1
|
Elawady R, Aboulela AG, Gaballah A, Ghazal AA, Amer AN. Antimicrobial Sub-MIC induces Staphylococcus aureus biofilm formation without affecting the bacterial count. BMC Infect Dis 2024; 24:1065. [PMID: 39342123 PMCID: PMC11438285 DOI: 10.1186/s12879-024-09790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Biofilm formation is an essential virulence factor that creates a highly protected growth mode for Staphylococcus aureus (S. aureus) to survive in any hostile environment. Antibiotic sub-minimal inhibitory concentration (sub-MIC) may modulate the biofilm formation ability of bacterial pathogens, thereby affecting bacterial pathogenesis and infection outcomes. Intense antimicrobial therapy to treat biofilm-associated infections can control the pathogenic infection aggravation but cannot guarantee its complete eradication. OBJECTIVE This study aimed to assess the sub-MICs effect of 5 different antimicrobial classes on biofilm-forming capacity among Staphylococcus aureus clinical isolates using three different biofilm quantitation techniques. METHODS In this study, the effects of 5 different antimicrobial agents, namely, azithromycin, gentamicin, ciprofloxacin, doxycycline, and imipenem, at sub-MICs of 12.5%, 25%, and 50% were tested on 5 different clinical isolates of S. aureus. The biofilms formed in the absence and presence of different antimicrobial sub-MICs were then assessed using the following three different techniques: the crystal violet (CV) staining method, the quantitative PCR (qPCR) method, and the spread plate method (SPM). RESULTS Biofilm formation was significantly induced in 64% of the tested conditions using the CV technique. On the other hand, the qPCR quantifying the total bacterial count and the SPM quantifying the viable bacterial count showed significant induction only in 24% and 17.3%, respectively (Fig. 1). The difference between CV and the other techniques indicates an increase in biofilm biomass without an increase in bacterial growth. As expected, sub-MICs did not reduce the viable cell count, as shown by the SPM. The CV staining method revealed that sub-MICs of imipenem and ciprofloxacin had the highest significance rate (80%) showing an inductive effect on the biofilm development. On the other hand, doxycycline, azithromycin, and gentamicin displayed lower significance rates of 73%, 53%, and 47%, respectively. CONCLUSION Exposure to sub-MIC doses of antimicrobial agents induces the biofilm-forming capacity of S. aureus via increasing the total biomass without significantly affecting the bacterial growth of viable count.
Collapse
Affiliation(s)
- Raghda Elawady
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Aliaa G Aboulela
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed Gaballah
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Abeer A Ghazal
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed N Amer
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy and Drug Manufacturing, Pharos University, Alexandria, Egypt
| |
Collapse
|
2
|
Su M, Hoang KL, Penley M, Davis MH, Gresham JD, Morran LT, Read TD. Host and antibiotic jointly select for greater virulence in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610628. [PMID: 39257827 PMCID: PMC11383984 DOI: 10.1101/2024.08.31.610628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Widespread antibiotic usage has resulted in the rapid evolution of drug-resistant bacterial pathogens and poses significant threats to public health. Resolving how pathogens respond to antibiotics under different contexts is critical for understanding disease emergence and evolution going forward. The impact of antibiotics has been demonstrated most directly through in vitro pathogen passaging experiments. Independent from antibiotic selection, interactions with hosts have also altered the evolutionary trajectories and fitness landscapes of pathogens, shaping infectious disease outcomes. However, it is unclear how interactions between hosts and antibiotics impact the evolution of pathogen virulence. Here, we evolved and re-sequenced Staphylococcus aureus, a major bacterial pathogen, varying exposure to host and antibiotics to tease apart the contributions of these selective pressures on pathogen adaptation. After 12 passages, S. aureus evolving in Caenorhabditis elegans nematodes exposed to a sub-minimum inhibitory concentration of antibiotic (oxacillin) became highly virulent, regardless of whether the ancestral pathogen was methicillin-resistant (MRSA) or methicillin-sensitive (MSSA). Host and antibiotic exposure selected for reduced drug susceptibility in MSSA lineages while increasing MRSA total growth outside hosts. We identified mutations in genes involved in complex regulatory networks linking virulence and metabolism, including codY , agr , and gdpP , suggesting that rapid adaptation to infect hosts may have pleiotropic effects. In particular, MSSA populations under selection from host and antibiotic accumulated mutations in the global regulator gene codY , which controls biofilm formation in S. aureus. These populations had indeed evolved more robust biofilms-a trait linked to both virulence and antibiotic resistance-suggesting evolution of one trait can confer multiple adaptive benefits. Despite evolving in similar environments, MRSA and MSSA populations proceeded on divergent evolutionary paths, with MSSA populations exhibiting more similarities across replicate populations. Our results underscore the importance of considering multiple and concurrent selective pressures as drivers of pervasive pathogen traits.
Collapse
|
3
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:830-858. [PMID: 37968960 DOI: 10.1080/1040841x.2023.2282459] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Omar A, El-Banna TE, Sonbol FI, El-Bouseary MM. Potential antivirulence and antibiofilm activities of sub-MIC of oxacillin against MDR S. aureus isolates: an in-vitro and in-vivo study. BMC Microbiol 2024; 24:295. [PMID: 39123138 PMCID: PMC11312681 DOI: 10.1186/s12866-024-03429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Multi-drug resistant Staphylococcus aureus is one of the most common causes of nosocomial and community-acquired infections, with high morbidity and mortality. Treatment of such infections is particularly problematic; hence, it is complicated by antibiotic resistance, and there is currently no reliable vaccine. Furthermore, it is well known that S. aureus produces an exceptionally large number of virulence factors that worsen infection. Consequently, the urgent need for anti-virulent agents that inhibit biofilm formation and virulence factors has gained momentum. Therefore, we focused our attention on an already-approved antibiotic and explored whether changing the dosage would still result in the intended anti-virulence effect. METHODS In the present study, we determined the antibiotic resistance patterns and the MICs of oxacillin against 70 MDR S. aureus isolates. We also investigated the effect of sub-MICs of oxacillin (at 1/4 and 1/8 MICs) on biofilm formation using the crystal violet assay, the phenol-sulphuric acid method, and confocal laser scanning microscopy (CLSM). We examined the effect of sub-MICs on virulence factors and bacterial morphology using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and electron microscopy, respectively. Moreover, we studied the effect of sub-MICs of oxacillin (OX) in-vivo using a wound infection model. RESULTS Oxacillin at 1/2 MIC showed a significant decrease in bacterial viability, while 1/4 and 1/8 MICs had negligible effects on treated bacterial isolates. Treatment of MDR isolates with 1/4 or 1/8 MICs of oxacillin significantly reduced biofilm formation (64% and 40%, respectively). The treated MDR S. aureus with sub-MICs of OX exhibited a dramatic reduction in several virulence factors, including protease, hemolysin, coagulase, and toxic shock syndrome toxin-1 (TSST-1) production. The sub-MICs of OX significantly decreased (P < 0.05) the gene expression of biofilm and virulence-associated genes such as agrA, icaA, coa, and tst. Furthermore, oxacillin at sub-MICs dramatically accelerated wound healing, according to the recorded scoring of histological parameters. CONCLUSION The treatment of MDR S. aureus with sub-MICs of oxacillin can help in combating the bacterial resistance and may be considered a promising approach to attenuating the severity of S. aureus infections due to the unique anti-biofilm and anti-virulence activities.
Collapse
Affiliation(s)
- Amira Omar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Tarek E El-Banna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Fatma I Sonbol
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maisra M El-Bouseary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
5
|
Saha T, Lyons N, Yue Yung DB, Quiñones-Mateu ME, Pletzer D, Das SC. Repurposing ebselen as an inhalable dry powder to treat respiratory tract infections. Eur J Pharm Biopharm 2024; 195:114170. [PMID: 38128743 DOI: 10.1016/j.ejpb.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
Respiratory tract infections (RTIs) are one of the leading causes of death globally, lately exacerbated by the increasing prevalence of antimicrobial resistance. While antimicrobial resistance could be overcome by developing new antimicrobial agents, the use of a safe repurposed agent having potent antimicrobial activity against various RTIs can be an efficient and cost-effective alternative to overcome the long and complex process of developing and testing new drugs. Ebselen, a synthetic organoselenium drug originally developed to treat noise-inducing hearing problems, has shown promising antimicrobial activity in vitro against several respiratory pathogens including viruses (e.g., SARS-CoV-2, influenza A virus) and bacteria (e.g., Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). Inhaled drug delivery is considered a promising approach for treating RTIs, as it can ensure effective drug concentrations at a lower dose, thereby minimizing the side effects that are often encountered by using oral or injectable drugs. In this study, we developed inhalable ebselen dry powder formulations using a spray-drying technique. The amino acids leucine, methionine, and tryptophan were incorporated with ebselen to enhance the yield and aerosolization of the dry powders. The amino acid-containing ebselen dry powders showed a better yield (37-56.4 %) than the amino acid-free formulation (30.9 %). All dry powders were crystalline in nature. The mass median aerodynamic diameter (MMAD) was less than 5 µm for amino acids containing dry powders (3-4 µm) and slightly higher (5.4 µm) for amino acid free dry powder indicating their suitability for inhalation. The aerosol performance was higher when amino acids were used, and the leucine-containing ebselen dry powder showed the highest emitted dose (84 %) and fine particle fraction (68 %). All amino acid formulations had similar cytotoxicity as raw ebselen, tested in respiratory cell line (A549 cells), with half-maximal inhibitory concentrations (IC50) between 100 and 250 μg/mL. Raw ebselen and amino acid-containing dry powders showed similar potent antibacterial activity against the Gram-positive bacteria S. aureus and S. pneumoniae with minimum inhibitory concentrations of 0.31 μg/mL and 0.16 μg/mL, respectively. On the other hand, raw ebselen and the formulations showed limited antimicrobial activity against the Gram-negative pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae. In summary, in this study we were able to develop amino-acid-containing inhalable dry powders of ebselen that could be used against different respiratory pathogens, especially Gram-positive bacteria, which could ensure more drug deposition in the respiratory tract, including the lungs. DPIs are generally used to treat lung (lower respiratory tract) diseases. However, DPIs can also be used to treat both upper and lower RTIs. The deposition of the dry powder in the respiratory tract is dependent on its physicochemical properties and this properties can be modulated to target the intended site of infection (upper and/or lower respiratory tract). Further studies will allow the development of similar formulations of individual and/or combination of antimicrobials that could be used to inhibit a number of respiratory pathogens.
