1
|
Tabanelli G, Barbieri F, Baños A, Madero JMG, Daza MVB, Cortimiglia C, Milani G, Bassi D, Gardini F, Montanari C. Companilactobacillus alimentarius: An extensive characterization of strains isolated from spontaneous fermented sausages. Int J Food Microbiol 2024; 410:110489. [PMID: 38039926 DOI: 10.1016/j.ijfoodmicro.2023.110489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 12/03/2023]
Abstract
Companilactobacillus alimentarius is a facultatively heterofermentative lactic acid bacterium (LAB) that is a significant constituent within the microbiota of various traditional fermented foods exerting several functions in fermentative or ripening processes. This species has been isolated from Spanish fermented sausages, where its frequency of isolation was comparable to those of Latilactobacillus sakei and Latilactobacillus curvatus. Despite to its presence in several niches, ecological information on this species is still scarce and only few publications report information about its safety features (i.e. antibiotic resistance). Since studies on C. alimentarius concern the analysis of a few individual traits regarding this species, a more extensive work on a larger number of isolates from the same matrix have been performed to allow a clearer interpretation of their phenotypic and technological characteristics. Specifically, 14 strains of C. alimentarius isolated from Mediterranean spontaneously fermented sausages, have been screened for their safety and technological characteristics (such as antibiotic resistance, biogenic amine production, inhibiting potential, growth at different temperatures and NaCl concentrations) and with phenotype microarrays with the aim to elucidate their potential role and contribution to sausage fermentation and ripening. In general, a wide variability was observed in relation to the parameters considered. Several of the tested strains were able to produce histamine, tyramine and putrescine while the antibiotic resistance greatly varied according to the strains, with the exception of vancomycin. In addition, C. alimentarius strains showed a relevant potential to grow in conditions of salt and temperature mimicking those found in fermented foods. In particular, the growth at 10 °C and in the presence of salt can explain the presence of C. alimentarius in sausages and its adaptation to fermented meat environment in which low temperature can be applied during ripening. The differentiation of the phenotypic profile reflected the environmental conditions that influenced the isolation source, including those derived by the raw materials. Given the species frequent association with spontaneous fermentations or the ripening microbiota of various products, despite not being intentionally used as starter cultures, the data presented in this study contribute to a deeper comprehension of their role, both advantageous and detrimental, in numerous significant fermented foods.
Collapse
Affiliation(s)
- Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Federica Barbieri
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Cesena, Italy.
| | - Alberto Baños
- Department of Microbiology, DOMCA S.A.U., 18620 Alhendín, Spain
| | | | - Mireya Viviana Belloso Daza
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, 26100 Cremona, Italy
| | - Claudia Cortimiglia
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, 26100 Cremona, Italy
| | - Giovanni Milani
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, 26100 Cremona, Italy
| | - Daniela Bassi
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, 26100 Cremona, Italy
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Cesena, Italy
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Cesena, Italy
| |
Collapse
|
2
|
Ojha AK, Shah NP, Mishra V, Emanuel N, Taneja NK. Prevalence of antibiotic resistance in lactic acid bacteria isolated from traditional fermented Indian food products. Food Sci Biotechnol 2023; 32:2131-2143. [PMID: 37860739 PMCID: PMC10581985 DOI: 10.1007/s10068-023-01305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 10/21/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) in lactic acid bacteria (LAB) raises questions on qualified presumptive safety status and poses challenge of AMR transmission in food milieu. This study focuses on isolation, identification and characterization of AMR in LAB prevalent in traditional fermented Indian food products. The analysis of 16SrRNA based phylogenetic tree showed placements of isolates among four different genera Lactobacillus, Enterococcus, Weissella and Leuconostoc. In E-strip gradient test of susceptibility to 14 different antibiotics, over 50% of isolates showed resistance to ampicillin, chloramphenicol, ciprofloxacin, erythromycin, kanamycin, linezolid, streptomycin, trimethoprim and vancomycin. A multivariate principal component analysis, an antibiogram and multiple antibiotic resistance index-values (> 0.2) indicated presence of multidrug-resistance among the isolates. This study reports prevalence of an alarmingly high rate of AMR LAB strains in traditional fermented foods and is important to regulators and public health authorities for developing strategies to control transmission in food systems. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01305-1.
Collapse
Affiliation(s)
- Anup Kumar Ojha
- Department of Basic and Applied Sciences, NIFTEM, Sonipat, Haryana 131028 India
| | - Nagendra Prasad Shah
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR China
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, NIFTEM, Sonipat, Haryana 131028 India
| | - Neela Emanuel
- Department of Basic and Applied Sciences, NIFTEM, Sonipat, Haryana 131028 India
| | - Neetu Kumra Taneja
- Department of Basic and Applied Sciences, NIFTEM, Sonipat, Haryana 131028 India
- Centre for Advanced Translational Research in Food Nanobiotechnology (CATR-FNB), NIFTEM, Sonepat, Haryana 131028 India
| |
Collapse
|
3
|
Shahali A, Soltani R, Akbari V. Probiotic Lactobacillus and the potential risk of spreading antibiotic resistance: a systematic review. Res Pharm Sci 2023; 18:468-477. [PMID: 37842520 PMCID: PMC10568962 DOI: 10.4103/1735-5362.383703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 10/17/2023] Open
Abstract
Background and purpose Lactobacillus, the most popular probiotic, has recently gained more attention because it is a potential reservoir of antibiotic resistance. This review summarized and discussed the phenotypic-genotypic characteristics of antibiotic resistance. Experimental approach Google Scholar, PubMed, Web of Science, and Scopus were searched up to February 2022. The inclusion criteria were all studies testing antibiotic resistance of probiotic Lactobacillus strains present in human food supplementation and all human/animal model studies in which transferring antibiotic-resistant genes from Lactobacillus strains to another bacterium were investigated. Findings/Results Phenotypic and genotypic characterization of Lactobacillus probiotics showed that the most antibiotic resistance was against protein synthesis inhibitors (fourteen studies, 87.5%) and cell wall synthesis inhibitors (ten studies, 62.5%). Nine of these studies reported the transfer of antibiotic resistance from Lactobacillus probiotic as donor species to pathogenic bacteria and mostly used in vitro methods for resistance gene transfer. Conclusion and implications The transferability of resistance genes such as tet and erm in Lactobacillus increases the risk of spreading antibiotic resistance. Further studies need to be conducted to evaluate the potential spread of antibiotic resistance traits via probiotics, especially in elderly people and newborns.
Collapse
Affiliation(s)
- Ali Shahali
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Department of Pharmaceutics, College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Rasool Soltani
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
4
|
Characterization of Lactic Acid Bacteria Isolated from Spontaneously Fermented Sausages: Bioprotective, Technological and Functional Properties. Foods 2023; 12:foods12040727. [PMID: 36832801 PMCID: PMC9955731 DOI: 10.3390/foods12040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Fermentation is one of the most ancient strategies to improve safety and extend shelf-life of the products. Starter cultures are mainly represented by lactic acid bacteria (LAB), which may also be bioprotective agents controlling the fermentation process, the native microbiota and pathogen outgrowth. This work aimed to select new LAB strains from spontaneously fermented sausages produced in different areas of Italy, which can be effective as starter cultures and bioprotective agents in fermented salami. The strains, mainly belonging to the Latilactobacillus sakei species, were characterized for their ability to inhibit major meat pathogens, the presence of antibiotic resistances and amine production. Moreover, technological performances, such as growth and acidification kinetics at increasing NaCl concentrations, were studied. As a result, new autochthonous Lat. sakei strains were obtained, lacking antibiotic resistance, possessing antimicrobial activity against Clostridium sporogenes, Listeria monocytogenes, Salmonella and Escherichia coli and with high growth performance under osmotic pressure. These strains have the potential for future application to improve the safety of fermented meats, even under conditions in which chemical preservatives are reduced or eliminated. Moreover, studies on autochthonous cultures are pivotal for guaranteeing specific characteristics of traditional products that represent an important cultural heritage.
