e.g., turbidity, particle counters, and flow cytometry) and phages in drinking water have yet to be established but are recommended as a future area of research activity. This could enable the real-time monitoring of virus and improve the process understanding during transient operational events. Exciting future prospects for the use of coliphages in aquatic microbiology are also discussed based on current scientific evidence and practical needs.
Collapse
Affiliation(s)
- Suniti Singh
- Cranfield Water Science Institute, Cranfield University, Bedford, United Kingdom
| | | | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, Bedford, United Kingdom
- Institute for Nanotechnology and Water Sustainability, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
4
|
Monitoring coliphages to reduce waterborne infectious disease transmission in the One Water framework. Int J Hyg Environ Health 2022; 240:113921. [DOI: 10.1016/j.ijheh.2022.113921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
|
5
|
Barrantes K, Chacón L, Morales E, Rivera-Montero L, Pino M, Jiménez AG, Mora DC, Jiménez PS, Silva B, Romero-Esquivel LG. Occurrence of pathogenic microorganisms in small drinking-water systems in Costa Rica. JOURNAL OF WATER AND HEALTH 2022; 20:344-355. [PMID: 36366991 DOI: 10.2166/wh.2022.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study describes the quality of drinking water sampled over 2 years (2018 and 2019) from 20 ASADAS (Spanish acronym for Administrative Associations for Water and Sewer Systems) in Costa Rica. The analysis included Rotavirus (RV), somatic coliphages, fecal coliforms, and Escherichia coli. The ASADAS were categorized into three regions as temperate rainy (region 1), tropical rainy (region 2), and tropical rainy and dry (region 3) according to biogeographic classification. The concentrations of fecal coliforms and E. coli were higher in samples from surface water sources from the ASADAS in region 3 compared to regions 1 and 2. RV-positive samples (24/296) were detected in drinking-water samples from regions 2 and 3 during dry and transition seasons, with higher concentrations more frequently in the dry season. In addition, somatic coliphages were detected in samples from the three regions, with higher concentrations in region 2. Furthermore, a statistically significant relationship was found between somatic coliphages and diarrheal cases, classified as outbreaks or alerts in the region. Thus, the results confirmed that somatic coliphages are a good indicator of the presence of diarrhea cases in a specific region.
Collapse
Affiliation(s)
- Kenia Barrantes
- Infection and Nutrition Section, Health Research Institute, University of Costa Rica, P.O. Box 11501-2060, San José, Costa Rica E-mail:
| | - Luz Chacón
- Infection and Nutrition Section, Health Research Institute, University of Costa Rica, P.O. Box 11501-2060, San José, Costa Rica E-mail:
| | - Eric Morales
- Infection and Nutrition Section, Health Research Institute, University of Costa Rica, P.O. Box 11501-2060, San José, Costa Rica E-mail:
| | - Luis Rivera-Montero
- Infection and Nutrition Section, Health Research Institute, University of Costa Rica, P.O. Box 11501-2060, San José, Costa Rica E-mail:
| | - Macario Pino
- Environmental Protection Research Center (CIPA), School of Chemistry, Instituto Tecnológico de Costa Rica (ITCR), P.O. Box 159-7050, Cartago, Costa Rica
| | - Alejandra Gamboa Jiménez
- Environmental Analysis Laboratory, School of Environmental Sciences, National University, P.O. Box 86-3000, Heredia, Costa Rica
| | - Diana Campos Mora
- Environmental Analysis Laboratory, School of Environmental Sciences, National University, P.O. Box 86-3000, Heredia, Costa Rica
| | - Pablo Salas Jiménez
- Environmental Analysis Laboratory, School of Environmental Sciences, National University, P.O. Box 86-3000, Heredia, Costa Rica
| | - Basilio Silva
- Basic Sciences, National Technological University, P.O. Box 1902-4050, Alajuela, Costa Rica
| | - Luis G Romero-Esquivel
- Environmental Protection Research Center (CIPA), School of Chemistry, Instituto Tecnológico de Costa Rica (ITCR), P.O. Box 159-7050, Cartago, Costa Rica
| |
Collapse
|
6
|
Bacteriophages as Fecal Pollution Indicators. Viruses 2021; 13:v13061089. [PMID: 34200458 PMCID: PMC8229503 DOI: 10.3390/v13061089] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages are promising tools for the detection of fecal pollution in different environments, and particularly for viral pathogen risk assessment. Having similar morphological and biological characteristics, bacteriophages mimic the fate and transport of enteric viruses. Enteric bacteriophages, especially phages infecting Escherichia coli (coliphages), have been proposed as alternatives or complements to fecal indicator bacteria. Here, we provide a general overview of the potential use of enteric bacteriophages as fecal and viral indicators in different environments, as well as the available methods for their detection and enumeration, and the regulations for their application.