Collapse
Affiliation(s)
- Tushar Saha
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Nikita Lyons
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Deborah Bow Yue Yung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Miguel E Quiñones-Mateu
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
6
|
Liu S, Le Mauff F, Sheppard DC, Zhang S. Filamentous fungal biofilms: Conserved and unique aspects of extracellular matrix composition, mechanisms of drug resistance and regulatory networks in Aspergillus fumigatus. NPJ Biofilms Microbiomes 2022; 8:83. [PMID: 36261442 PMCID: PMC9581972 DOI: 10.1038/s41522-022-00347-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
The filamentous fungus Aspergillus fumigatus is an ubiquitous mold that can cause invasive pulmonary infections in immunocompromised patients. Within the lung, A. fumigatus forms biofilms that can enhance resistance to antifungals and immune defenses, highlighting the importance of defining the mechanisms underlying biofilm development and associated emergent properties. A. fumigatus biofilms display a morphology and architecture that is distinct from bacterial and yeast biofilms. Moreover, A. fumigatus biofilms display unique characteristics in the composition of their extracellular matrix (ECM) and the regulatory networks governing biofilm formation. This review will discuss our current understanding of the form and function of A. fumigatus biofilms, including the unique components of ECM matrix, potential drug resistance mechanisms, the regulatory networks governing A. fumigatus biofilm formation, and potential therapeutics targeting these structures.
Collapse
Affiliation(s)
- Shuai Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Francois Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, QC, Canada.,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada
| | - Donald C Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada. .,Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, QC, Canada. .,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada.
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
7
|
Caixeta Magalhães Tibúrcio AA, Paiva AD, Pedrosa AL, Rodrigues WF, Bernardes da Silva R, Oliveira AG. Effect of sub-inhibitory concentrations of antibiotics on biofilm formation and expression of virulence genes in penicillin-resistant, ampicillin-susceptible Enterococcus faecalis. Heliyon 2022; 8:e11154. [PMID: 36303921 PMCID: PMC9593294 DOI: 10.1016/j.heliyon.2022.e11154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/11/2021] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Biofilm formation is a key factor in the pathogenesis of enterococcal infections. Thus, the biofilm-forming ability and frequency of biofilm-related genes in penicillin-resistant, ampicillin-susceptible Enterococcus faecalis (PRASEF) compared to penicillin- and ampicillin-susceptible E. faecalis (PSASEF) were assessed in the present study. In addition, the effect of sub-inhibitory concentrations (sub-MICs) of antibiotics on biofilm formation and expression of virulence genes was evaluated. Twenty PRASEF and 21 PSASEF clinical isolates were used to determine the effect of sub-MICs of antibiotics (ampicillin, penicillin, and gentamicin) on biofilm formation, and ten selected isolates were subjected to RT-qPCR to detect the transcript levels of virulence genes (efaA, asa1, esp, and ace). Antibiotic susceptibility was evaluated by the microdilution broth method. Biofilm formation assay was performed using the microtiter plate method. All PSASEF and PRASEF isolates produced biofilms in vitro. Most isolates had three or four virulence genes. Sub-MICs of ampicillin significantly decreased biofilm production and expression of ace and asa1 genes, although the transcript levels were significantly lower (−350% and −606.2%, respectively) among the PSASEF isolates only. Sub-MICs of gentamicin did not have any significant effect on biofilm formation, but slightly increased the transcript levels of efaA. In conclusion, this study showed that the biofilm-forming ability and frequency of the evaluated virulence genes were similar among the PRASEF and PSASEF isolates. Further, in vitro antibiotic sub-MICs were confirmed to interfere with the expression pattern of virulence genes and biofilm formation by E. faecalis. However, further studies are required to clarify the role of sublethal doses of antibiotics on enterococcal biofilms.
Collapse
Affiliation(s)
| | - Aline Dias Paiva
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - André Luiz Pedrosa
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Wellington Francisco Rodrigues
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Raíssa Bernardes da Silva
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Adriana Gonçalves Oliveira
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil,Corresponding author.
| |
Collapse
|
8
|
Sinsinwar S, Jayaraman A, Mahapatra SK, Vellingiri V. Anti-virulence properties of catechin-in-cyclodextrin-in-phospholipid liposome through down-regulation of gene expression in MRSA strains. Microb Pathog 2022; 167:105585. [DOI: 10.1016/j.micpath.2022.105585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
|
9
|
Biofilm Formation and Antibiotic Resistance of S. aureus Strains isolated from Chronic Traumatic Wounds. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcal biofilms are the prominent cause of chronic wound infection and antibiotic resistance. It acts as a reservoir for bacteria, making wound healing difficult. Biofilm infections increase the hospital stays and cost to the patients. The current study explores the phenotypic and genotypic detection of S. aureus biofilm from chronic traumatic wounds and their association with antibiotic resistance. A prospective observational study was conducted from April 2020 to March 2021. S. aureus isolates were identified by the MALDI-TOF. Antibiotic susceptibility was determined by VITEK 2. Biofilm production detected by tissue culture plate method and associated ica genes were diagnosed through multiplex PCR. Overall, 67 isolates were investigated. The frequency of biofilm production in S. aureus was 73.1%, and most of the isolates were moderate biofilm producers (38.8%). The presence of intracellular adhesion (ica) operon among these isolates was 85.7% and also significantly associated with the strength of biofilm mass formation. Ica A was the predominant biofilm-producing gene (42.9%). Biofilm producing Methicillin-resistant S. aureus were as high as 75%, and multidrug resistant strains were significantly associated with biofilm formation. But frequency of ica genes were noted more in Methicillin sensitive S. aureus (65.2%). High frequency of biofilm in S. aureus of isolates was responsible for the development of chronic non-healing traumatic wounds. Biofilm-producing isolates showed greater multidrug-resistance. Phenotypically MRSA expressed more biofilm, but ica operon was documented in MSSA. It emphasized the further need for ica independent pathway exploration for MRSA biofilm synthesis.
Collapse
|
10
|
Effect of methylpyrazoles and coumarin association on the growth of Gram-negative bacteria. Arch Microbiol 2022; 204:160. [PMID: 35113268 DOI: 10.1007/s00203-022-02773-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
Abstract
One approach to overcome the antimicrobial resistance of many pathogens is to associate compounds with antimicrobial properties and obtain combinations superior compared to the effect of each compound. To identify a possible potentiating effect, we tested and analyzed the inhibitory effect of the combination of coumarin with two pyrazole derivatives, 1,1'-methandiylbis (3,5-dimethyl-1H-pyrazole (AM4) and 3,5-dimethyl-1H-pyrazol-1-yl) methanol 3,5-dimethyl-1-hydroxymethylpyrazol (SAM4). A clear synergistic effect was recorded when coumarin was associated with SAM4, in which case the Fractional Inhibitory Concentration Index (FICI) had a value equal to 0.468 for Citrobacter freundii, Proteus mirabilis, and E. coli. In the other cases, however, both the association between coumarin and AM4 and coumarin SAM4 had only an additive effect (FICI = 0.937-1.00). The bactericidal effect of the coumarin-pyrazole combination over time was better in all cases compared to the effect of the compounds used separately. The viability of the bacterial cells at sub-inhibitory concentrations of the tested compounds was variable, depending on both the type of compound and the bacterial strain.
Collapse
|
11
|
Targeting Staphylococcus aureus and its biofilms with novel antibacterial compounds produced by Lactiplantibacillus plantarum SJ33. Arch Microbiol 2021; 204:20. [DOI: 10.1007/s00203-021-02630-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022]
|
12
|
Simonetti O, Rizzetto G, Radi G, Molinelli E, Cirioni O, Giacometti A, Offidani A. New Perspectives on Old and New Therapies of Staphylococcal Skin Infections: The Role of Biofilm Targeting in Wound Healing. Antibiotics (Basel) 2021; 10:antibiotics10111377. [PMID: 34827315 PMCID: PMC8615132 DOI: 10.3390/antibiotics10111377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 12/31/2022] Open
Abstract
Among the most common complications of both chronic wound and surgical sites are staphylococcal skin infections, which slow down the wound healing process due to various virulence factors, including the ability to produce biofilms. Furthermore, staphylococcal skin infections are often caused by methicillin-resistant Staphylococcus aureus (MRSA) and become a therapeutic challenge. The aim of this narrative review is to collect the latest evidence on old and new anti-staphylococcal therapies, assessing their anti-biofilm properties and their effect on skin wound healing. We considered antibiotics, quorum sensing inhibitors, antimicrobial peptides, topical dressings, and antimicrobial photo-dynamic therapy. According to our review of the literature, targeting of biofilm is an important therapeutic choice in acute and chronic infected skin wounds both to overcome antibiotic resistance and to achieve better wound healing.
Collapse
Affiliation(s)
- Oriana Simonetti
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
- Correspondence: ; Tel.: +39-0-715-963-494
| | - Giulio Rizzetto
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Giulia Radi
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Elisa Molinelli
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| | - Oscar Cirioni
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health Clinic of Infectious Diseases, Polytechnic University of Marche, 60020 Ancona, Italy; (O.C.); (A.G.)
| | - Annamaria Offidani
- Department of Clinical and Molecular Sciences Clinic of Dermatology, Polytechnic University of Marche, 60020 Ancona, Italy; (G.R.); (G.R.); (E.M.); (A.O.)
| |
Collapse
|
13
|
Comparative study of the chemical composition, antibacterial activity and synergic effects of the essential oils of Croton tetradenius baill. And C. pulegiodorus baill. Against Staphylococcus aureus isolates. Microb Pathog 2021; 156:104934. [PMID: 33962005 DOI: 10.1016/j.micpath.2021.104934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022]
Abstract
The aim of this work was to evaluate the chemical composition and antibacterial activity of Croton tetradenius Baill. (CTEO) and C. pulegiodorus Baill. (CPEO) essential oils against Staphylococcus aureus, and their synergism with antibiotics. The essential oils (EOs) were extracted by hydrodistillation and chemically characterized by gas chromatography-mass spectrometry (CG-MS) and gas chromatography with flame ionization detection (CG-FID). The antimicrobial action of the EOs was tested against two standard strains and four clinical isolates of S. aureus using the disk-diffusion agar method and the microdilution assay. The bacterial kinetic growth was also determined. The synergistic effect between EOs and antimicrobials was analyzed by the checkerboard test. CTEO and CPEO yielded 0.47 and 0.37% w/w and the most common components were p-cymene (28.24%), camphor (17.76%) and α-phellandrene (8.98%), and trans-chrysanthenyl acetate (27.05%), α-terpinene (19.21%) and p-cymene (12.27%), respectively. The disk-diffusion test showed that the bacteria are sensitive to the agents tested. The MIC in the presence of the CTEO it was 4000 μg/mL, while for the CPEO it was 8000 μg/mL, except for clinical isolate 4B. The MBC for strains treated with CTEO were 8000 μg/mL, with the exception of isolates 8B and 0 A 4000 μg/mL. For the CPEO, all strains showed a concentration above 8000 μg/mL. The growth curve showed that CTEO and CPEO altered growth kinetics, delaying the lag phase and reducing the log phase. In combination with antibiotics, both essential oils showed synergisms effect with oxacillin and ampicillin, and additive effect with benzylpenicillin. CTEO and CPEO showed antibacterial action against S. aureus strains, showing as a promise natural alternative in clinical therapy.