Collapse
|
5
|
Dincer E, Kivanc M. Evaluation of metabolic activities and probiotic characteristics of two Latilactobacillus sakei strains isolated from pastırma. World J Microbiol Biotechnol 2022; 38:237. [DOI: 10.1007/s11274-022-03431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/02/2022] [Indexed: 10/17/2022]
|
6
|
Taxonomical Identification and Safety Characterization of Lactobacillaceae from Mediterranean Natural Fermented Sausages. Foods 2022; 11:foods11182776. [PMID: 36140904 PMCID: PMC9497648 DOI: 10.3390/foods11182776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Fermented meat products represent an important industrial sector in Europe, particularly in the Mediterranean Countries (MC), where the presence of numerous local productions, still obtained through spontaneous fermentation, is recognized as a formidable treasure chest of unexplored microbial biodiversity. Lactobacillaceae naturally occurring in fifteen spontaneously fermented sausages from MC (Italy, Spain, Croatia, and Slovenia) were isolated and taxonomically characterized using molecular techniques. Additionally, a safety assessment for the presence of antibiotic resistances and biogenic amine (BA) production was performed to determine their suitability as autochthonous starter cultures. Molecular typing, performed using REP-PCR, discriminated 151 strains belonging to Latilactobacillus sakei (59.6%), Latilactobacillus curvatus (26.5%) and Companilactobacillus alimentarius (13.9%). The minimum inhibitory concentrations (MICs) of eight different antibiotics revealed a high resistance to streptomycin (27%), tetracycline (16%), followed by gentamycin (14%) and kanamycin (13%). Interestingly, the results showed a geographical distribution of resistant biotypes. tetM/tetS or ermB genes were identified in only six strains. The amino-biogenic potential of the strains was assessed, confirming the absence of this trait among L. sakei, while a high number of producer strains was found among L. curvatus. On the 151 analyzed strains, 45 demonstrated safety traits for their future use as starter food cultures. These results open the way to further studies on the technological properties of these promising autochthonous strains, strongly linked to the Mediterranean environment.
Collapse
|
7
|
Yu L, Chen Y, Duan H, Qiao N, Wang G, Zhao J, Zhai Q, Tian F, Chen W. Latilactobacillus sakei: a candidate probiotic with a key role in food fermentations and health promotion. Crit Rev Food Sci Nutr 2022; 64:978-995. [PMID: 35997270 DOI: 10.1080/10408398.2022.2111402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Latilactobacillus sakei is used extensively in industrial production and food fermentations. The species is primarily derived from fermented meat and vegetable products and is also found in human feces. Genomics and metabolomics have revealed unique metabolic pathways in L. sakei and molecular mechanisms underlying its competitive advantages in different habitats, which are mostly attributed to its flexible carbohydrate metabolism, cold tolerance, acid and salt tolerance, ability to cope with oxygen changes, and heme uptake. In recent years, probiotic effects of L. sakei and its metabolites have been identified, including the ability to effectively alleviate metabolic syndrome, inflammatory bowel disease, and atopic dermatitis. This review summarizes the genomic and metabolic characteristics of L. sakei and its metabolites and describes their applications, laying a foundation for their expanded use across the food and healthcare industries.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Nanzhen Qiao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Antibiotic resistance and virulence factors in lactobacilli: something to carefully consider. Food Microbiol 2022; 103:103934. [DOI: 10.1016/j.fm.2021.103934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023]
|
9
|
Ilyazova A, Blazheva D, Slavchev A, Krastanov A. Study on the effect of sublethal concentrations of antimicrobials on the growth and development of probiotic lactobacilli. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224502002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The objective of this study was to investigate the effect of sublethal concentrations of 5 antibiotics (tetracycline, erythromycin, penicillin G, lincomycin, ciprofloxacin) and 2 preservatives (benzoic and sorbic acid) on the growth and development of 8 probiotic Lactobacillus strains. All lactobacilli were subjected to a large range of concentrations, growth curves were plotted and MICs were determined for each antimicrobial. The results showed correlation between the sublethal concentrations and the growth rate of the studied microorganisms. Based on the obtained data two groups of strains could be defined – sensitive and relatively resistant. The first group includes L. bulgaricus S2. L. bulgaricus S4. L. bulgaricus S19 and L. gasseri S20. The most resistant of this group was L. gasseri S20. The second group showed more sensitivity and the most affected by the antimicrobials was L. bulgaricus S28.
Collapse
|
10
|
Fatahi-Bafghi M, Naseri S, Alizehi A. Genome analysis of probiotic bacteria for antibiotic resistance genes. Antonie van Leeuwenhoek 2022; 115:375-389. [PMID: 34989942 DOI: 10.1007/s10482-021-01703-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022]
Abstract
To date, probiotic bacteria are used in the diet and have various clinical applications. There are reports of antibiotic resistance genes in these bacteria that can transfer to other commensal and pathogenic bacteria. The aim of this study was to use whole-genome sequence analysis to identify antibiotic resistance genes in a group of bacterial with probiotic properties. Also, this study followed existing issues about the importance and presence of antibiotic resistance genes in these bacteria and the dangers that may affect human health in the future. In the current study, a collection of 126 complete probiotic bacterial genomes was analyzed for antibiotic resistance genes. The results of the current study showed that there are various resistance genes in these bacteria that some of them are transferable to other bacteria. The tet(W) tetracycline resistance gene was more than other antibiotic resistance genes in these bacteria and this gene was found in Bifidobacterium and Lactobacillus. In our study, the most numbers of antibiotic resistance genes were transferred with mobile genetic elements. We propose that probiotic companies before the use of a micro-organism as a probiotic, perform an antibiotic susceptibility testing for a large number of antibiotics. Also, they perform analysis of complete genome sequence for prediction of antibiotic resistance genes.
Collapse
Affiliation(s)
- Mehdi Fatahi-Bafghi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Sara Naseri
- Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Alizehi
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
11
|
Bratulić M, Mikuš T, Cvrtila Ž, Cenci-Goga BT, Grispoldi L, Pavunc AL, Novak J, Kos B, Šušković J, Zadravec M, Garofalo C, Kabalin AME, Kozačinski L. Quality of traditionally produced Istrian sausage and identification of autochthonous lactic acid bacteria strains as potential functional starter cultures. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03835-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Incidence of Tetracycline and Erythromycin Resistance in Meat-Associated Bacteria: Impact of Different Livestock Management Strategies. Microorganisms 2021; 9:microorganisms9102111. [PMID: 34683432 PMCID: PMC8537249 DOI: 10.3390/microorganisms9102111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
The extensive use of antibiotics as growth promoters, or their continued abusive misuse to cure or prevent the onset of bacterial infections as occurs in the intensive farming, may have played a pivotal role in the spread of reservoirs of antibiotic resistance (AR) among food-associated bacteria including pathogens representing risks to human health. The present study compares the incidence of tetracycline and erythromycin resistances in lactic acid bacteria (LAB) and coagulase negative staphylococci (CNS) from fermented products manufacturing using meat from intensive animal husbandry (industrialized manufacturing Italian salami) and from extensive farms (artisanal sausages facilities pork and llama Argentinean sausages). A higher incidence of tetracycline resistance (TET-R) compared to erythromycin resistance (ERY-R) was observed among the 205 isolates. Unlike CNS strains, the LAB showed a significant correlation between the TET-R and the ERY-R phenotypes. Genotypic assessment shows a high correlation with tetK and tetM for the TET-R strains and with ermB and ermC for the ERY-R strains. Multiple correspondence analyses have highlighted the association between AR phenotypes and CNS species isolated from Italian salami, while the susceptible phenotypes were associated with the LAB species from Argentinean sausages. Since antibiotic resistance in meat-associated bacteria is a very complex phenomenon, the assessment of bacterial resistance in different environmental contexts with diverse farming practices and food production technologies will help in monitoring the factors influencing AR emergence and spread in animal production.