Collapse
|
7
|
Metagenomic insights into virus removal performance of an algal-based wastewater treatment system utilizing Galdieria sulphuraria. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101865] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Martín-Díaz J, Lucena F, Blanch AR, Jofre J. Review: Indicator bacteriophages in sludge, biosolids, sediments and soils. ENVIRONMENTAL RESEARCH 2020; 182:109133. [PMID: 32069755 DOI: 10.1016/j.envres.2020.109133] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/19/2019] [Accepted: 01/12/2020] [Indexed: 05/22/2023]
Abstract
Solid or semisolid matrices polluted with fecal remnants can be highly loaded with pathogens, especially viruses, and play a substantial role in the persistence and dispersion of pathogens in the water cycle. Water quality regulations and guidelines are increasingly including bacteriophages infecting enteric bacteria as indicators of fecal and/or viral pollution. However, more data are needed about viral indicators in contaminated solids to develop effective sanitation strategies for the management of raw and treated sludge, fecal sludge, manures and slurries. Also, the exact role of sediments and soil in the transmission cycle of viral pathogens still needs to be determined. This review aims to provide an update on available data for concentrations of indicator bacteriophages in different solid matrices as well as their resistance to treatments and persistence in solids. The conclusion reached is that there is a need for improved and standardized methodologies for bacteriophage extraction, detection and enumeration in solids. Reports indicate that these contain higher levels of somatic coliphages in comparison with traditional bacterial indicators and F-specific RNA coliphages. Water body sediments and soil have been found to be notable reservoirs of somatic coliphages, which are more persistent in nature and resistant to sludge treatments than Escherichia coli and fecal coliforms and F-specific RNA coliphages. Thus, somatic coliphages show up as excellent complementary indicators for the prediction of pathogenic viruses in solids.
Collapse
Affiliation(s)
- Julia Martín-Díaz
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avda/ Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001, Barcelona, Spain.
| | - Francisco Lucena
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avda/ Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001, Barcelona, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avda/ Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001, Barcelona, Spain
| | - Juan Jofre
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Avda/ Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, C/ Montalegre 6, 08001, Barcelona, Spain
| |
Collapse
|
9
|
Vandegrift J, Hooper J, da Silva A, Bell K, Snyder S, Rock CM. Overview of Monitoring Techniques for Evaluating Water Quality at Potable Reuse Treatment Facilities. ACTA ACUST UNITED AC 2019; 111:12-23. [PMID: 32313288 PMCID: PMC7159541 DOI: 10.1002/awwa.1320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Needless to say, the safety of treated water for potable reuse must be definitively ensured. Numerous methods are available for assessing water quality; it's important to understand their challenges and limitations.
Collapse
|
10
|
Michniewski S, Redgwell T, Grigonyte A, Rihtman B, Aguilo‐Ferretjans M, Christie‐Oleza J, Jameson E, Scanlan DJ, Millard AD. Riding the wave of genomics to investigate aquatic coliphage diversity and activity. Environ Microbiol 2019; 21:2112-2128. [PMID: 30884081 PMCID: PMC6563131 DOI: 10.1111/1462-2920.14590] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/17/2022]
Abstract
Bacteriophages infecting Escherichia coli (coliphages) have been used as a proxy for faecal matter and water quality from a variety of environments. However, the diversity of coliphages that is present in seawater remains largely unknown, with previous studies largely focusing on morphological diversity. Here, we isolated and characterized coliphages from three coastal locations in the United Kingdom and Poland. Comparative genomics and phylogenetic analysis of phage isolates facilitated the identification of putative new species within the genera Rb69virus and T5virus and a putative new genus within the subfamily Tunavirinae. Furthermore, genomic and proteomic analysis combined with host range analysis allowed the identification of a putative tail fibre that is likely responsible for the observed differences in host range of phages vB_Eco_mar003J3 and vB_Eco_mar004NP2.