Collapse
|
14
|
Ding Y, Wu Q, Guo Y, Li M, Li P, Ma Y, Liu W. Effects of in vitro-induced drug resistance on the virulence of Streptococcus. Vet Med Sci 2021; 7:935-943. [PMID: 33314727 PMCID: PMC8136945 DOI: 10.1002/vms3.404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/25/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
This study aimed to evaluate the effects of in vitro-induced drug resistance on the virulence of Streptococcus. Micro-dilution method was used to determine the minimal inhibitory concentration (MIC). In vitro-induced drug resistance was conducted for S. agalactiae (CVCC1886) and S. dysgalactiae (CVCC3701) by gradually increasing the antimicrobial concentration (strains were from IVDC, China). PCR was used to detect the resistance and virulence genes of the strains before and after resistance induction. Colony morphology was observed to compare the physiological and biochemical properties of the strains. A total of 88 clean-grade Kunming mice (obtained from Inner Mongolia University, Hohhot, China) were used in half of the lethal dose (LD50) test for detecting the changes in virulence of strains. The results showed that S. agalactiae (CVCC1886) and S. dysgalactiae (CVCC3701) developed resistance against seven kinds of antibiotics, respectively. Resistance and virulence genes of CVCC3701 were changed when treated by the Penicillin-inducing. The growth of the CVCC3701-PEN was decreased compared to the CVCC3701. Virulence test in mice indicated that the LD50 of CVCC3701 before induction and CVCC3701-PEN after induction were 5.45 × 106 and 5.82 × 108 CFU/ml, respectively. Compared with the untreated bacteria, the bacterial virulence was reduced 1.1 × 102 times after resistance induction. In conclusion, S. dysgalactiae (CVCC3701) is a susceptible strain of drug resistance to antibiotics, in vitro-induced drug resistance reduced the virulence of CVCC3701, but the virulence is still existing and also could result in the death of mice. For public health safety, it must be alert to the emergence of drug resistance of Streptococcus in animal production.
Collapse
Affiliation(s)
- Yue‐Xia Ding
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangPR China
- Department of Veterinary Pharmacology & ToxicologyCollege of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotPR China
- Laboratory of Clinical Diagnosis and Treatment Techniques for Animal DiseaseMinistry of AgricultureHohhotPR China
| | - Qun Wu
- Research Institute of Agricultural MachineryChinese Academy of Tropical Agricultural SciencesZhanjiangPR China
| | - Yan Guo
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangPR China
| | - Man Li
- Department of Veterinary Pharmacology & ToxicologyCollege of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotPR China
- Laboratory of Clinical Diagnosis and Treatment Techniques for Animal DiseaseMinistry of AgricultureHohhotPR China
| | - Pei‐Feng Li
- Department of Veterinary Pharmacology & ToxicologyCollege of Veterinary MedicineInner Mongolia Agricultural UniversityHohhotPR China
- Laboratory of Clinical Diagnosis and Treatment Techniques for Animal DiseaseMinistry of AgricultureHohhotPR China
| | - Yi Ma
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangPR China
- Maoming BranchGuangdong Laboratory for Lingnan Modern AgricultureMaomingPR China
| | - Wen‐Chao Liu
- College of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangPR China
| |
Collapse
|
15
|
Kaźmierczak N, Grygorcewicz B, Piechowicz L. Biofilm Formation and Prevalence of Biofilm-Related Genes Among Clinical Strains of Multidrug-Resistant Staphylococcus aureus. Microb Drug Resist 2021; 27:956-964. [PMID: 33656375 DOI: 10.1089/mdr.2020.0399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The biofilm-forming Staphylococcus aureus strains are responsible for causing a number of diseases. With the emergence of multidrug resistance they constitute a catastrophic threat to medicine. The ability of 65 clinical strains of multidrug-resistant S. aureus (MDRSA) to form biofilm in vitro was examined in this study and analyzed in relation to SCCmec, spa type, microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), and ica genes. Results obtained from crystal violet and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays showed that all MDRSA strains tested form biofilm but, of 65 strains, only 18 strains (28%) were found to form a biofilm with high metabolic activity and a great amount of biomass. The high proportion of MDRSA isolates in our study made no significant difference for ica and MSCRAMMs genes according to biofilm-forming capacity, except for fib, icaA, and cna gene. In addition, this study demonstrated that strains carrying SCCmec type I showed a significantly decreased biofilm viability compared with the strains harboring SCCmec type II and type IV, but SCCmec type could not serve as a good predictor of biofilm formation. However, we found that significantly weaker metabolic activity was detected in the biofilm of isolates with spa type t011.
Collapse
Affiliation(s)
- Natalia Kaźmierczak
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Bartłomiej Grygorcewicz
- Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Lidia Piechowicz
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
16
|
Virulence alterations in staphylococcus aureus upon treatment with the sub-inhibitory concentrations of antibiotics. J Adv Res 2021; 31:165-175. [PMID: 34194840 PMCID: PMC8240104 DOI: 10.1016/j.jare.2021.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background The treatment of patients with Staphylococcus aureus infections mainly relies on antistaphylococcal regimens that are established with effective antibiotics. In antibiotic therapy or while living in nature, pathogens often face the sub-inhibitory concentrations (sub-MICs) of antibiotics due to drug pharmacokinetics, diffusion barriers, waste emission, resistant organism formation, and farming application. Different categories of antibiotics at sub-MICs have diverse effects on the physiological and chemical properties of microorganisms. These effects can result in virulence alterations. However, the mechanisms underlying the actions of antibiotics at sub-MICs on S. aureus virulence are obscure. Aim of review In this review, we focus on the effects of sub-MICs of antibiotics on S. aureus virulence from the aspects of cell morphological change, virulence factor expression, bacterial adherence and invasion, staphylococcal biofilm formation, and small-colony variant (SCV) production. The possible mechanisms of antibiotic-induced S. aureus virulence alterations are also addressed. Key scientific concepts of review Five main aspects of bacterial virulence can be changed in S. aureus exposure to the sub-MIC levels of antibiotics, resulting in deformed bacterial cells to stimulate abnormal host immune responses, abnormally expressed virulence factors to alter disease development, changed bacterial adhesion and invasion abilities to affect colonization and diffusion, altered biofilm formation to potentate material-related infections, and increased SCV formation to achieve persistent infection and recurrence. These advanced findings expand our knowledge to rethink the molecular signaling roles of antibiotics beyond their actions as antimicrobial agents.
Collapse
|
17
|
iTRAQ®-based quantitative proteomics reveals the proteomic profiling of methicillin-resistant Staphylococcus aureus-derived extracellular vesicles after exposure to imipenem. Folia Microbiol (Praha) 2020; 66:221-230. [PMID: 33165807 DOI: 10.1007/s12223-020-00836-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
This study sought to reveal the proteomic profiling of methicillin-resistant Staphylococcus aureus (MRSA)-derived extracellular vesicles (EVs) after exposure to imipenem. The advanced isobaric tags for relative and absolute quantitation (iTRAQ®) proteomic approach were used to analyze the alterations in MRSA-derived EV protein patterns upon exposure to imipenem. A total of 1260 EV proteins were identified and quantified. Among these, 861 differentially expressed exosome proteins (P < 0.05) were found. Multivariate analysis, Gene Ontology (GO) annotation, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to analyze the identified proteins. Enrichment analysis of GO annotations indicated that imipenem primarily regulated the metabolic processes in MRSA. The metabolism of differentially expressed proteins was found to be the most significant in the combined analysis of the KEGG pathway analysis. Based on the results from the STRING analysis, 50S ribosomal protein L16 (RplP) and 30S ribosomal protein S8 (RpsH) were involved in the imipenem-induced MRSA-derived EVs. These results provide vital information on MRSA-derived EVs, increasing our knowledge of the proteome level changes in EVs upon exposure to imipenem. Moreover, these results pave the way for developing novel MRSA treatments.
Collapse
|
18
|
Detection of Heavy Metal Tolerance among different MLSB Resistance Phenotypes of Methicillin-Resistant S. aureus (MRSA). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are widespread globally. Besides their virulence factors, the co-occurrence of antimicrobial and metal resistance has been reported. This study was designed to evaluate the antibiotic resistance and resistance phenotypes, investigate the occurrence of virulence factors, and detect heavy metal tolerance among MRSA strains. Antibiogram profiling was done as recommended by CLSI instructions. Resistance phenotypes were detected by D test, followed by characterization of enzymatic activities and biofilm formation assay. Antibacterial activity of different heavy metals was tested, and predictable synergistic assay was performed. Among MRSA strains collected, high resistance to ampicillin and amoxicillin/clavulanate (100%) and high susceptibility to clindamycin (70%) were obtained. Resistance phenotypes were detected as S, constitutive MLSB, inducible MLSB, and MS by percentages of 10%, 30%, 30% and 30% respectively. Virulence factors like lipolytic (50%) and hemolytic (70%) activity, and biofilm formation ability (100%) were detected. High resistance towards potassium and magnesium was observed. MTC of 500 ppm was detected for all isolates in case of cobalt and iron. In case of zinc and copper, MTC was detected as 500 ppm except for one isolate which was highly resistant, and 500 ppm for all isolates except for two isolates which were highly sensitive respectively. Magnesium in different concentrations (500 and 2000 ppm) showed synergistic activity with erythromycin and clindamycin. Results reveal high heavy metal tolerance among antibiotic resistant MRSA strains, in addition to the presence of virulence factors. Upcoming studies must be focused on the combination of sub-inhibitory concentration of different heavy metals with the available antibiotics.