Collapse
|
13
|
Abstract
The absence of acquired resistance to antimicrobials has become an important criterion in evaluation of the biosafety of lactobacilli used as industrial starter or probiotic cultures. The aim of this study was to assess antibiotic resistance in starter and non-starter lactobacilli of food origin. Minimal inhibitory concentrations of ampicillin, chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, tetracycline and vancomycin were established in 81 strains of lactobacilli (L. acidophilus, L. animalis, L. brevis, L. curvatus, L. delbrueckii, L. fermentum, L. helveticus, L. paracasei, L. plantarum, L. rhamnosus and L. sakei) by the microdilution method. The strains were classified as susceptible or resistant to antimicrobials based on the cut-off values according to the EFSA guideline. Sixty-two strains (77% food isolates, 76% starter or adjunct cultures) were resistant to at least one antimicrobial agent (the most frequently to aminoglycosides). Adjunct cultures showed a higher antibiotic resistance (80%) than starters (60%). Four multiresistant strains (3 food isolates, 1 adjunct culture) were analyzed by whole genome sequencing. One potentially transferable aadE gene (responsible for streptomycin resistance) was detected only in one multi-drug resistant strain of L. animalis originating from an adjunct culture. Thus, there is a risk of horizontal transmission of this gene. It is necessary to eliminate such strains from use in the food industry. This study provides relevant data concerning the use of lactobacilli in safe food production. To ensure food safety, detailed characterization of resistance to antimicrobials is necessary not only in starter strains but also in non-starter lactic acid bacteria isolated from food products.
Collapse
|
14
|
Biodiversity and technological-functional potential of lactic acid bacteria isolated from spontaneously fermented chia sourdough. Int J Food Microbiol 2019; 316:108425. [PMID: 31715547 DOI: 10.1016/j.ijfoodmicro.2019.108425] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/19/2019] [Accepted: 11/03/2019] [Indexed: 11/24/2022]
Abstract
Chia, is a gluten-free, rich in proteins, oilseed that is "on trend" as an alternative ingredient in food production, adding nutritional value. As a reservoir of natural biodiversity, lactic acid bacteria development, during spontaneous chia flour fermentation (sourdough) for 10 days, were investigated by culturing and high throughput sequencing (HTS). Culture-dependent analysis showed a rapid increase in total LAB numbers from the second day of sourdough refreshment. Taxonomical identification of LAB isolates by rep-PCR and further 16S rRNA sequencing was performed. Besides Among identified LAB by culture-dependent approach, species from genus Enterococcus were the most abundant; Lactococcus (Lc. lactis), Lactobacillus (L. rhamnosus) and Weissella (W. cibaria) species were also isolated. By HTS, twelve OTUs belonging to LAB genera were identified during chia sourdough fermentation with an increased Lactobacillus diversity. Enterococcus (E.) faecium, E. mundtii, W. cibaria and L. rhamnosus were detected as dominant species in the final propagation stages while Bacillus and Clostridium were mostly present during first fermentation stages. The investigation of biotechnological and safety traits (acidification ability, protein hydrolysis, exopolysaccharides production, antimicrobial activity and antibiotic resistance) of 15 representative LAB strains was performed. Strains characterization led to the selection of Lc. lactis CH179, L. rhamnosus CH34 and W. cibaria CH28 as candidates to be used as novel functional starter culture for gluten-free chia fermented products. As far as we know, this is the first study providing information on the molecular inventory of LAB population during spontaneous fermentation of chia sourdough.
Collapse
|
15
|
Selection of native bacterial starter culture in the production of fermented meat sausages: Application potential, safety aspects, and emerging technologies. Food Res Int 2019; 122:371-382. [DOI: 10.1016/j.foodres.2019.04.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 01/04/2023]
|
16
|
Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, Ross RP, Hill C, O'Toole PW. Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appl Environ Microbiol 2019; 85:e01738-18. [PMID: 30366997 PMCID: PMC6293106 DOI: 10.1128/aem.01738-18] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus species are widely used as probiotics and starter cultures for a variety of foods, supported by a long history of safe usage. Although more than 35 species meet the European Food Safety Authority (EFSA) criteria for qualified presumption of safety status, the safety of Lactobacillus species and their carriage of antibiotic resistance (AR) genes is under continuing ad hoc review. To comprehensively update the identification of AR in the genus Lactobacillus, we determined the antibiotic susceptibility patterns of 182 Lactobacillus type strains and compared these phenotypes to their genotypes based on genome-wide annotations of AR genes. Resistances to trimethoprim, vancomycin, and kanamycin were the most common phenotypes. A combination of homology-based screening and manual annotation identified genes encoding resistance to aminoglycosides (20 sequences), tetracycline (18), erythromycin (6), clindamycin (60), and chloramphenicol (42). In particular, the genes aac(3) and lsa, involved in resistance to aminoglycosides and clindamycin, respectively, were found in Lactobacillus spp. Acquired determinants predicted to code for tetracycline and erythromycin resistance were detected in Lactobacillus ingluviei, Lactobacillus amylophilus, and Lactobacillus amylotrophicus, flanked in the genome by mobile genetic elements with potential for horizontal transfer.IMPORTANCELactobacillus species are generally considered to be nonpathogenic and are used in a wide variety of foods and products for humans and animals. However, many of the species examined in this study have antibiotic resistance levels which exceed those recommended by the EFSA, suggesting that these cutoff values should be reexamined in light of the genetic basis for resistance discussed here. Our data provide evidence for rationally revising the regulatory guidelines for safety assessment of lactobacilli entering the food chain as starter cultures, food preservatives, or probiotics and will facilitate comprehensive genotype-based assessment of strains for safety screening.