Collapse
Affiliation(s)
- Slawomir Michniewski
- School of Life SciencesUniversity of WarwickGibbet Hill Road, Coventry CV4 7ALUK
| | - Tamsin Redgwell
- School of Life SciencesUniversity of WarwickGibbet Hill Road, Coventry CV4 7ALUK
| | - Aurelija Grigonyte
- School of Life SciencesUniversity of WarwickGibbet Hill Road, Coventry CV4 7ALUK
| | - Branko Rihtman
- School of Life SciencesUniversity of WarwickGibbet Hill Road, Coventry CV4 7ALUK
| | | | | | - Eleanor Jameson
- School of Life SciencesUniversity of WarwickGibbet Hill Road, Coventry CV4 7ALUK
| | - David J. Scanlan
- School of Life SciencesUniversity of WarwickGibbet Hill Road, Coventry CV4 7ALUK
| | - Andrew D. Millard
- Department of Genetics and Genome BiologyUniversity of Leicester, University RoadLeicester LE1 7RHUK
| |
Collapse
|
11
|
Fauvel B, Cauchie HM, Gantzer C, Ogorzaly L. Influence of physico-chemical characteristics of sediment on the in situ spatial distribution of F-specific RNA phages in the riverbed. FEMS Microbiol Ecol 2019; 95:5289377. [PMID: 30649274 PMCID: PMC6333113 DOI: 10.1093/femsec/fiy240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/11/2019] [Indexed: 11/30/2022] Open
Abstract
Riverbed sediment is commonly described as an enteric virus reservoir and thought to play an important role in water column contamination, especially during rainfall events. Although the occurrence and fate of faecal-derived viruses are fairly well characterized in water, little information is available on their presence as their interactions with sediment. This study aimed at determining the main environmental factors responsible for the presence of enteric viruses in riverbed sediment. Using a combination of microbiological and physico-chemical analyses of freshly field-sampled sediments, we demonstrated their contamination by faecal phages. The in situ spatial distribution of phages in sediment was mainly driven by sediment composition. A preferential phage accumulation occurred along one bank of the river, where the quantity of fine sands and clay particles smaller than 0.2 mm was the highest. Additionally, a mineralogical analysis revealed the influence of the heterogeneous presence of virus sorbents such as quartz, calcite, carbonates and iron-bearing phases (goethite) on the phage spatial pattern. A more precise knowledge of the composition of riverbed sediment is therefore useful for predicting preferential areas of enteric virus accumulation and should allow more accurate microbial risk assessment when using surface water for drinking water production or recreational activities.
Collapse
Affiliation(s)
- Blandine Fauvel
- Luxembourg Institute of Science and Technology (LIST), Department of Environmental Research and Innovation (ERIN), 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, LUXEMBOURG.,Université de Lorraine, Laboratoire de Chimie, Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Faculté de Pharmacie, 5 Rue Albert Lebrun BP 80403 54001 Nancy, FRANCE.,CNRS, LCPME, UMR 7564, Nancy F-54000, France
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Department of Environmental Research and Innovation (ERIN), 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, LUXEMBOURG
| | - Christophe Gantzer
- Université de Lorraine, Laboratoire de Chimie, Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Faculté de Pharmacie, 5 Rue Albert Lebrun BP 80403 54001 Nancy, FRANCE.,CNRS, LCPME, UMR 7564, Nancy F-54000, France
| | - Leslie Ogorzaly
- Luxembourg Institute of Science and Technology (LIST), Department of Environmental Research and Innovation (ERIN), 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, LUXEMBOURG
| |
Collapse
|
12
|
Fang H, Vergara GGR, Goh SG, Ang CYL, Gu X, Gin KYH. Effect of Rainfall on the Microbial Water Quality of a Tropical Urban Catchment. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1242-1248. [PMID: 30272782 DOI: 10.2134/jeq2018.03.0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wet weather conditions have been associated with increased bacterial and viral counts in surface waters. Moreover, heavy rainfall and flooding were found to be the most common events preceding waterborne disease outbreaks associated with extreme weather conditions. This study aimed to examine the effect of rainfall on the quality of surface waters and to determine its suitability for primary contact recreation during wet weather conditions. A total of 228 catchment water samples were collected during wet and dry periods. Parameters that were found to increase with increasing rainfall were , enterococci, somatic coliphages, and turbidity, whereas total dissolved solids were found to decrease. Positive correlations ( < 0.05) were observed between cumulative rainfall and geometric mean concentrations of , enterococci, somatic coliphages, and turbidity ( = 0.69-0.95), whereas a negative correlation was observed between cumulative rainfall and total dissolved solids ( = -0.58). In addition, a rapid decline in water quality was observed during heavy rainfall that resulted in failure to meet recreational water quality guidelines. In view of public health and safety, primary recreational activities in the water catchment may not be advisable during or immediately after a rainfall event due to poor water quality.