Collapse
|
19
|
Regulation of virulence and antibiotic resistance in Gram-positive microbes in response to cell wall-active antibiotics. Curr Opin Infect Dis 2020; 32:217-222. [PMID: 31021953 DOI: 10.1097/qco.0000000000000542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Antibiotic stress can evoke considerable genotypic and phenotypic changes in Gram-positive bacteria. Here, we review recent studies describing altered virulence expression in response to cell wall-acting antibiotics and discuss mechanisms that coordinate regulation of the antibiotic response. RECENT FINDINGS Pleiotropic effects induced by antibiotic exposure include alterations to bacterial metabolism, cell wall structure and antibiotic resistance. In addition, subinhibitory concentrations of cell wall-active (CWA) antibiotics have increasingly been shown to induce the production of exotoxins and biofilm formation that may influence virulence. Remarkably, phenotypes associated with comparable antibiotic stresses can vary considerably, emphasizing the need to better understand the response to CWA antibiotics. Recent studies support both direct antibiotic recognition and recognition of antibiotic-induced stress to the bacterial cell wall. Specifically, bacterial two-component systems, penicillin-binding protein and serine/threonine kinase-associated kinases and conserved oxidative-stress sensors each contribute to modulating the antibiotic stress response. SUMMARY Bacterial sensory systems and global regulators coordinate signaling in response to CWA antibiotics. Regulation of the antibiotic response is complex and involves integration of signals from multiple response pathways. A better definition of the antibiotic stress response among Gram-positive pathogens may yield novel therapeutic targets to counter antibiotic resistance and virulence factor expression.
Collapse
|
20
|
Machineni L. Effects of biotic and abiotic factors on biofilm growth dynamics and their heterogeneous response to antibiotic challenge. J Biosci 2020. [DOI: 10.1007/s12038-020-9990-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Streptomycin mediated biofilm inhibition and suppression of virulence properties in Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 2019; 104:799-816. [PMID: 31820066 DOI: 10.1007/s00253-019-10190-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa is known as an opportunistic pathogen whose one of the antibiotic resistance mechanisms includes biofilm formation and virulence factor production. The present study showed that the sub-minimum inhibitory concentration (sub-MIC) of streptomycin inhibited the formation of biofilm and eradicated the established mature biofilm. Streptomycin at sub-MIC was also capable of inhibiting biofilm formation on the urinary catheters. In addition, the sub-MIC of streptomycin attenuated the bacterial virulence properties as confirmed by both phenotypic and gene expression studies. The optimal conditions for streptomycin to perform anti-biofilm and anti-virulence activities were proposed as alkaline TSB media (pH 7.9) at 35 °C. However, sub-MIC of streptomycin also exhibited a comparative anti-biofilm efficacy in LB media at similar pH level and temperature. Furthermore, this condition also improved the biofilm inhibition and eradication properties of streptomycin, tobramycin and tetracycline towards the biofilm formed by a clinical isolate of P. aeruginosa. Findings from the present study provide an important insight for further studies on the mechanisms of biofilm inhibition and dispersion of pre-existing biofilm by streptomycin as well as tobramycin and tetracycline under a specific culture environment.
Collapse
|
22
|
Wang J, Wang J, Wang Y, Sun P, Zou X, Ren L, Zhang C, Liu E. Protein expression profiles in methicillin-resistant Staphylococcus aureus (MRSA) under effects of subminimal inhibitory concentrations of imipenem. FEMS Microbiol Lett 2019; 366:5570583. [PMID: 31529016 DOI: 10.1093/femsle/fnz195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
Imipenem is a beta-lactam antibiotic mainly active against gram-negative bacterial pathogens and also could cause cell wall impairment in methicillin-resistant Staphylococcus aureus(MRSA). However, related antibacterial mechanisms of imipenem on MRSA and mixed infections of MRSA and gram-negative bacteria are relatively poorly revealed. This study was to identify proteins in the MRSA response to subminimal inhibitory concentrations (sub-MICs) of imipenem treatment. Our results showed that 240 and 58 different expression proteins (DEPs) in sub-MICs imipenem-treated S3 (a standard MRSA strain) and S23 (a clinical MRSA strain) strains were identified through the isobaric tag for relative and absolute quantitation method when compared with untreated S3 and S23 strains, respectively, which was further confirmed by multiple reactions monitoring. Our result also demonstrated that expressions of multiple DEPs involved in cellular proliferation, metabolism and virulence were significantly changed in S3 and S23 strains, which was proved by gene ontology annotations and qPCR analysis. Further, transmission electron microscopy and scanning electron microscopy analysis showed cell wall deficiency, cell lysis and abnormal nuclear mitosis on S23 strain. Our study provides important information for understanding the antibacterial mechanisms of imipenem on MRSA and for better usage of imipenem on patients co-infected with MRSA and other multidrug-resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Jichun Wang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China.,Department of Pediatrics, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Junrui Wang
- Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Yanyan Wang
- Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Peng Sun
- Pathogen and Immunity Research Center, College of Basic Medicine, Inner Mongolia Medical University, Jinshan Avenue, Hohhot, Inner Mongolia 010110, China
| | - Xiaohui Zou
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention; China CDC, Key Laboratory for Medical Virology, Ministry of Health, Beijing 102206, China
| | - Luo Ren
- Pediatrics Institute, Children's Hospital Chongqing Medical University, No. 136, Zhong Shan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Chunxia Zhang
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Enmei Liu
- Pediatrics Institute, Children's Hospital Chongqing Medical University, No. 136, Zhong Shan 2nd Road, Yuzhong District, Chongqing 400014, China
| |
Collapse
|
23
|
Dolzani L, Milan A, Scocchi M, Lagatolla C, Bressan R, Benincasa M. Sub-MIC effects of a proline-rich antibacterial peptide on clinical isolates of Acinetobacter baumannii. J Med Microbiol 2019; 68:1253-1265. [PMID: 31215857 DOI: 10.1099/jmm.0.001028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Acinetobacter baumannii is one of the most important nosocomial pathogens, mainly due to its ability to accumulate antibiotic-resistances and to persist in the hospital environment - characteristics related to biofilm production. It is well-known that A. baumannii is inhibited by the proline-rich peptide Bac7(1-35), but its putative effects at sub-MICs were never considered. AIMS We examined the sub-MIC effect of Bac7(1-35) on the growth rate, resistance induction and some A. baumannii features linked to virulence. METHODOLOGY Growth kinetics in the presence of sub-MICs of Bac7(1-35) were evaluated spectrophotometrically. Peptide uptake was quantified by cytometric analysis. The ability of Bac7(1-35) to interfere with biofilm production was investigated by the crystal violet method and confocal microscopy. Bacterial motility was observed at the interphase between a layer of a semi-solid medium and the polystyrene bottom of a Petri dish. The induction of resistance was evaluated after serial passages with sub-MICs of the peptide. RESULTS Although the MIC of Bac7(1-35) was between 2-4 µM for all tested strains, its effect on the growth rate at sub-MICs was strain-dependent and correlated with the amount of peptide internalized by each strain. Sub-MICs of Bac7(1-35) induced a strongly strain-dependent effect on biofilm formation and reduced motility in almost all strains, but interestingly the peptide did not induce resistance. CONCLUSION Bac7(1-35) is internalized into A. baumannii and is able to inhibit biofilm formation and bacterial motility, without inducing resistance. This study stresses the importance of considering possible effects that antimicrobials could have at sub-MICs, mimicking a common condition during antibiotic treatment.
Collapse
Affiliation(s)
- Lucilla Dolzani
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Annalisa Milan
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Raffaela Bressan
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Benincasa
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
24
|
Selan L, Vrenna G, Ettorre E, Papa R, Artini M. Virulence of MRSA USA300 is enhanced by sub-inhibitory concentration of two different classes of antibiotics. J Chemother 2019; 30:384-388. [PMID: 30663546 DOI: 10.1080/1120009x.2018.1533085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) USA300 is responsible of many kinds of infections of skin and soft-tissue. Antibiotic resistance, biofilm formation and the ability to adhere and invade are virulence factors that contribute to MRSA pathogenesis. In some cases, decreased bioavailability of antibiotics in systemic circulation could result; in these conditions sub-therapeutic levels of the antibiotics may be established, exposing bacteria to sub-inhibitory concentrations. On the basis of several published scientific data it is fair to assume that all these events could induce an increase of bacterial virulence. In the present study, we investigated this process by measuring the effects of low doses of two different classes of antibiotics on some virulence features of MRSA USA300 isolate, like the ability to adhere and invade eukaryotic cells. Results obtained strongly support the importance of the respect of a correct dosage of antibiotic in therapy to escape the insurgence of more virulent phenotypes.
Collapse
Affiliation(s)
- Laura Selan
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Gianluca Vrenna
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Evaristo Ettorre
- b Division of Gerontology, Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic, and Geriatric Sciences , Sapienza University , Rome , Italy
| | - Rosanna Papa
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Marco Artini
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| |
Collapse
|
25
|
Haddadin RN, Assaf AM, Homsi A, Collier PJ, Shehabi A. Investigating possible association between multidrug resistance and isolate origin with some virulence factors of Escherichia coli strains isolated from infant faeces and fresh green vegetables. J Appl Microbiol 2019; 127:88-98. [PMID: 31034123 DOI: 10.1111/jam.14296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/13/2019] [Accepted: 04/25/2019] [Indexed: 11/30/2022]
Abstract
AIMS In this study, the association between multidrug resistance (MDR) and the expression of some virulence factors were evaluated in Escherichia coli strains isolated from infant faeces and fresh green vegetables. The effect of isolate origin on associated virulence factors was evaluated. In addition, genetic fingerprinting of a sample of these isolates (10 isolates from each group) was studied in order to detect any genetic relatedness among these isolates. METHODS AND RESULTS Escherichia coli isolates were divided into four groups based on their origin (human faeces or plant) and their antibiotic resistance (multiresistance or susceptible). PCR was used to investigate heat-labile and heat-stable enterotoxin genes, and four siderophore genes (aerobactin, enterobactin, salmochelin and yersiniabactin). Genetic fingerprinting of the isolates was performed using enterobacterial repetitive intergenic consensus PCR. Siderophore production was measured by a colorimetric method. Biofilm formation was evaluated by a crystal violet assay. The results of the study showed that the expression of MDR is not significantly associated with an increase in these virulence factors or with biofilm formation. However, the origin of isolates had a significant association with siderophore gene availability and consequently on the concentrations of siderophores released. Genetic fingerprinting indicated that human and plant isolates have the same clonal origin, suggesting their circulation among humans and plants. CONCLUSION Antibiotic-susceptible strains of E. coli may be as virulent as MDR strains. Results also suggest that the environment can play a potential role in selection of strains with specific virulence factors. SIGNIFICANCE AND IMPACT OF THE STUDY Antibiotic-susceptible isolates of Escherichia coli from plant or human origin can be as virulent as the multidrug resistance (MDR) ones. Genetic relatedness was detected among the isolates of plant and human origin, indicating the circulation of these bacteria among human and plants. This could imply a potential role for environmental antimicrobial resistant bacteria in human infection.