Collapse
Affiliation(s)
| | - Harsh Mathur
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Cork, Ireland
| | - Elisa Salvetti
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Siobhán Clarke
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Cork, Ireland
| | - Mary C Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Cork, Ireland
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, Verona, Italy
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Wang J, Li M, Wang J, Liu M, Yang K, Zhang J, Fan M, Wei X. Antibiotic Resistance of Coagulase-Negative Staphylococci and Lactic Acid Bacteria Isolated from Naturally Fermented Chinese Cured Beef. J Food Prot 2018; 81:2054-2063. [PMID: 30485765 DOI: 10.4315/0362-028x.jfp-18-195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study provided phenotypic and molecular analysis of the antibiotic resistance within coagulase-negative staphylococci and lactic acid bacteria isolated from naturally fermented Chinese cured beef. A total of 49 strains were isolated by selective medium and identified at the species level by 16S rRNA gene sequencing as follows: Staphylococcus carnosus (37), Lactobacillus plantarum (6), Weissella confusa (4), Lactobacillus sakei (1), and Weissella cibaria (1). All strains were typed by random amplified polymorphic DNA fingerprinting, and their antibiotic resistances profiles to 15 antibiotics were determined as the MIC by using the agar dilution method. All the tested strains were sensitive to ampicillin, and most of them were also sensitive to penicillin, gentamycin, neomycin, norfloxacin, and ciprofloxacin with low MICs. High resistance to streptomycin, vancomycin, erythromycin, roxithromycin, lincomycin, and kanamycin was widely observed, while the resistant levels to tetracycline, oxytetracycline, and chloramphenicol varied. The presence of corresponding resistance genes in resistant isolates was investigated by PCR, with the following genes detected: tet(M) gene in 9 S. carnosus strains and 1 W. confusa strain; erm(F) gene in 10 S. carnosus strains; ere(A) gene in 6 S. carnosus strains; ere(A) gene in 4 S. carnosus strains and 1 L. plantarum strain; and str(A) gene and str(B) gene in 3 S. carnosus strains. The results indicated that multiple antibiotic resistances were common in coagulase-negative staphylococci and lactic acid bacteria strains isolated from naturally fermented Chinese cured beef. Safety analysis and risk assessment should be performed for application in meat products.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Mingyue Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Miaomiao Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Kun Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| |
Collapse
|
18
|
Anisimova E, Yarullina D. Characterization of Erythromycin and Tetracycline Resistance in Lactobacillus fermentum Strains. Int J Microbiol 2018; 2018:3912326. [PMID: 30534155 PMCID: PMC6252201 DOI: 10.1155/2018/3912326] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022] Open
Abstract
Lactobacillus fermentum colonizing gastrointestinal and urogenital tracts of humans and animals is widely used in manufacturing of fermented products and as probiotics. These bacteria may function as vehicles of antibiotic resistance genes, which can be transferred to pathogenic bacteria. Therefore, monitoring and control of transmissible antibiotic resistance determinants in these microorganisms is necessary to approve their safety status. The aim of this study was to characterize erythromycin and tetracycline resistance of L. fermentum isolates and to estimate the potential transfer of resistance genes from lactobacilli to the other Gram-positive and Gram-negative bacteria. Among six L. fermentum strains isolated from human feces and commercial dairy products, five strains demonstrated phenotypic resistance to tetracycline. PCR screening for antibiotic resistance determinants revealed plasmid-located tetracycline resistance genes tet(K) and tet(M) in all strains and erythromycin resistance genes erm(B) in the chromosome of L. fermentum 5-1 and erm(C) in the plasmid of L. fermentum 3-4. All tested lactobacilli lacked conjugative transposon Tn916 and were not able to transfer tetracycline resistance genes to Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, Acinetobacter baumannii, Citrobacter freundii, and Escherichia coli by filter mating. Staphylococcus haemolyticus did not accept erythromycin resistance genes from corresponding Lactobacillus strains. Thus, in the present study, L. fermentum was not implicated in the spread of erythromycin and tetracycline resistance, but still these strains pose the threat to the environment and human health because they harbored erythromycin and tetracycline resistance genes in their plasmids and therefore should not be used in foods and probiotics.
Collapse
Affiliation(s)
- Elizaveta Anisimova
- Department of Microbiology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Dina Yarullina
- Department of Microbiology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| |
Collapse
|
19
|
Aristimuño Ficoseco C, Mansilla FI, Maldonado NC, Miranda H, Fátima Nader-Macias ME, Vignolo GM. Safety and Growth Optimization of Lactic Acid Bacteria Isolated From Feedlot Cattle for Probiotic Formula Design. Front Microbiol 2018; 9:2220. [PMID: 30323790 PMCID: PMC6172481 DOI: 10.3389/fmicb.2018.02220] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023] Open
Abstract
In order to eliminate the widespread use of antibiotics in livestock production, the research for alternatives has increased lately. This study examined the safety of 40 lactic acid bacteria (LAB) isolated from bovine feedlot environment and previously selected as potential probiotics. A high sensitivity prevalence to ampicillin (AMP, 100%), gentamicin (GEN, 96.3%), kanamycin (KAN, 96.3%), clindamycin (CLI, 85.2%), chloramphenicol (CHL, 92.6%) and streptomycin (STR, 88.9%) while moderate and high resistance against erythromycin (ERY, 48%) and tetracycline (TET, 79%) respectively, were determined. Feedlot enterococci and pediococci displayed high resistance to CLI, ERY, GEN and TET (73, 100, 54.5, and 73%, respectively). Among fifteen resistance genes investigated, seven were identified in lactobacilli; their presence not always was correlated with phenotypic resistance. STR resistance genes, aadA and ant(6) were observed in 7.4 and 3.7% of isolates, respectively; genes responsible for aminoglycosides resistance, such as bla (7.4%), and aph(3”)-III (3.7%) were also recognized. In addition, resistance cat and tetS genes (3.7 and 7.4%, respectively) were harbored by feedlot lactobacilli strains. The presence of ermB gene in 22.3% of isolates, including two of the six strains phenotypically resistant to ERY, exhibited the highest prevalence among the assessed antibiotics. None of the feedlot lactobacilli harbored virulence factors genes, while positive PCR amplification for ace, agg, fsrA, and atpA genes was found for enterococci. With the objective of producing large cell biomass for probiotic delivery, growth media without peptone but containing glucose and skim milk powder (Mgl and Mlac) were selected as optimal. Lactobacillus acidophilus CRL2074, L. amylovorus CRL2115, L. mucosae CRL2069, and L. rhamnosus CRL2084 were strains selected as free of antibiotic resistance and virulence determinants, able to reach high cell numbers in non-expensive culture media and being compatible among them.
Collapse
Affiliation(s)
- Cecilia Aristimuño Ficoseco
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucuman, Argentina
| | - Flavia I Mansilla
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucuman, Argentina
| | - Natalia C Maldonado
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucuman, Argentina
| | - Hortencia Miranda
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucuman, Argentina
| | - María E Fátima Nader-Macias
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucuman, Argentina
| | - Graciela M Vignolo
- Centro de Referencia para Lactobacilos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucuman, Argentina
| |
Collapse
|
20
|
Wang J, Wei X, Fan M. Assessment of Antibiotic Susceptibility within Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Hunan Smoked Pork, a Naturally Fermented Meat Product in China. J Food Sci 2018; 83:1707-1715. [PMID: 29786847 DOI: 10.1111/1750-3841.14147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/20/2018] [Accepted: 03/08/2018] [Indexed: 01/10/2023]
Abstract
The aim of this study was to evaluate the antibiotic susceptibility of lactic acid bacteria (LAB) and coagulase-negative staphylococci (CNS) strains isolated from naturally fermented smoked pork produced in Hunan, China. A total of 48 strains were isolated by selective medium and identified at the species level by 16S rRNA gene sequencing as follows: Staphylococcus carnosus (23), Lactobacillus plantarum (12), Lactobacillus brevis (10), Lactobacillus sakei (1), Weissella confusa (1), and Weissella cibaria (1). All strains were typed by RAPD-PCR, and their susceptibility to 15 antibiotics was determined and expressed as the minimum inhibitory concentration (MIC) using agar dilution method. High resistance to penicillin G, streptomycin, gentamycin, vancomycin, chloramphenicol, norfloxacin, ciprofloxacin, kanamycin, and neomycin was found among the isolates. All the strains were sensitive to ampicillin, while the susceptibility to tetracycline, oxytetracycline, erythromycin, lincomycin, and roxithromycin varied. The presence of relevant resistance genes was investigated by PCR and sequencing, with the following genes detected: str(A), str(B), tet(O), tet(M), ere(A), and catA. Eleven strains, including 3 S. carnosus, 6 L. plantarum, and 2 L. brevis, harbored more than 3 antibiotic resistance genes. Overall, multiple antibiotic resistance patterns were widely observed in LAB and S. carnosus strains isolated from Hunan smoked pork. Risk assessment should be carried out with regard to the safe use of LAB and CNS in food production. PRACTICAL APPLICATION We evaluated the antibiotic resistance of lactic acid bacteria and coagulase-negative staphylococci strains isolated from Chinese naturally fermented smoked pork. Our results may provide important data on establishing breakpoint standards for LAB and CNS and evaluating the safety risk of these strains for commercial use.