Collapse
|
13
|
McMinn BR, Rhodes ER, Huff EM, Wanjugi P, Ware MM, Nappier SP, Cyterski M, Shanks OC, Oshima K, Korajkic A. Comparison of somatic and F+ coliphage enumeration methods with large volume surface water samples. J Virol Methods 2018; 261:63-66. [PMID: 30096350 PMCID: PMC7082814 DOI: 10.1016/j.jviromet.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
Abstract
Coliphages are alternative fecal indicators that may be suitable surrogates for viral pathogens, but majority of standard detection methods utilize insufficient volumes for routine detection in environmental waters. We compared three somatic and F+ coliphage methods based on a paired measurement from 1 L samples collected from the Great Lakes (n = 74). Methods include: 1) dead-end hollow fiber ultrafilter with single agar layer (D-HFUF-SAL); 2) modified SAL (M-SAL); and 3) direct membrane filtration (DMF) technique. Overall, D-HFUF-SAL outperformed other methods as it yielded the lowest frequency of non-detects [(ND); 10.8%] and the highest average concentrations of recovered coliphage for positive samples (2.51 ± 1.02 [standard deviation, SD] log10 plaque forming unit/liter (PFU/L) and 0.79 ± 0.71 (SD) log10 PFU/L for somatic and F+, respectively). M-SAL yielded 29.7% ND and average concentrations of 2.26 ± 1.15 (SD) log10 PFU/L (somatic) and 0.59 ± 0.82 (SD) log10 PFU/L (F+ ). DMF performance was inferior to D-HFUF-SAL and M-SAL methods (ND of 65.6%; average somatic coliphage concentration 1.52 ± 1.32 [SD] log10 PFU/L, no F+ detected), indicating this procedure is unsuitable for 1 L surface water sample volumes. This study represents an important step toward the use of a coliphage method for recreational water quality criteria purposes.
Collapse
Affiliation(s)
- Brian R McMinn
- United States Environmental Protection Agency, Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Eric R Rhodes
- United States Environmental Protection Agency, Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Emma M Huff
- United States Environmental Protection Agency, Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Pauline Wanjugi
- United States Environmental Protection Agency, Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Michael M Ware
- United States Environmental Protection Agency, Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Sharon P Nappier
- Office of Water, 1200 Pennsylvania Avenue NW, Washington, D.C. 20460, United States
| | - Mike Cyterski
- Office of Research and Development, 960 College Station Rd., Athens, GA 30605, United States
| | - Orin C Shanks
- United States Environmental Protection Agency, Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Kevin Oshima
- United States Environmental Protection Agency, Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Asja Korajkic
- United States Environmental Protection Agency, Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States.