Collapse
Affiliation(s)
- R N Haddadin
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - A M Assaf
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - A Homsi
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | | | - A Shehabi
- School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
26
|
Tian XL, Salim H, Dong G, Parcells M, Li YH. The BceABRS four-component system that is essential for cell envelope stress response is involved in sensing and response to host defence peptides and is required for the biofilm formation and fitness of Streptococcus mutans. J Med Microbiol 2018; 67:874-883. [PMID: 29671721 DOI: 10.1099/jmm.0.000733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose. Streptococcus mutans is a primary cariogenic pathogen worldwide. In dental biofilms, S. mutans often faces life-threatening insults, such as killing by antimicrobial compounds from competing species and from the host. How such insults affect the physiology and virulence of S. mutans is poorly understood. In this study, we explored this question by investigating the responses of S. mutans strains to several host defence peptides and bacitracin.Methodology. S. mutans UA159 and its isogenic mutants, SmΔbceA, SmΔbceB, SmΔbceR and SmΔbceS, were examined for their antibiotic susceptibility and biofilm formation. The lux reporter strains were constructed to assay the responses of S. mutans to host defence peptides. In addition, the competitive fitness of these mutants against the parent in response to peptide antibiotics was determined in dual-strain mixed cultures.Results. S. mutans UA159 (WT) was generally insensitive to physiological concentrations of α-defensin-1, β-defensin-3, LL-37 and histatin-5, but all of the BceABRS mutants were sensitive to these peptide antibiotics. The response of S. mutans to these peptide antibiotics involved the transcriptional activation of the bceABRS operon itself. Bacitracin or β-defensin-3 at a sub-inhibitory concentration induced biofilm formation in the parent, but not in any of the BceABRS mutants. None of the mutants were able to compete with the parent for persistence in duel-strain cultures in the presence of bacitracin or β-defensin-3.Conclusion. The BceABRS four-component system in S. mutans is involved in sensing, response and resistance to host defence peptides, and is required for the biofilm formation and fitness of S. mutans.
Collapse
Affiliation(s)
- Xiao-Lin Tian
- Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 1W2, Canada
| | - Hasan Salim
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1W2, Canada
| | - Gaofeng Dong
- Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 1W2, Canada
| | - Madison Parcells
- Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 1W2, Canada
| | - Yung-Hua Li
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 1W2, Canada.,Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 1W2, Canada
| |
Collapse
|
27
|
Influence of subinhibitory concentrations of NH125 on biofilm formation & virulence factors of Staphylococcus aureus. Future Med Chem 2018; 10:1319-1331. [PMID: 29846088 DOI: 10.4155/fmc-2017-0286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM l-benzyl-3-cetyl-2-methylimidazolium iodide (NH125) can inhibit Staphylococcus aureus growth. We investigated the effects of sub-MIC concentrations of NH125 on S. aureus biofilm and virulence. Methodology & results: Three strains of S. aureus were tested. Sub-lethal concentrations of NH125 repressed biofilm formation. At partial sub-MICs, NH125 downregulated the expression of most virulence, while strain-dependent effects were found in the production of α-hemolysin, δ-hemolysin, coagulase and nuclease. In Galleria mellonella model, methicillin-resistant S. aureus pre-exposed to NH125 demonstrated significantly lower killing (p = 0.032 for 1/16 and 1/8 MICs; 0.008 for 1/4 MIC; and 0.001 for 1/2 MIC). CONCLUSION Sub-MIC concentrations of NH125 inhibited biofilm formation and virulence of S. aureus. These findings provide further support for evaluating the clinical efficacy of NH125 in staphylococcal infection.
Collapse
|
28
|
Abstract
Surface-attached colonies of bacteria known as biofilms play a major role in the pathogenesis of device-related infections. Biofilm colonies are notorious for their resistance to suprainhibitory concentrations of antibiotics. Numerous studies have shown that subminimal inhibitory concentrations of some antibiotics can act as agonists of bacterial biofilm formation in vitro, a process that may have clinical relevance. This article reviews studies demonstrating that low-dose antibiotics induce bacterial biofilm formation. These studies have provided important information about the regulation of biofilm formation and the signaling pathways involved in global gene regulation in response to cell stressors. It is still unclear whether antibiotic-induced biofilm formation contributes to the inconsistent success of antimicrobial therapy for device infections.
Collapse
|
29
|
Liu MY, Cokcetin NN, Lu J, Turnbull L, Carter DA, Whitchurch CB, Harry EJ. Rifampicin-Manuka Honey Combinations Are Superior to Other Antibiotic-Manuka Honey Combinations in Eradicating Staphylococcus aureus Biofilms. Front Microbiol 2018; 8:2653. [PMID: 29375518 PMCID: PMC5768656 DOI: 10.3389/fmicb.2017.02653] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Chronic wound infections are a major burden to both society and the health care industry. Bacterial biofilms are the major cause of chronic wound infections and are notoriously recalcitrant to treatments with antibiotics, making them difficult to eradicate. Thus, new approaches are required to combat biofilms in chronic wounds. One possible approach is to use drug combination therapies. Manuka honey has potent broad-spectrum antibacterial activity and has previously shown synergistic activity in combination with antibiotics against common wound pathogens, including Staphylococcus aureus. In addition, manuka honey exhibits anti-biofilm activity, thereby warranting the investigation of its potential as a combination therapy with antibiotics for the topical treatment of biofilm-related infections. Here we report the first use of MacSynergy II to investigate the response of established S. aureus (strain NCTC 8325) biofilms to treatment by combinations of Medihoney (medical grade manuka honey) and conventional antibiotics that are used for preventing or treating infections: rifampicin, oxacillin, fusidic acid, clindamycin, and gentamicin. Using checkerboard microdilution assays, viability assays and MacSynergy II analysis we show that the Medihoney-rifampicin combination was more effective than combinations using the other antibiotics against established staphylococcal biofilms. Medihoney and rifampicin were strongly synergistic in their ability to reduce both biofilm biomass and the viability of embedded S. aureus cells at a level that is likely to be significant in vivo. Other combinations of Medihoney and antibiotic produced an interesting array of effects: Medihoney-fusidic acid treatment showed minor synergistic activity, and Medihoney-clindamycin, -gentamicin, and -oxacillin combinations showed overall antagonistic effects when the honey was used at sub-inhibitory concentration, due to enhanced biofilm formation at these concentrations which could not be counteracted by the antibiotics. However, these combinations were not antagonistic when honey was used at the inhibitory concentration. Confocal scanning laser microscopy confirmed that different honey-antibiotic combination treatments could eradicate biofilms. Our results suggest that honey has potential as an adjunct treatment with rifampicin for chronic wounds infected with staphylococcal biofilms. We also show that MacSynergy II allows a comprehensive examination of the synergistic effects of honey-antibiotic combinations, and can help to identify doses for clinical use.
Collapse
Affiliation(s)
- Michael Y Liu
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Nural N Cokcetin
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Jing Lu
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Lynne Turnbull
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - Elizabeth J Harry
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Staphylococcus aureus (S. aureus) is well known for its ability to cause life-threatening infections. On the other hand, this bacterium can thrive as a commensal on and in human tissues without causing much problems. How big a threat is S. aureus actually? Furthermore, commensalism is associated with biofilms, where can we find them, and which natural and artificial components activate biofilm formation? RECENT FINDINGS Recent findings on S. aureus carriage on skin, mucosa, and in wounds indicate the presence of large numbers of S. aureus, yet its abundance can be without major implications for the host. S. aureus is often present in biofilms, together with other microorganisms, which can stimulate biofilm formation of S. aureus, in addition medicine including antibiotics can do the same. SUMMARY S. aureus can cause devastating infections, but when we take into consideration the ubiquitous presence of S. aureus, the risk seems to be relatively low. S. aureus forms biofilms in response to the 'hazards' on the human body, and signal to do so can come from various sources. All this has to be taken into consideration when we treat a patient as this might have enormous impact on the outcome.
Collapse
|
31
|
He X, Yuan F, Lu F, Yin Y, Cao J. Vancomycin-induced biofilm formation by methicillin-resistant Staphylococcus aureus is associated with the secretion of membrane vesicles. Microb Pathog 2017; 110:225-231. [PMID: 28687320 DOI: 10.1016/j.micpath.2017.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
Abstract
Chronic burn wound infections caused by Stapyhylococcus aureus (S. aureus) are largely associated with biofilm formation. However, the mechanism by which S. aureus form biofilm in clinical environments is far less understood. In the present study we addressed the association between biofilm formation and membrane vesicle (MV) secretion of S. aureus during vancomycin treatment. A representative methicillin-resistant S. aureus (MRSA) strain BWMR22 obtained from a chronic burn wound was used in this study. Transmission electron microscope was used to observe the MV secretion. Fourier transform infrared spectroscopy was used to analyze the chemical component of MV. Biofilm formation was assayed under conditions of sub-inhibitory concentrations of vancomycin. Functional potencies of MV in surface adhesion and auto-aggregation were assayed in the presence of additional purified MVs. Biofilm formation by S. aureus BWMR22 was enhanced in the presence of sub-inhibitory concentration of vancomycin. Vancomycin treatment caused an increase in the chemical composition of protein relative to carbohydrates of secreted MVs, a property which was highly associated with bacterial hydrophobicity, surface adhesion, and intercellular aggregation. These findings suggest that MV secretion is correlated with biofilm formation by MRSA especially under clinical conditions with improper vancomycin chemotherapy. This study first demonstrates a potential role of MVs in the biofilm formation by S. aureus, stresses on the importance of avoiding low dose of antibiotic therapy in controlling of S. aureus infections, and provides further information to reveal the mechanisms behind MRSA infections.