Collapse
Affiliation(s)
- Jing Wang
- College of Food Science and Engineering, Northwest A&F Univ., Yangling, 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F Univ., Yangling, 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F Univ., Yangling, 712100, China
| |
Collapse
|
21
|
Ledina T, Mohar-Lorbeg P, Golob M, Djordjevic J, Bogovič-Matijašić B, Bulajic S. Tetracycline resistance in lactobacilli isolated from Serbian traditional raw milk cheeses. Journal of Food Science and Technology 2018; 55:1426-1434. [PMID: 29606757 DOI: 10.1007/s13197-018-3057-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/28/2017] [Accepted: 01/26/2018] [Indexed: 10/17/2022]
Abstract
The aim of this study was to investigate the presence of tetracycline resistance in lactobacilli isolated from traditional Serbian white brined raw milk cheeses (Homolje, Sjenica, Zlatar). Isolation of presumptive lactobacilli was initially performed using MRS-S agar without tetracycline, or supplemented with 16 and 64 µg/mL of tetracycline. Rep-PCR (GTG)5 genotyping showed a high diversity of the isolates obtained, as examination of 233 isolates resulted in 156 different Rep-PCR fingerprints. Ninety out of 156 (57.69%) of the strains, representatives with different (GTG)5 fingerprints, were identified by MALDI-TOF MS as lactobacilli, while 66 out of 156 (42.31%) strains were identified as members of other LAB genera. All except one out of 90 Lactobacillus isolates further tested by microdilution method, demonstrated unimodal distribution of tetracycline MIC values which were equal to or lower from the breakpoint MIC values (EFSA in EFSA J 10: 1-10, 2012. 10.2903/j.efsa.2012.2740). Only one Lb. paracasei isolate showed the presence of tet(M) gene, while the other analyzed tet genes [tet(A), tet(B), tet(C) tet(K), tet(L), tet(O) and tet(W)] were not detected in any of the isolates. The results of this study indicates that lactobacilli from traditional Serbian raw milk cheeses do not present considerable tetracycline resistance reservoirs. For final conclusions about the safety of these autochthonous cheeses regarding the possible tetracycline resistance transferability, the assessment of the entire cheese microbiota is needed.
Collapse
Affiliation(s)
- Tijana Ledina
- 1Department for Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, Belgrade, 11000 Serbia
| | - Petra Mohar-Lorbeg
- 2Biotechnical Faculty Department of Animal Science, Institute of Dairy Science and Probiotics, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Majda Golob
- 3Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia
| | - Jasna Djordjevic
- 1Department for Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, Belgrade, 11000 Serbia
| | - Bojana Bogovič-Matijašić
- 2Biotechnical Faculty Department of Animal Science, Institute of Dairy Science and Probiotics, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Snezana Bulajic
- 1Department for Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, Belgrade, 11000 Serbia
| |
Collapse
|
22
|
Saelim K, Jampaphaeng K, Maneerat S. Functional properties of Lactobacillus plantarum S0/7 isolated fermented stinky bean (Sa Taw Dong) and its use as a starter culture. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
23
|
Dec M, Urban-Chmiel R, Stępień-Pyśniak D, Wernicki A. Assessment of antibiotic susceptibility in Lactobacillus isolates from chickens. Gut Pathog 2017; 9:54. [PMID: 28932278 PMCID: PMC5605976 DOI: 10.1186/s13099-017-0203-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to determine the susceptibility of 88 Lactobacillus isolates derived from chickens to antibiotic substances and to detect drug-resistance genes. RESULTS The minimal inhibitory concentration of 13 antimicrobial substances was determined by the broth microdilution method, and resistance genes were detected by PCR. We recorded a high prevalence of resistance to tiamulin (90% resistant isolates), tetracyclines (74%) and lincomycin (70%), and a moderately high frequency of resistance to enrofloxacin (48%), macrolides (42%), aminoglycosides (12.5-31%), ampicillin (26%) and chloramphenicol (23%). Multi-drug resistance was observed in 79.5% of isolates. The presence of resistance genes was generally correlated with phenotypic resistance, but some molecular determinants were also recorded in susceptible isolates. Among tetracycline resistance genes, the most frequently identified was tetW (45% isolates), followed by tetM (26%) and tetL (24%). The ermB, ermC and lnuA genes, associated with resistance to macrolides and lincosamides, were observed in 39, 12 and 39% of isolates, respectively. Among genes determining resistance to aminoglycoside antibiotics, we identified ant(6)-Ia (10% of isolates), aac(6')-Ie-aph(2')-Ia (8%), aph(2″)-Ic (6%) and aadE (4.5%). The cat gene was present in 32 isolates, including 8 of 20 found to be resistant to chloramphenicol. Two genes encoding efflux pumps were identified-the acrA gene was present in all isolates tested, and 10 of 79 lactobacilli determined to be phenotypically resistant to tiamulin contained the lsaE gene. We were unable to explain the resistance mechanism of Lactobacillus isolates to ampicillin, but showed that it did not involve the production of β-lactamases. CONCLUSIONS Our findings indicate that intestinal lactobacilli should be considered a reservoir of resistance genes and that antibiotics must be used prudently in poultry production. The data derived from this study can be used as a basis for reviewing current microbiological breakpoints for categorization of susceptible and resistant strains within the genus Lactobacillus.
Collapse
Affiliation(s)
- Marta Dec
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Renata Urban-Chmiel
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Dagmara Stępień-Pyśniak
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Andrzej Wernicki
- Sub-Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| |
Collapse
|
24
|
Zagorec M, Champomier-Vergès MC. Lactobacillus sakei: A Starter for Sausage Fermentation, a Protective Culture for Meat Products. Microorganisms 2017; 5:microorganisms5030056. [PMID: 28878171 PMCID: PMC5620647 DOI: 10.3390/microorganisms5030056] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
Among lactic acid bacteria of meat products, Lactobacillus sakei is certainly the most studied species due to its role in the fermentation of sausage and its prevalence during cold storage of raw meat products. Consequently, the physiology of this bacterium regarding functions involved in growth, survival, and metabolism during meat storage and processing are well known. This species exhibits a wide genomic diversity that can be observed when studying different strains and on which probably rely its multiple facets in meat products: starter, spoiler, or protective culture. The emerging exploration of the microbial ecology of meat products also revealed the multiplicity of bacterial interactions L. sakei has to face and their various consequences on microbial quality and safety at the end of storage.