| |
Collapse
|
14
|
Booncharoen N, Mongkolsuk S, Sirikanchana K. Comparative persistence of human sewage-specific enterococcal bacteriophages in freshwater and seawater. Appl Microbiol Biotechnol 2018; 102:6235-6246. [DOI: 10.1007/s00253-018-9079-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/07/2018] [Accepted: 05/07/2018] [Indexed: 01/17/2023]
|
15
|
Elmahdy M, Fongaro G, Magri M, Petruccio M, Barardi C. Spatial distribution of enteric viruses and somatic coliphages in a Lagoon used as drinking water source and recreation in Southern Brazil. Int J Hyg Environ Health 2016; 219:617-625. [DOI: 10.1016/j.ijheh.2016.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/24/2022]
|
16
|
Coliphages as Model Organisms in the Characterization and Management of Water Resources. WATER 2016. [DOI: 10.3390/w8050199] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Vergara GGRV, Goh SG, Rezaeinejad S, Chang SY, Sobsey MD, Gin KYH. Evaluation of FRNA coliphages as indicators of human enteric viruses in a tropical urban freshwater catchment. WATER RESEARCH 2015; 79:39-47. [PMID: 25965886 DOI: 10.1016/j.watres.2015.04.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/02/2015] [Accepted: 04/11/2015] [Indexed: 05/16/2023]
Abstract
This study aimed to evaluate the relationship between FRNA coliphages (FRNA GI to GIV) and human enteric viruses (human adenoviruses, HAdV, astroviruses, AstV, noroviruses, NoV, and rotaviruses, RoV) in a tropical urban freshwater catchment. Positive associations between human-specific coliphages and human viral pathogens substantiate their use as viral indicators and in microbial source tracking. Reverse transcription qPCR was used to measure the concentrations of viruses and FRNA coliphages in concentrated water samples. Environmental water samples were also analyzed for male-specific (F+) and somatic (Som) coliphages using plaque assay. The most abundant enteric virus was NoV (55%) followed by HAdV (33%), RoV (33%), and AstV (23%), while the most abundant FRNA genogroup was GI (85%) followed by GII (48%), GIV (8%) and GIII (7%). Concentrations of human-specific coliphages FRNA GII were positively correlated with NoV, HAdV, RoV, AstV, F+ and Som (τ = 0.5 to 0.3, P < 0.05) while concentrations of animal-specific coliphages FRNA GI were negatively correlated with HAdV and RoV (τ = -0.2, P < 0.05). This study demonstrates statistical relationships between human-specific coliphages and a suite of human enteric viruses in the environment.
Collapse
Affiliation(s)
- G G R V Vergara
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - S G Goh
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - S Rezaeinejad
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - S Y Chang
- Technology and Water Quality Office, Public Utilities Board, Singapore
| | - M D Sobsey
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - K Y H Gin
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore.
| |
Collapse
|
18
|
Rezaeinejad S, Vergara GGRV, Woo CH, Lim TT, Sobsey MD, Gin KYH. Surveillance of enteric viruses and coliphages in a tropical urban catchment. WATER RESEARCH 2014; 58:122-31. [PMID: 24747143 DOI: 10.1016/j.watres.2014.03.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 05/13/2023]
Abstract
An assessment of the occurrence and concentration of enteric viruses and coliphages was carried out in highly urbanized catchment waters in the tropical city-state of Singapore. Target enteric viruses in this study were noroviruses, adenoviruses, astroviruses and rotaviruses. In total, 65 water samples were collected from canals and the reservoir of the Marina catchment on a monthly basis over a period of a year. Quantitative PCR (qPCR) and single agar layer plaque assay (SAL) were used to enumerate target enteric viruses and coliphages in water samples, respectively. The most prevalent pathogen were noroviruses, detected in 37 samples (57%), particularly norovirus genogroup II (48%), with a mean concentration of 3.7 × 10(2) gene copies per liter. Rotavirus was the second most prevalent virus (40%) with a mean concentration of 2.5 × 10(2) GC/L. The mean concentrations of somatic and male-specific coliphages were 2.2 × 10(2) and 1.1 × 10(2) PFU/100 ml, respectively. The occurrence and concentration of each target virus and the ratio of somatic to male-specific coliphages varied at different sampling sites in the catchment. For sampling sites with higher frequency of occurrence and concentration of viruses, the ratio of somatic to male-specific coliphages was generally much lower than other sampling sites with lower incidences of enteric viruses. Overall, higher statistical correlation was observed between target enteric viruses than between enteric viruses and coliphages. However, male-specific coliphages were positively correlated with norovirus concentrations. A multi-level integrated surveillance system, which comprises the monitoring of bacterial indicators, coliphages and selected enteric viruses, could help to meet recreational and surface water quality criteria in a complex urbanized catchment.