Collapse
Affiliation(s)
- Xinlong He
- School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, Jiangsu Province, People's Republic of China; The Third People's Hospital of Wuxi (The Third Affiliated Hospital of Nantong University), Wuxi, 214041, Jiangsu Province, People's Republic of China; Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 225001, Jiangsu Province, People's Republic of China.
| | - Fenglai Yuan
- The Third People's Hospital of Wuxi (The Third Affiliated Hospital of Nantong University), Wuxi, 214041, Jiangsu Province, People's Republic of China
| | - Feng Lu
- School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, Jiangsu Province, People's Republic of China
| | - Yinyan Yin
- School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, Jiangsu Province, People's Republic of China
| | - Jun Cao
- Jiangsu Institute of Parasitic Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, 214064, Jiangsu Province, People's Republic of China; Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
32
|
Lima-E-Silva AA, Silva-Filho RG, Fernandes HMZ, Saramago CSM, Viana AS, Souza MJ, Nogueira EM. Sub-Inhibitory Concentrations of Rifampicin Strongly Stimulated Biofilm Production in S. aureus. Open Microbiol J 2017; 11:142-151. [PMID: 28839494 PMCID: PMC5543614 DOI: 10.2174/1874285801711010142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives: Staphylococcus aureus is an important pathogen and a frequent cause of infections associated with biofilm production in implantable medical devices. Biofilm production can be induced by sub-inhibitory concentrations (sub-MICs) of certain antibiotics, but few studies have researched this occurrence in S. aureus. In this study, we investigated the effect of sub-MICs of rifampicin and minocycline on biofilm production by five clinical and five non-clinical S. aureus isolates. Methods: Microtiter Plate assay and Congo Red Agar Test were used to analyze the biofilm production. The biofilm composition was evaluated by the detachment assay with sodium metaperiodate and proteinase K. Results: Rifampicin sub-MICs induced very high biofilm formation in seven isolates that were non-producers in Tryptic Soy Broth. In one producer isolate, the biofilm formation level was not affected by sub-MICs of this drug. Sub-MICs of minocycline did not induce biofilm production in all isolates tested and in two producer isolates, instead, MIC/2 and MIC/4 inhibited biofilm production. The results of the drugs in combination were similar to those with rifampicin alone. The biofilm matrix was identified as polysaccharide, except for one producer isolate, classified as proteinaceous. Polysaccharide biofilm producer isolates, when grown on Congo Red Agar without sucrose, but with sub-MICs of rifampicin, showed results in agreement with those obtained in Microtiter Plate Test. Conclusion: The high biofilm production induced by sub-MICs of rifampicin has potential clinical relevance, because this is one of the drugs commonly used in the impregnation of catheters. In addition, it is used adjunctively to treat certain S. aureus infections.
Collapse
Affiliation(s)
- Agostinho Alves Lima-E-Silva
- Department of Microbiology and Parasitology Rio de Janeiro, Biomedical Institute, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Renato Geraldo Silva-Filho
- Department of Microbiology and Parasitology Rio de Janeiro, Biomedical Institute, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | | - Carmen Soares Meirelles Saramago
- Department of Microbiology and Parasitology Rio de Janeiro, Biomedical Institute, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Alice Slotfeldt Viana
- Department of Microbiology and Parasitology Rio de Janeiro, Biomedical Institute, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | | - Eduardo Matos Nogueira
- Laboratory of Genomic, Biomedical Institute, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Szczuka E, Jabłońska L, Kaznowski A. Effect of subinhibitory concentrations of tigecycline and ciprofloxacin on the expression of biofilm-associated genes and biofilm structure of Staphylococcus epidermidis. MICROBIOLOGY-SGM 2017; 163:712-718. [PMID: 28481197 PMCID: PMC5817252 DOI: 10.1099/mic.0.000453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus epidermidis is a leading cause of foreign body-associated infections. This is related to the bacterium's ability to form biofilms on synthetic materials. Bacteria within a biofilm may be exposed to subinhibitory concentrations (sub-MICs) of antibiotics because of an agent's limited penetration into the biofilm core. Here, we investigated the effect of sub-MICs of tigecycline and ciprofloxacin on the expression of biofilm-associated genes, i.e. icaA, altE and sigB, and the biofilm structure of five clinical isolates of S. epidermidis. For most tested isolates, the expression of these genes increased after exposure to 0.25 MIC and 0.5 MIC tigecycline. A slight decrease in icaAmRNA levels was observed only in two isolates in the presence of 0.25 MIC tigecycline. The effect of ciprofloxacin exposure was isolate-dependent. At 0.5 MIC, ciprofloxacin induced an increase of sigB and icaAmRNA levels in three of the five tested isolates. At the same time, expression of the altE gene increased in all isolates (from 1.3-fold to 42-fold, depending on the strain). Confocal laser scanning microscopy analysis indicated that sub-MIC ciprofloxacin decreased biofilm formation, whereas tigecycline stimulated this process. Our data suggest that sub-MIC tigecycline may have bearing on the outcome of infections.
Collapse
Affiliation(s)
- Ewa Szczuka
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Lucyna Jabłońska
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Adam Kaznowski
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
34
|
Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms. Antimicrob Agents Chemother 2016; 60:2639-51. [PMID: 26856828 DOI: 10.1128/aac.02070-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/31/2016] [Indexed: 01/01/2023] Open
Abstract
Previous studies showed that sub-MIC levels of β-lactam antibiotics stimulate biofilm formation in most methicillin-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated this process by measuring the effects of sub-MIC amoxicillin on biofilm formation by the epidemic community-associated MRSA strain USA300. We found that sub-MIC amoxicillin increased the ability of USA300 cells to attach to surfaces and form biofilms under both static and flow conditions. We also found that USA300 biofilms cultured in sub-MIC amoxicillin were thicker, contained more pillar and channel structures, and were less porous than biofilms cultured without antibiotic. Biofilm formation in sub-MIC amoxicillin correlated with the production of extracellular DNA (eDNA). However, eDNA released by amoxicillin-induced cell lysis alone was evidently not sufficient to stimulate biofilm. Sub-MIC levels of two other cell wall-active agents with different mechanisms of action-d-cycloserine and fosfomycin-also stimulated eDNA-dependent biofilm, suggesting that biofilm formation may be a mechanistic adaptation to cell wall stress. Screening a USA300 mariner transposon library for mutants deficient in biofilm formation in sub-MIC amoxicillin identified numerous known mediators of S. aureus β-lactam resistance and biofilm formation, as well as novel genes not previously associated with these phenotypes. Our results link cell wall stress and biofilm formation in MRSA and suggest that eDNA-dependent biofilm formation by strain USA300 in low-dose amoxicillin is an inducible phenotype that can be used to identify novel genes impacting MRSA β-lactam resistance and biofilm formation.
Collapse
|
35
|
Haas B, Grenier D. Impact of Sub-Inhibitory Concentrations of Amoxicillin on Streptococcus suis Capsule Gene Expression and Inflammatory Potential. Pathogens 2016; 5:pathogens5020037. [PMID: 27104570 PMCID: PMC4931388 DOI: 10.3390/pathogens5020037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis is an important swine pathogen and emerging zoonotic agent worldwide causing meningitis, endocarditis, arthritis and septicemia. Among the 29 serotypes identified to date, serotype 2 is mostly isolated from diseased pigs. Although several virulence mechanisms have been characterized in S. suis, the pathogenesis of S. suis infections remains only partially understood. This study focuses on the response of S. suis P1/7 to sub-inhibitory concentrations of amoxicillin. First, capsule expression was monitored by qRT-PCR when S. suis was cultivated in the presence of amoxicillin. Then, the pro-inflammatory potential of S. suis P1/7 culture supernatants or whole cells conditioned with amoxicillin was evaluated by monitoring the activation of the NF-κB pathway in monocytes and quantifying pro-inflammatory cytokines secreted by macrophages. It was found that amoxicillin decreased capsule expression in S. suis. Moreover, conditioning the bacterium with sub-inhibitory concentrations of amoxicillin caused an increased activation of the NF-κB pathway in monocytes following exposure to bacterial culture supernatants and to a lesser extent to whole bacterial cells. This was associated with an increased secretion of pro-inflammatory cytokines (CXCL8, IL-6, IL-1β) by macrophages. This study identified a new mechanism by which S. suis may increase its inflammatory potential in the presence of sub-inhibitory concentrations of amoxicillin, a cell wall-active antibiotic, thus challenging its use for preventive treatments or as growth factor.
Collapse
Affiliation(s)
- Bruno Haas
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada.
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche du Québec-Nature et Technologies (FRQNT), Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
36
|
Torres‐Barceló C, Franzon B, Vasse M, Hochberg ME. Long-term effects of single and combined introductions of antibiotics and bacteriophages on populations of Pseudomonas aeruginosa. Evol Appl 2016; 9:583-95. [PMID: 27099623 PMCID: PMC4831460 DOI: 10.1111/eva.12364] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022] Open
Abstract
With escalating resistance to antibiotics, there is an urgent need to develop alternative therapies against bacterial pathogens and pests. One of the most promising is the employment of bacteriophages (phages), which may be highly specific and evolve to counter antiphage resistance. Despite an increased understanding of how phages interact with bacteria, we know very little about how their interactions may be modified in antibiotic environments and, reciprocally, how phage may affect the evolution of antibiotic resistance. We experimentally evaluated the impacts of single and combined applications of antibiotics (different doses and different types) and phages on in vitro evolving populations of the opportunistic pathogen Pseudomonas aeruginosa PAO1. We also assessed the effects of past treatments on bacterial virulence in vivo, employing larvae of Galleria mellonella to survey the treatment consequences for the pathogen. We find a strong synergistic effect of combining antibiotics and phages on bacterial population density and in limiting their recovery rate. Our long-term study establishes that antibiotic dose is important, but that effects are relatively insensitive to antibiotic type. From an applied perspective, our results indicate that phages can contribute to managing antibiotic resistance levels, with limited consequences for the evolution of bacterial virulence.