Collapse
|
25
|
OHASHI Y, FUJISAWA T. Detection of antibiotic resistance genes in the feces of young adult Japanese. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2017; 36:151-154. [PMID: 29038771 PMCID: PMC5633530 DOI: 10.12938/bmfh.17-004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/14/2017] [Indexed: 11/16/2022]
Abstract
Antibiotic resistance genes in the feces of healthy young adult Japanese were analyzed with polymerase chain reaction using specific primers. Antibiotic resistance genes against macrolides (ermB, ermF, ermX, and mefA/E), tetracyclines (tetW, tetQ, tetO, and tetX), β-lactam antibiotics (blaTEM ), and streptomycin (aadE) were detected in more than 50% of subjects. These antibiotic resistance genes are likely widespread in the large intestinal bacteria of young adult Japanese.
Collapse
Affiliation(s)
- Yuji OHASHI
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Tomohiko FUJISAWA
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
26
|
Zheng M, Zhang R, Tian X, Zhou X, Pan X, Wong A. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Front Microbiol 2017; 8:908. [PMID: 28579981 PMCID: PMC5437161 DOI: 10.3389/fmicb.2017.00908] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/04/2017] [Indexed: 11/13/2022] Open
Abstract
Probiotic bacteria are known to harbor intrinsic and mobile genetic elements that confer resistance to a wide variety of antibiotics. Their high amounts in dietary supplements can establish a reservoir of antibiotic resistant genes in the human gut. These resistant genes can be transferred to pathogens that share the same intestinal habitat thus resulting in serious clinical ramifications. While antibiotic resistance of probiotic bacteria from food, human and animal sources have been well-documented, the resistant profiles of probiotics from dietary supplements have only been recently studied. These products are consumed with increasing regularity due to their health claims that include the improvement of intestinal health and immune response as well as prevention of acute and antibiotic-associated diarrhea and cancer; but, a comprehensive risk assessment on the spread of resistant genes to human health is lacking. Here, we highlight recent reports of antibiotic resistance of probiotic bacteria isolated from dietary supplements, and propose complementary strategies that can shed light on the risks of consuming such products in the context of a global widespread of antibiotic resistance. In concomitant with a broader screening of antibiotic resistance in probiotic supplements is the use of computational simulations, live imaging and functional genomics to harvest knowledge on the evolutionary behavior, adaptations and dynamics of probiotics studied in conditions that best represent the human gut including in the presence of antibiotics. The underlying goal is to enable the health benefits of probiotics to be exploited in a responsible manner and with minimal risk to human health.
Collapse
Affiliation(s)
- Min Zheng
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Ruijia Zhang
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Xuechen Tian
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Xuan Zhou
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Xutong Pan
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| | - Aloysius Wong
- College of Natural, Applied and Health Sciences, Wenzhou-Kean UniversityWenzhou, China
| |
Collapse
|
27
|
In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1258-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
28
|
Abstract
Fermented sausages are highly treasured traditional foods. A large number of distinct sausages with different properties are produced using widely different recipes and manufacturing processes. Over the last years, eating fermented sausages has been associated with potential health hazards due to their high contents of saturated fats, high NaCl content, presence of nitrite and its degradation products such as nitrosamines, and use of smoking which can lead to formation of toxic compounds such as polycyclic aromatic hydrocarbons. Here we review the recent literature regarding possible health effects of the ingredients used in fermented sausages. We also go through attempts to improve the sausages by lowering the content of saturated fats by replacing them with unsaturated fats, reducing the NaCl concentration by partly replacing it with KCl, and the use of selected starter cultures with desirable properties. In addition, we review the food pathogenic microorganisms relevant for fermented sausages(Escherichia coli,Salmonella enterica,Staphylococcus aureus,Listeria monocytogenes,Clostridium botulinum, andToxoplasma gondii)and processing and postprocessing strategies to inhibit their growth and reduce their presence in the products.
Collapse
|
29
|
Abstract
Starter cultures could play an essential role in the manufacture of traditional cured meat products. In order to achieve objectives related to meat products’ quality and safety improvement, the selection of particular strains constituting a starter culture should be carried out in the context of its application, since its functionality will depend on the type of sausage and process conditions. Also, strain selection should comply with particular requirements to warrant safety. The aim of the current review is to update the knowledge on the use of starter cultures in traditional meat products, with focus on dry-fermented products. In this manuscript, we will try to give answers to some relevant questions: Which starter cultures are used and why? Why are LAB used? What are their role and their specific mode of action? Which other groups of microorganisms (bacteria and fungi) are used as starter cultures and how do they act? A particular revision of omics approach regarding starter cultures is made since the use of these techniques allows rapid screening of promising wild strains with desirable functional characteristics, enabling the development of starter cultures better adapted to the meat matrix.
Collapse
|
30
|
Fontana C, Bassi D, López C, Pisacane V, Otero MC, Puglisi E, Rebecchi A, Cocconcelli PS, Vignolo G. Microbial ecology involved in the ripening of naturally fermented llama meat sausages. A focus on lactobacilli diversity. Int J Food Microbiol 2016; 236:17-25. [DOI: 10.1016/j.ijfoodmicro.2016.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 11/30/2022]
|
31
|
Yadav R, Puniya AK, Shukla P. Probiotic Properties of Lactobacillus plantarum RYPR1 from an Indigenous Fermented Beverage Raabadi. Front Microbiol 2016; 7:1683. [PMID: 27818658 PMCID: PMC5073146 DOI: 10.3389/fmicb.2016.01683] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022] Open
Abstract
Present study documents the potential probiotic Lactobacillus isolated from indigenous fermented beverage Raabadi, consumed during summers in Haryana and Rajasthan regions of India. A total of five Raabadi samples were collected aseptically and 54 isolates were purified using MRS medium. All the isolates were assessed for tolerance to low pH and bile salts. It was observed that out of 54 only 24 isolates could survive the simulated gastric conditions. These isolates were further evaluated in vitro for cell surface hydrophobicity, cell surface hydrophobicity, hypocholesteramic activity, anti-oxidative potential, BSH activity, antagonistic activity, and antibiotic resistance profile. In addition, the confirmation of phenol resistance was also done. On the basis of results obtained, the survival rate of isolates was noted and six isolates were finally selected for further studies. Among them Lactobacillus plantarum RYPR1 and RYPC7 showed good survival at pH 2 which shows good acid tolerance. Moreover, L. plantarum RYPR1 showed the highest hydrophobicity (79.13%) and represented the deconjugation of bile salts, which help in their adhesion to epithelial cells and colonization. Furthermore, RYPR1 also exhibited highest cholesterol reduction (59%) and subsequent analysis of results revealed that the above mentioned isolates further exhibit a good hypocholesterolemic effect and could be possibly used to prevent hypercholesterolemia. The present study divulges that L. plantarum RYPR1 has an excellent probiotic potential.