Collapse
Affiliation(s)
- S Rezaeinejad
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - G G R V Vergara
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - C H Woo
- Technology and Water Quality Office, Public Utilities Board, Singapore
| | - T T Lim
- Technology and Water Quality Office, Public Utilities Board, Singapore
| | - M D Sobsey
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - K Y H Gin
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
19
|
Singh A, Lin J. Microbiological, coliphages and physico-chemical assessments of the Umgeni River, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 25:33-51. [PMID: 24617904 DOI: 10.1080/09603123.2014.893567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The water quality of Umgeni River in KwaZulu-Natal (South Africa) was investigated from April 2011 to January 2012. Indicator bacterial populations, physico-chemical properties, heavy metal contaminants and the presence of coliphages were determined according to standard protocols. The results showed that all sampling points failed to comply with the set guidelines for turbidity, total coliform, faecal coliform and total heterotrophic counts. Salmonella spp., Shigella spp. and Vibrio cholerae were also detected in all the water samples. The somatic coliphages and F-RNA coliphages were detected more frequently in the lower reaches of the river during summer. Temperature, electrical conductivity and pH were found to have positive relationships with the microbial communities especially in the lower catchment area during spring and summer indicating the impacts of various anthropogenic activities in the surrounding areas.
Collapse
Affiliation(s)
- Atheesha Singh
- a School of Life Sciences , University of KwaZulu-Natal , Westville, Durban , South Africa
| | | |
Collapse
|
20
|
Purnell SE, Ebdon JE, Taylor HD. Bacteriophage lysis of Enterococcus host strains: a tool for microbial source tracking? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:10699-705. [PMID: 22047499 DOI: 10.1021/es202141x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This paper describes the isolation of Enterococcus host strains, for potential use as simple bacteriophage (phage)-based microbial source tracking (MST) tools. Presumptive Enterococcus host strains were isolated from cattle feces, raw municipal wastewater, agricultural runoff, and waters impacted by farms or wastewater treatment works (WWTW) in southern England, United Kingdom (UK). All enterococcal host strains (n = 390) were first screened for their ability to detect phage in samples of raw municipal wastewater and fecal material from cattle, pigs, and sheep. Host strains that detected phage (n = 147) were ranked according to both their specificity to a particular fecal source and also the number of phages (expressed as plaque-forming units, PFU) that they detected per milliliter of sample. Host strains that demonstrated host specificity and which detected phages at levels greater than 100 PFU/mL (n = 29) were further tested using additional fecal samples of human and nonhuman origin. The specificity and sensitivity of the enterococcal host strains were found to vary, ranging from 44 to 100% and from 17 to 83%, respectively. Most notably, seven strains exhibited 100% specificity to either cattle, human, or pig samples. Isolates exhibiting specificity to cattle were identified as belonging to the species Enterococcus casseliflavus , Enterococcus mundtii , or Enterococcus gallinarum , while human and pig isolates were members of either Enterococcus faecium or Enterococcus faecalis . The high specificity of phages infecting Enterococcus hosts and the simplicity and relatively low cost of the approach collectively indicate a strong potential for using this method as a tool in MST.
Collapse
Affiliation(s)
- Sarah E Purnell
- Environment & Public Health Research Unit, School of Environment and Technology, Cockcroft Building, University of Brighton, Lewes Road, Brighton, BN2 4GJ, United Kingdom.
| | | | | |
Collapse
|
21
|
Helmi K, Jacob P, Charni-Ben-Tabassi N, Delabre K, Arnal C. Comparison of two filtration-elution procedures to improve the standard methods ISO 10705-1 & 2 for bacteriophage detection in groundwater, surface water and finished water samples. Lett Appl Microbiol 2011; 53:329-35. [DOI: 10.1111/j.1472-765x.2011.03112.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Lee HS, Sobsey MD. Survival of prototype strains of somatic coliphage families in environmental waters and when exposed to UV low-pressure monochromatic radiation or heat. WATER RESEARCH 2011; 45:3723-34. [PMID: 21600626 DOI: 10.1016/j.watres.2011.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 04/14/2011] [Accepted: 04/17/2011] [Indexed: 05/04/2023]
Abstract
The potential use of specific somatic coliphage taxonomic groups as viral indicators based on their persistence and prevalence in water was investigated. Representative type strains of the 4 major somatic coliphage taxonomic groups were seeded into reagent water and an ambient surface water source of drinking water and the survival of the added phages was measured over 90 days at temperatures of 23-25 and 4 °C. Microviridae (type strain PhiX174), Siphoviridae (type strain Lambda), and Myoviridae (type strain T4) viruses were the most persistent in water at the temperatures tested. The Microviridae (type strain PhiX174) and the Siphoviridae (type strain Lambda) were the most resistant viruses to UV radiation and the Myoviridae (type strain T4) and the Microviridae (type strain PhiX174) were the most resistant viruses to heat. Based on their greater persistence in water over time and their relative resistance to heat and/or UV radiation, the Myoviridae (type strain T4), the Microviridae (type strain PhiX174), and the Siphoviridae (type strain Lambda) were the preferred candidate somatic coliphages as fecal indicator viruses in water, with the Microviridae (type strain PhiX174) the most resistant to these conditions overall.