Collapse
Affiliation(s)
| | - Blaise Franzon
- Institut des Sciences de l'EvolutionUniversité de MontpellierMontpellierFrance
| | - Marie Vasse
- Institut des Sciences de l'EvolutionUniversité de MontpellierMontpellierFrance
| | - Michael E. Hochberg
- Institut des Sciences de l'EvolutionUniversité de MontpellierMontpellierFrance
- Santa Fe InstituteSanta FeNMUSA
| |
Collapse
|
37
|
Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, Foster KR. Biofilm Formation As a Response to Ecological Competition. PLoS Biol 2015; 13:e1002191. [PMID: 26158271 PMCID: PMC4497666 DOI: 10.1371/journal.pbio.1002191] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/29/2015] [Indexed: 12/28/2022] Open
Abstract
Bacteria form dense surface-associated communities known as biofilms that are central to their persistence and how they affect us. Biofilm formation is commonly viewed as a cooperative enterprise, where strains and species work together for a common goal. Here we explore an alternative model: biofilm formation is a response to ecological competition. We co-cultured a diverse collection of natural isolates of the opportunistic pathogen Pseudomonas aeruginosa and studied the effect on biofilm formation. We show that strain mixing reliably increases biofilm formation compared to unmixed conditions. Importantly, strain mixing leads to strong competition: one strain dominates and largely excludes the other from the biofilm. Furthermore, we show that pyocins, narrow-spectrum antibiotics made by other P. aeruginosa strains, can stimulate biofilm formation by increasing the attachment of cells. Side-by-side comparisons using microfluidic assays suggest that the increase in biofilm occurs due to a general response to cellular damage: a comparable biofilm response occurs for pyocins that disrupt membranes as for commercial antibiotics that damage DNA, inhibit protein synthesis or transcription. Our data show that bacteria increase biofilm formation in response to ecological competition that is detected by antibiotic stress. This is inconsistent with the idea that sub-lethal concentrations of antibiotics are cooperative signals that coordinate microbial communities, as is often concluded. Instead, our work is consistent with competition sensing where low-levels of antibiotics are used to detect and respond to the competing genotypes that produce them. Mixing natural isolates of the pathogenic bacterium Pseudomonas aeruginosa shows that the formation of biofilm is a response to antibiotic stress from competing genotypes. Bacteria often attach to each other and to surfaces and make biofilms. These dense communities occur everywhere, including on us and inside us, where they are central to both health and disease. Biofilm formation is often viewed as the coordinated action of multiple strains that work together in order to prosper and protect each other. In this study, we provide evidence for a very different view: biofilms are formed when bacterial strains compete with one another. We mixed together different strains of the widespread pathogen Pseudomonas aeruginosa and found that pairs often make bigger biofilms than either one alone. Rather than working together, however, we show that one strain normally kills the other off and that biofilm formation is actually a response to the damage of antibiotic warfare. Our work helps to explain the widespread observation that treating bacteria with clinical antibiotics can stimulate biofilm formation. When we treat bacteria, they respond as if the attack is coming from a foreign strain that must be outnumbered and outcompeted in a biofilm.
Collapse
Affiliation(s)
- Nuno M. Oliveira
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, United Kingdom
| | - Esteban Martinez-Garcia
- FAS Center for Systems Biology, University of Harvard, Cambridge, Massachusetts, United States of America
- Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Joao Xavier
- FAS Center for Systems Biology, University of Harvard, Cambridge, Massachusetts, United States of America
- Memorial Sloan-Kettering Cancer Center, Computational Biology Program, New York, New York, United States of America
| | | | - Roberto Kolter
- Harvard Medical School, Department of Microbiology and Immunobiology, Boston, Massachusetts, United States of America
| | - Wook Kim
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, United Kingdom
- FAS Center for Systems Biology, University of Harvard, Cambridge, Massachusetts, United States of America
| | - Kevin R. Foster
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford, United Kingdom
- FAS Center for Systems Biology, University of Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Chung JW, Greenwood-Quaintance KE, Karau MJ, Tilahun A, Khaleghi SR, Chowdhary VR, David CS, Patel R, Rajagopalan G. Superantigens produced by catheter-associated Staphylococcus aureus elicit systemic inflammatory disease in the absence of bacteremia. J Leukoc Biol 2015; 98:271-81. [PMID: 25979434 DOI: 10.1189/jlb.4a1214-577rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/17/2015] [Indexed: 11/24/2022] Open
Abstract
SAgs, produced by Staphylococcus aureus, play a major role in the pathogenesis of invasive staphylococcal diseases by inducing potent activation of the immune system. However, the role of SAgs, produced by S. aureus, associated with indwelling devices or tissues, are not known. Given the prevalence of device-associated infection with toxigenic S. aureus in clinical settings and the potency of SAgs, we hypothesized that continuous exposure to SAgs produced by catheter-associated S. aureus could have systemic consequences. To investigate these effects, we established a murine in vivo catheter colonization model. One centimeter long intravenous catheters were colonized with a clinical S. aureus isolate producing SAgs or isogenic S. aureus strains, capable or incapable of producing SAg. Catheters were subcutaneously implanted in age-matched HLA-DR3, B6, and AE(o) mice lacking MHC class II molecules and euthanized 7 d later. There was no evidence of systemic infection. However, in HLA-DR3 transgenic mice, which respond robustly to SSAgs, the SSAg-producing, but not the nonproducing strains, caused a transient increase in serum cytokine levels and a protracted expansion of splenic CD4(+) T cells expressing SSAg-reactive TCR Vβ8. Lungs, livers, and kidneys from these mice showed infiltration with CD4(+) and CD11b(+) cells. These findings were absent in B6 and AE(o) mice, which are known to respond poorly to SSAgs. Overall, our novel findings suggest that systemic immune activation elicited by SAgs, produced by S. aureus colonizing foreign bodies, could have clinical consequences in humans.
Collapse
Affiliation(s)
- Jin-Won Chung
- *Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Divisions of Infectious Diseases and Rheumatology, Department of Medicine, and Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; and Division of Infectious Diseases, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Kerryl E Greenwood-Quaintance
- *Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Divisions of Infectious Diseases and Rheumatology, Department of Medicine, and Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; and Division of Infectious Diseases, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Melissa J Karau
- *Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Divisions of Infectious Diseases and Rheumatology, Department of Medicine, and Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; and Division of Infectious Diseases, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Ashenafi Tilahun
- *Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Divisions of Infectious Diseases and Rheumatology, Department of Medicine, and Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; and Division of Infectious Diseases, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Shahryar Rostamkolaei Khaleghi
- *Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Divisions of Infectious Diseases and Rheumatology, Department of Medicine, and Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; and Division of Infectious Diseases, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Vaidehi R Chowdhary
- *Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Divisions of Infectious Diseases and Rheumatology, Department of Medicine, and Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; and Division of Infectious Diseases, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Chella S David
- *Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Divisions of Infectious Diseases and Rheumatology, Department of Medicine, and Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; and Division of Infectious Diseases, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Robin Patel
- *Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Divisions of Infectious Diseases and Rheumatology, Department of Medicine, and Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; and Division of Infectious Diseases, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Govindarajan Rajagopalan
- *Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Divisions of Infectious Diseases and Rheumatology, Department of Medicine, and Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA; and Division of Infectious Diseases, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
39
|
Ohsumi T, Takenaka S, Wakamatsu R, Sakaue Y, Narisawa N, Senpuku H, Ohshima H, Terao Y, Okiji T. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development. PLoS One 2015; 10:e0116647. [PMID: 25635770 PMCID: PMC4312048 DOI: 10.1371/journal.pone.0116647] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/11/2014] [Indexed: 01/21/2023] Open
Abstract
Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion.
Collapse
Affiliation(s)
- Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| | - Rika Wakamatsu
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuuki Sakaue
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Narisawa
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Okiji
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
40
|
Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms preexposed to subinhibitory concentrations of vancomycin. Antimicrob Agents Chemother 2014; 58:7273-82. [PMID: 25267673 DOI: 10.1128/aac.03132-14] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Staphylococcus epidermidis biofilm formation is responsible for the persistence of orthopedic implant infections. Previous studies have shown that exposure of S. epidermidis biofilms to sub-MICs of antibiotics induced an increased level of biofilm persistence. BODIPY FL-vancomycin (a fluorescent vancomycin conjugate) and confocal microscopy were used to show that the penetration of vancomycin through sub-MIC-vancomycin-treated S. epidermidis biofilms was impeded compared to that of control, untreated biofilms. Further experiments showed an increase in the extracellular DNA (eDNA) concentration in biofilms preexposed to sub-MIC vancomycin, suggesting a potential role for eDNA in the hindrance of vancomycin activity. Exogenously added, S. epidermidis DNA increased the planktonic vancomycin MIC and protected biofilm cells from lethal vancomycin concentrations. Finally, isothermal titration calorimetry (ITC) revealed that the binding constant of DNA and vancomycin was 100-fold higher than the previously reported binding constant of vancomycin and its intended cellular d-Ala-d-Ala peptide target. This study provides an explanation of the eDNA-based mechanism of antibiotic tolerance in sub-MIC-vancomycin-treated S. epidermidis biofilms, which might be an important factor for the persistence of biofilm infections.
Collapse
|
41
|
Kusada H, Hanada S, Kamagata Y, Kimura N. The effects of N-acylhomoserine lactones, β-lactam antibiotics and adenosine on biofilm formation in the multi-β-lactam antibiotic-resistant bacterium Acidovorax sp. strain MR-S7. J Biosci Bioeng 2014; 118:14-9. [DOI: 10.1016/j.jbiosc.2013.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/03/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
|
42
|
Influence of sub-inhibitory antibiotics and flow condition on Staphylococcus aureus ATCC 6538 biofilm development and biofilm growth rate: BioTimer assay as a study model. J Antibiot (Tokyo) 2014; 67:763-9. [PMID: 24865865 DOI: 10.1038/ja.2014.66] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 11/08/2022]
Abstract
Staphylococcus biofilm exhibits high antibiotic resistance and therapeutic doses of antibiotics are often sub-inhibitory. Whereas data are available on the effect of sub-inhibitory antibiotics on matrix formation, little is known on their influence on biofilm population. Here, using BioTimer Assay (BTA), a method developed to quantify biofilm population, the influence of sub-inhibitory gentamicin, ofloxacin and azithromycin on Staphylococcus aureus ATCC 6538 biofilm population in flow with respect to static condition was assessed. Antibiotics and flow condition increased biofilm population even if at different extent, depending on the antibiotic molecule. The greatest bacterial population was found in biofilm developed under flow condition in the presence of azithromycin. A significant increase in biofilm matrix was recorded for biofilm developed in the presence of antibiotics in flow with respect to static condition. The growth rates (GRs) of 24-h biofilm developed under the influence of antibiotics and flow condition were also evaluated using BTA and a specific mathematical model. Antibiotics and flow condition affected the GRs of 24-h biofilm even if at different extent. The lowest GR value was recorded for biofilm developed under flow condition in the presence of ofloxacin. Although further studies are needed, our data indicate that antibiotics and flow condition influenced biofilm development by increasing both bacterial population and matrix formation and affected the GRs of the developed biofilm. To the best of our knowledge, BTA is unique in allowing the calculation of the GRs of biofilm and it may be considered to be a useful study model to evaluate the activity of antibiofilm molecules.