Collapse
Affiliation(s)
- Ruby Yadav
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University Rohtak, India
| | - Anil K Puniya
- Division of Dairy Microbiology, ICAR-National Dairy Research InstituteKarnal, India; College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University Rohtak, India
| |
Collapse
|
32
|
Feichtinger M, Mayrhofer S, Kneifel W, Domig KJ. Tetracycline Resistance Patterns of Lactobacillus buchneri Group Strains. J Food Prot 2016; 79:1741-1747. [PMID: 28221841 DOI: 10.4315/0362-028x.jfp-15-577] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lactobacilli are applied as starter cultures for controlled fermentation in the production of food and feed. Among other lactobacilli, members of the Lactobacillus buchneri group are used in fermented milk, wine, and silage. Most of the L. buchneri species used for the manufacturing of food or feed are already on the list for qualified presumption of safety status and are recommended as biological agents by the European Food Safety Authority. Consequently, new strains intended as food or feed additives do not require any additional safety check than confirming the absence of transferable antibiotic resistance determinants. Of these determinants, tetracycline resistance genes are especially predominant in lactobacilli. Within this study, a total of 128 strains belonging to the L. buchneri group ( L. buchneri , L. diolivorans , L. farraginis , L. hilgardii , L. kefiri , L. kisonensis , L. otakiensis , L. parabuchneri , L. parafarraginis , L. parakefiri , L. rapi , L. senioris , and L. sunkii ) were examined for their susceptibility to tetracycline. Tetracycline MICs were assessed by the broth microdilution method according to ISO 10932/IDF 223. Subsequently, the presence of tetracycline resistance genes was investigated by using PCR. In addition, selected strains were tested for a broader range of tetracycline resistance genes by using a microarray technique. Applying the tetracycline cutoff values defined by European Food Safety Authority for heterofermentative and obligately homofermentative lactobacilli, 96.9% of the strains would have been categorized as tetracycline resistant. However, none of the tested tetracycline resistance genes could be detected by PCR or microarray analysis. Furthermore, the MIC distribution of all strains was unimodal and at the high end of the tested tetracycline concentration range (4 to 256 μg/ml). Thus, these data suggest that tetracycline resistance in the L. buchneri group strains is intrinsic, which complies with the requirements defined in the qualified presumption of safety outline.
Collapse
Affiliation(s)
- Marlies Feichtinger
- BOKU-University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, A-1190 Vienna, Austria
| | - Sigrid Mayrhofer
- BOKU-University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, A-1190 Vienna, Austria
| | - Wolfgang Kneifel
- BOKU-University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, A-1190 Vienna, Austria
| | - Konrad J Domig
- BOKU-University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
33
|
Alves SP, Fernandes MJ, Fernandes MH, Bessa RJ, Laranjo M, A.-Santos AC, Elias M, Fraqueza MJ. Quality and Acceptability of Dry Fermented Sausages Prepared with Low Value Pork Raw Material. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Susana P. Alves
- CIISA, Faculty of Veterinary Medicine; University of Lisbon; Lisbon Portugal
| | - Maria J. Fernandes
- CIISA, Faculty of Veterinary Medicine; University of Lisbon; Lisbon Portugal
| | - Maria H. Fernandes
- CIISA, Faculty of Veterinary Medicine; University of Lisbon; Lisbon Portugal
| | - Rui J.B. Bessa
- CIISA, Faculty of Veterinary Medicine; University of Lisbon; Lisbon Portugal
| | - Marta Laranjo
- ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada (IIFA), Departamento de Fitotecnia, Escola de Ciências e Tecnologia; Universidade de Évora; Évora Portugal
| | - Ana Cristina A.-Santos
- ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada (IIFA), Departamento de Fitotecnia, Escola de Ciências e Tecnologia; Universidade de Évora; Évora Portugal
| | - Miguel Elias
- ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada (IIFA), Departamento de Fitotecnia, Escola de Ciências e Tecnologia; Universidade de Évora; Évora Portugal
| | - Maria J. Fraqueza
- CIISA, Faculty of Veterinary Medicine; University of Lisbon; Lisbon Portugal
| |
Collapse
|
34
|
Cho GS, Hanak A, Huch M, Holzapfel WH, Franz CMAP. Investigation into the Potential of Bacteriocinogenic Lactobacillus plantarum BFE 5092 for Biopreservation of Raw Turkey Meat. Probiotics Antimicrob Proteins 2016; 2:241-9. [PMID: 26781319 DOI: 10.1007/s12602-010-9053-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The bacteriocin-producing Lactobacillus plantarum BFE 5092 was assessed for its potential as a protective culture in the biopreservation of aerobically stored turkey meat. This strain produces three bacteriocins, i.e. plantaricins EF, JK and N. The absolute expression of Lactobacillus plantarum BFE 5092 16S rRNA housekeeping gene, as well as l-ldh, plnEF and plnG genes as determined by quantitative, real-time-PCR, revealed that these genes were expressed to similar levels when the strain was grown at 8 and 30 °C in MRS broth. On turkey meat, Lactobacillus plantarum BFE 5092 did not grow but survived, as indicated by similar viable cell numbers during a 9-day storage period at 8 °C. When inoculated at 1 × 10(7) CFU/g on the turkey meat and subsequently stored at 10 °C, the culture did again not show good growth. Lactobacillus plantarum BFE 5092 could not inhibit the growth of naturally occurring listeriae or Gram-negative bacteria on the turkey meat at 10 °C, or that of Listeria monocytogenes when it was co-inoculated at a level of 1 × 10(5) CFU/g. Gene expression analyses showed that the bacteriocin genes were expressed on turkey meat stored at 10 °C. Moreover, the investigation into the absolute expression of the three plantaricin genes of Lactobacillus plantarum BFE 5092 in co-culture with Listeria monocytogenes on turkey meat by qRT-PCR showed that the plantaricin genes were indeed expressed during the low-temperature storage condition. The Lactobacillus plantarum BFE 5092 strain overall could not effectively inhibit L. monocytogenes and therefore it would not make a suitable protective culture for biopreservation of turkey meat stored aerobically at low temperature.
Collapse
Affiliation(s)
- Gyu-Sung Cho
- Max Rubner-Institute, Federal Research Institute for Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Alexander Hanak
- Max Rubner-Institute, Federal Research Institute for Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Melanie Huch
- Max Rubner-Institute, Federal Research Institute for Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany
| | - Wilhelm H Holzapfel
- Max Rubner-Institute, Federal Research Institute for Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany.,School of Life Sciences, Handong Global University, Pohang, Gyeongbuk, 791-708, Republic of Korea
| | - Charles M A P Franz
- Max Rubner-Institute, Federal Research Institute for Nutrition and Food, Haid-und-Neu-Strasse 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
35
|
Jeong DW, Lee JH. Antibiotic resistance, hemolysis and biogenic amine production assessments of Leuconostoc and Weissella isolates for kimchi starter development. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.07.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Lee JH, Jeong DW. Characterization of Mobile Staphylococcus equorum Plasmids Isolated from Fermented Seafood That Confer Lincomycin Resistance. PLoS One 2015; 10:e0140190. [PMID: 26448648 PMCID: PMC4598088 DOI: 10.1371/journal.pone.0140190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/22/2015] [Indexed: 12/18/2022] Open
Abstract
The complete nucleotide sequences of lincomycin-resistance gene (lnuA)-containing plasmids in Staphylococcus equorum strains isolated from the high-salt-fermented seafood jeotgal were determined. These plasmids, designated pSELNU1–3, are 2638-bp long, have two polymorphic sites, and encode typical elements found in plasmids that replicate via a rolling-circle mechanism including the replication protein gene (rep), a double-stranded origin of replication, a single-stranded origin of replication, and counter-transcribed RNA sequence, as well as lnuA. Plasmid sequences exhibit over 83% identity to other Staphylococcus plasmids that harbor rep and lnuA genes. Further, three pairs of identified direct repeats may be involved in inter-plasmid recombination. One plasmid, pSELNU1, was successfully transferred to other Staphylococcus species, Enterococcus faecalis, and Tetragenococcus halophilus in vitro. Antibiotic susceptibility of the transconjugants was host-dependent, and transconjugants maintained a lincomycin resistance phenotype in the absence of selective pressure over 60 generations.