Collapse
Affiliation(s)
- Hee Suk Lee
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
23
|
Diversity of somatic coliphages in coastal regions with different levels of anthropogenic activity in São Paulo State, Brazil. Appl Environ Microbiol 2011; 77:4208-16. [PMID: 21531842 DOI: 10.1128/aem.02780-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophages are the most abundant and genetically diverse viruses on Earth, with complex ecology in both quantitative and qualitative terms. Somatic coliphages (SC) have been reported to be good indicators of fecal pollution in seawater. This study focused on determining the concentration of SC and their diversity by electron microscopy of seawater, plankton, and bivalve samples collected at three coastal regions in São Paulo, Brazil. The SC counts varied from <1 to 3.4 × 10(3) PFU/100 ml in seawater (73 samples tested), from <1 to 4.7 × 10(2) PFU/g in plankton (46 samples tested), and from <1 to 2.2 × 10(1) PFU/g in bivalves (11 samples tested). In seawater samples, a relationship between the thermotolerant coliforms and Escherichia coli and SC was observed at the three regions (P = 0.0001) according to the anthropogenic activities present at each region. However, SC were found in plankton samples from three regions: Baixada Santista (17/20), Canal de São Sebastião (6/14), and Ubatuba (3/12). In seawater samples collected from Baixada Santista, four morphotypes were observed: A1 (4.5%), B1 (50%), C1 (36.4%), and D1 (9.1%). One coliphage, Siphoviridae type T1, had the longest tail: between 939 and 995 nm. In plankton samples, Siphoviridae (65.8%), Podoviridae (15.8%), Microviridae (15.8%), and Myoviridae (2.6%) were found. In bivalves, only the morphotype B1 was observed. These SC were associated with enteric hosts: enterobacteria, E. coli, Proteus, Salmonella, and Yersinia. Baixada Santista is an area containing a high level of fecal pollution compared to those in the Canal de São Sebastião and Ubatuba. This is the first report of coliphage diversity in seawater, plankton, and bivalve samples collected from São Paulo coastal regions. A better characterization of SC diversity in coastal environments will help with the management and evaluation of the microbiological risks for recreation, seafood cultivation, and consumption.
Collapse
|
24
|
Abstract
AIMS This study aims to investigate the ecology of coliphages, an important microbial pollution indicator. Specifically, our experiments address (i) the ability of environmental Escherichia coli (E. coli) to serve as hosts for coliphage replication, and (ii) the temporal and spatial distribution of coliphages in coastal waters. METHODS AND RESULTS Water samples from three locations in California's Newport Bay watershed were tested for the presence of coliphages every 2 weeks for an entire year. A total of nine E. coli strains isolated from various sources served as hosts for coliphage detection. Coliphage occurrence was significantly different between freshwater, estuarine and coastal locations and correlated with water temperature, salinity and rainfall in the watershed. The coliphages isolated on the environmental hosts had a broad host-range relative to the coliphages isolated on an E. coli strain from sewage and a US EPA recommended strain for coliphage detection. CONCLUSIONS Coliphage occurrence was related to the temperature, rainfall and salinity within the bay. The adaptation to a broad host-range may enable the proliferation of coliphages in the aquatic environment. SIGNIFICANCE AND IMPACT OF THE STUDY Understanding the seasonal variation of phages is useful for establishing a background level of coliphage presence in coastal waters. The broad host-range of coliphages isolated on the environmental E. coli host calls for investigation of coliphage replication in the aquatic environment.
Collapse
Affiliation(s)
- V C Reyes
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA
| | - S C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
25
|
Scientific Opinion on the maintenance of the list of QPS microorganisms intentionally added to food or feed (2009 update). EFSA J 2009. [DOI: 10.2903/j.efsa.2009.1431] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|