Collapse
Affiliation(s)
- Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 443–760, Republic of Korea
| | - Do-Won Jeong
- Department of Food Science and Biotechnology, Shinansan University, Ansan, 425–792, Republic of Korea
- * E-mail:
| |
Collapse
|
37
|
Abriouel H, Casado Muñoz MDC, Lavilla Lerma L, Pérez Montoro B, Bockelmann W, Pichner R, Kabisch J, Cho GS, Franz CMAP, Gálvez A, Benomar N. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res Int 2015; 78:465-481. [PMID: 28433315 DOI: 10.1016/j.foodres.2015.09.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
Affiliation(s)
- Hikmate Abriouel
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain.
| | - María Del Carmen Casado Muñoz
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Leyre Lavilla Lerma
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Beatriz Pérez Montoro
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Wilhelm Bockelmann
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Rohtraud Pichner
- Hochschule Fulda, University of Applied Sciences, Department of Nutritional, Food and Consumer Sciences, Leipziger Straße 123, 36037 Fulda, Germany
| | - Jan Kabisch
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Gyu-Sung Cho
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Charles M A P Franz
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology, Haid-und-Neu-Str. 9, D-76131 Karlsruhe, Germany
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Nabil Benomar
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| |
Collapse
|
38
|
Wong A, Ngu DYS, Dan LA, Ooi A, Lim RLH. Detection of antibiotic resistance in probiotics of dietary supplements. Nutr J 2015; 14:95. [PMID: 26370532 PMCID: PMC4568587 DOI: 10.1186/s12937-015-0084-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/07/2015] [Indexed: 01/28/2023] Open
Abstract
Background Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. Findings Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. Conclusions This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance. Electronic supplementary material The online version of this article (doi:10.1186/s12937-015-0084-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aloysius Wong
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| | - Davey Yueh Saint Ngu
- UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Lydia Annabel Dan
- UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Amanda Ooi
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| | - Renee Lay Hong Lim
- UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
39
|
Fraqueza MJ. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Int J Food Microbiol 2015; 212:76-88. [PMID: 26002560 DOI: 10.1016/j.ijfoodmicro.2015.04.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/19/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria.
Collapse
Affiliation(s)
- Maria João Fraqueza
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal.
| |
Collapse
|
40
|
Survey of antibiotic resistance traits in strains of Lactobacillus casei/paracasei/rhamnosus. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-1015-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
41
|
Guidone A, Zotta T, Ross RP, Stanton C, Rea MC, Parente E, Ricciardi A. Functional properties of Lactobacillus plantarum strains: A multivariate screening study. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.10.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R. Antibiotic resistance among commercially available probiotics. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.01.025] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3449] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Devirgiliis C, Zinno P, Perozzi G. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front Microbiol 2013; 4:301. [PMID: 24115946 PMCID: PMC3792357 DOI: 10.3389/fmicb.2013.00301] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/19/2013] [Indexed: 12/21/2022] Open
Abstract
Lactobacilli represent a major Lactic Acid Bacteria (LAB) component within the complex microbiota of fermented foods obtained from meat, dairy, and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented foods. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described, lactobacilli and lactococci are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR) strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, highlighting the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health.
Collapse
Affiliation(s)
- Chiara Devirgiliis
- CRA-NUT, Food and Nutrition Research Center, Agricultural Research Council Roma, Italy
| | | | | |
Collapse
|
45
|
Probiotic potential and safety properties of Lactobacillus plantarum from Slovak Bryndza cheese. BIOMED RESEARCH INTERNATIONAL 2013; 2013:760298. [PMID: 24093103 PMCID: PMC3777194 DOI: 10.1155/2013/760298] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/12/2013] [Accepted: 08/04/2013] [Indexed: 12/20/2022]
Abstract
One hundred and twenty-five acid-resistant presumptive lactobacilli were isolated from Slovak Bryndza cheese and screened for their antimicrobial activity against eight bacterial pathogens using spot agar assay. Out of twenty-six Lactobacillus strains with strong inhibition activity, twenty were identified as Lactobacillus plantarum and six as Lactobacillus fermentum. The most active eleven L. plantarum isolates were further characterized in vitro for some probiotic and safety properties. Only three isolates K10, K21, and ZS07 showed the ability to grow over 50% in the presence of 0.3% bile. Strong deconjugation efficiency was determined for CK06 and K21. The highest β-galactosidase activity was shown in isolates ZS11, B01, CK06, and ZS07. Only three of the strains had the ability to produce tyramine: CK06, LM1, and ZS11. Strains K09, K21, ZS11, and ZS15 were susceptible to all tested antibiotics. Analysis of the results confirmed the L. plantarum isolates ZS07 and K21 as the most suitable for probiotic use, due to their desirable probiotic and safety characteristics.
Collapse
|
46
|
Thumu SCR, Halami PM. Acquired resistance to macrolide-lincosamide-streptogramin antibiotics in lactic Acid bacteria of food origin. Indian J Microbiol 2012; 52:530-7. [PMID: 24293706 PMCID: PMC3516663 DOI: 10.1007/s12088-012-0296-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/24/2012] [Indexed: 11/29/2022] Open
Abstract
Antibiotic resistance is a growing problem in clinical settings as well as in food industry. Lactic acid bacteria (LAB) commercially used as starter cultures and probiotic supplements are considered as reservoirs of several antibiotic resistance genes. Macrolide-lincosamide-streptogramin (MLS) antibiotics have a proven record of excellence in clinical settings. However, the intensive use of tylosin, lincomysin and virginamycin antibiotics of this group as growth promoters in animal husbandry and poultry has resulted in development of resistance in LAB of animal origin. Among the three different mechanisms of MLS resistance, the most commonly observed in LAB are the methylase and efflux mediated resistance. This review summarizes the updated information on MLS resistance genes detected and how resistance to these antibiotics poses a threat when present in food grade LAB.
Collapse
Affiliation(s)
- Surya Chandra Rao Thumu
- Food Microbiology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| | - Prakash M. Halami
- Food Microbiology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| |
Collapse
|
47
|
Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2012 update). EFSA J 2012. [DOI: 10.2903/j.efsa.2012.3020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
48
|
Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Antonie van Leeuwenhoek 2012; 102:541-51. [PMID: 22644346 DOI: 10.1007/s10482-012-9749-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
Lactic acid bacteria (LAB) resistant to erythromycin were isolated from different food samples on selective media. The isolates were identified as Enterococcus durans, Enterococcus faecium, Enterococcus lactis, Enterococcus casseliflavus, Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Leuconostoc mesenteroides. Of the total 60 isolates, 88 % harbored the ermB gene. The efflux gene msrA was identified in E. faecium, E. durans, E. lactis, E. casseliflavus, P. pentosaceus and L. fermentum. Further analysis of the msrA gene by sequencing suggested its homology to msrC. Resistance to tetracycline due to the genes tetM, tetW, tetO, tetK and tetL, alone or in combination, were identified in Lactobacillus species. The tetracycline efflux genes tetK and tetL occurred in P. pentosaceus and Enterococcus species. Since it appeared that LAB had acquired these genes, fermented foods may be a source of antibiotic resistance.
Collapse
|
49
|
Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2011 update). EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2497] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
50
|
Drago L, Rodighiero V, Mattina R, Toscano M, de Vecchi E. In VitroSelection and Transferability of Antibiotic Resistance in the Probiotic Strain Lactobacillus reuteriDSM 17938. J Chemother 2011; 23:371-373. [DOI: 10.1179/joc.2011.23.6.371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|