Collapse
|
43
|
Lu J, Turnbull L, Burke CM, Liu M, Carter DA, Schlothauer RC, Whitchurch CB, Harry EJ. Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilm-forming abilities. PeerJ 2014; 2:e326. [PMID: 24711974 PMCID: PMC3970805 DOI: 10.7717/peerj.326] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/10/2014] [Indexed: 11/20/2022] Open
Abstract
Chronic wounds are a major global health problem. Their management is difficult and costly, and the development of antibiotic resistance by both planktonic and biofilm-associated bacteria necessitates the use of alternative wound treatments. Honey is now being revisited as an alternative treatment due to its broad-spectrum antibacterial activity and the inability of bacteria to develop resistance to it. Many previous antibacterial studies have used honeys that are not well characterized, even in terms of quantifying the levels of the major antibacterial components present, making it difficult to build an evidence base for the efficacy of honey as an antibiofilm agent in chronic wound treatment. Here we show that a range of well-characterized New Zealand manuka-type honeys, in which two principle antibacterial components, methylglyoxal and hydrogen peroxide, were quantified, can eradicate biofilms of a range of Staphylococcus aureus strains that differ widely in their biofilm-forming abilities. Using crystal violet and viability assays, along with confocal laser scanning imaging, we demonstrate that in all S. aureus strains, including methicillin-resistant strains, the manuka-type honeys showed significantly higher anti-biofilm activity than clover honey and an isotonic sugar solution. We observed higher anti-biofilm activity as the proportion of manuka-derived honey, and thus methylglyoxal, in a honey blend increased. However, methylglyoxal on its own, or with sugar, was not able to effectively eradicate S. aureus biofilms. We also demonstrate that honey was able to penetrate through the biofilm matrix and kill the embedded cells in some cases. As has been reported for antibiotics, sub-inhibitory concentrations of honey improved biofilm formation by some S. aureus strains, however, biofilm cell suspensions recovered after honey treatment did not develop resistance towards manuka-type honeys. New Zealand manuka-type honeys, at the concentrations they can be applied in wound dressings are highly active in both preventing S. aureus biofilm formation and in their eradication, and do not result in bacteria becoming resistant. Methylglyoxal requires other components in manuka-type honeys for this anti-biofilm activity. Our findings support the use of well-defined manuka-type honeys as a topical anti-biofilm treatment for the effective management of wound healing.
Collapse
Affiliation(s)
- Jing Lu
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Catherine M. Burke
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Michael Liu
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Dee A. Carter
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | | | | - Elizabeth J. Harry
- The ithree institute, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
44
|
Potent sub-MIC effect of GSK1322322 and other peptide deformylase inhibitors on in vitro growth of Staphylococcus aureus. Antimicrob Agents Chemother 2013; 58:290-6. [PMID: 24165188 DOI: 10.1128/aac.01292-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptide deformylase (PDF), a clinically unexploited antibacterial target, plays an essential role in protein maturation. PDF inhibitors, therefore, represent a new antibiotic class with a unique mode of action that provides an alternative therapy for the treatment of infections caused by drug-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). GSK1322322 is a novel PDF inhibitor that is in phase II clinical development for the treatment of lower respiratory tract and skin infections. We have discovered that PDF inhibitors can prevent S. aureus in vitro growth for up to 6 h at concentrations 8- to 32-fold below their MICs. This phenomenon seems specific to PDF inhibitors, as none of the antimicrobial agents with alternative mechanisms of action tested show such a potent and widespread effect. It also appears limited to S. aureus, as PDF inhibitors do not show such an inhibition of growth at sub-MIC levels in Streptococcus pneumoniae or Haemophilus influenzae. Analysis of the effect of GSK1322322 on the early growth of 100 randomly selected S. aureus strains showed that concentrations equal to or below 1/8× MIC inhibited growth of 91% of the strains tested for 6 h, while the corresponding amount of moxifloxacin or linezolid only affected the growth of 1% and 6% of strains, respectively. Furthermore, the sub-MIC effect demonstrated by GSK1322322 appears more substantial on those strains at the higher end of the MIC spectrum. These effects may impact the clinical efficacy of GSK1322322 in serious infections caused by multidrug-resistant S. aureus.
Collapse
|
45
|
Ng M, Epstein SB, Callahan MT, Piotrowski BO, Simon GL, Roberts AD, Keiser JF, Kaplan JB. Induction of MRSA Biofilm by Low-Dose β-Lactam Antibiotics: Specificity, Prevalence and Dose-Response Effects. Dose Response 2013; 12:152-61. [PMID: 24659939 DOI: 10.2203/dose-response.13-021.kaplan] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of hospital- and community-associated infections. The formation of adherent clusters of cells known as biofilms is an important virulence factor in MRSA pathogenesis. Previous studies showed that subminimal inhibitory (sub-MIC) concentrations of methicillin induce biofilm formation in the community-associated MRSA strain LAC. In this study we measured the ability sub-MIC concentrations of eight other β-lactam antibiotics and six non-β-lactam antibiotics to induce LAC biofilm. All eight β-lactam antibiotics, but none of the non-β-lactam antibiotics, induced LAC biofilm. The dose-response effects of the eight β-lactam antibiotics on LAC biofilm varied from biphasic and bimodal to near-linear. We also found that sub-MIC methicillin induced biofilm in 33 out of 39 additional MRSA clinical isolates, which also exhibited biphasic, bimodal and linear dose-response curves. The amount of biofilm formation induced by sub-MIC methicillin was inversely proportional to the susceptibility of each strain to methicillin. Our results demonstrate that induction of biofilm by sub-MIC antibiotics is a common phenotype among MRSA clinical strains and is specific for β-lactam antibiotics. These findings may have relevance to the use of β-lactam antibiotics in clinical and agricultural settings.
Collapse
Affiliation(s)
- Mandy Ng
- Department of Biology, American University, Washington DC, USA
| | | | - Mary T Callahan
- Department of Biology, American University, Washington DC, USA
| | | | - Gary L Simon
- Division of Infectious Diseases, Department of Medicine, The George Washington University, Washington DC, USA
| | - Afsoon D Roberts
- Division of Infectious Diseases, Department of Medicine, The George Washington University, Washington DC, USA
| | - John F Keiser
- Department of Pathology, The George Washington University, Washington DC, USA
| | | |
Collapse
|
46
|
Multiple Pathways of Genome Plasticity Leading to Development of Antibiotic Resistance. Antibiotics (Basel) 2013; 2:288-315. [PMID: 27029305 PMCID: PMC4790341 DOI: 10.3390/antibiotics2020288] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 02/05/2023] Open
Abstract
The emergence of multi-resistant bacterial strains is a major source of concern and has been correlated with the widespread use of antibiotics. The origins of resistance are intensively studied and many mechanisms involved in resistance have been identified, such as exogenous gene acquisition by horizontal gene transfer (HGT), mutations in the targeted functions, and more recently, antibiotic tolerance through persistence. In this review, we focus on factors leading to integron rearrangements and gene capture facilitating antibiotic resistance acquisition, maintenance and spread. The role of stress responses, such as the SOS response, is discussed.
Collapse
|
47
|
Bernier SP, Surette MG. Concentration-dependent activity of antibiotics in natural environments. Front Microbiol 2013; 4:20. [PMID: 23422936 PMCID: PMC3574975 DOI: 10.3389/fmicb.2013.00020] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/28/2013] [Indexed: 11/26/2022] Open
Abstract
Bacterial responses to antibiotics are concentration-dependent. At high concentrations, antibiotics exhibit antimicrobial activities on susceptible cells, while subinhibitory concentrations induce diverse biological responses in bacteria. At non-lethal concentrations, bacteria may sense antibiotics as extracellular chemicals to trigger different cellular responses, which may include an altered antibiotic resistance/tolerance profile. In natural settings, microbes are typically in polymicrobial communities and antibiotic-mediated interactions between species may play a significant role in bacterial community structure and function. However, these aspects have not yet fully been explored at the community level. Here we discuss the different types of interactions mediated by antibiotics and non-antibiotic metabolites as a function of their concentrations and speculate on how these may amplify the overall antibiotic resistance/tolerance and the spread of antibiotic resistance determinants in a context of polymicrobial community.
Collapse
Affiliation(s)
- Steve P Bernier
- Farncombe Family Digestive Health Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University Hamilton, ON, Canada
| | | |
Collapse
|
48
|
Nielsen LN, Roggenbuck M, Haaber J, Ifrah D, Ingmer H. Diverse modulation of spa transcription by cell wall active antibiotics in Staphylococcus aureus. BMC Res Notes 2012; 5:457. [PMID: 22920188 PMCID: PMC3504574 DOI: 10.1186/1756-0500-5-457] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/19/2012] [Indexed: 12/21/2022] Open
Abstract
Background The aim of this study was to investigate the effect of various classes of clinically relevant antibiotics at sub-lethal concentrations on virulence gene expression and biofilm formation in Staphylococcus aureus. Findings LacZ promoter fusions of genes related to staphylococcal virulence were used to monitor the effects of antibiotics on gene expression in a disc diffusion assay. The selected genes were hla and spa encoding α-hemolysin and Protein A, respectively and RNAIII, the effector molecule of the agr quorum sensing system. The results were confirmed by quantitative real-time PCR. Additionally, we monitored the effect of subinhibitory concentrations of antibiotics on the ability of S. aureus to form biofilm in a microtiter plate assay. The results show that sub-lethal antibiotic concentrations diversely modulate expression of RNAIII, hla and spa. Consistently, expression of all three genes were repressed by aminoglycosides and induced by fluoroquinolones and penicillins. In contrast, the β-lactam sub-group cephalosporins enhanced expression of RNAIII and hla but diversely affected expression of spa. The compounds cefalotin, cefamandole, cefoxitin, ceftazidime and cefixine were found to up-regulate spa, while down-regulation was observed for cefuroxime, cefotaxime and cefepime. Interestingly, biofilm assays demonstrated that the spa-inducing cefalotin resulted in less biofilm formation compared to the spa-repressing cefotaxime. Conclusions We find that independently of the cephalosporin generation, cephalosporins oppositely regulate spa expression and biofilm formation. Repression of spa expression correlates with the presence of a distinct methyloxime group while induction correlates with an acidic substituted oxime group. As cephalosporines target the cell wall penicillin binding proteins we speculate that subtle differences in this interaction fine-tunes spa expression independently of agr.
Collapse
Affiliation(s)
- Lene N Nielsen
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
49
|
Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. mBio 2012; 3:e00198-12. [PMID: 22851659 PMCID: PMC3419523 DOI: 10.1128/mbio.00198-12] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Subminimal inhibitory concentrations of antibiotics have been shown to induce bacterial biofilm formation. Few studies have investigated antibiotic-induced biofilm formation in Staphylococcus aureus, an important human pathogen. Our goal was to measure S. aureus biofilm formation in the presence of low levels of β-lactam antibiotics. Fifteen phylogenetically diverse methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains were employed. Methicillin, ampicillin, amoxicillin, and cloxacillin were added to cultures at concentrations ranging from 0× to 1× MIC. Biofilm formation was measured in 96-well microtiter plates using a crystal violet binding assay. Autoaggregation was measured using a visual test tube settling assay. Extracellular DNA was quantitated using agarose gel electrophoresis. All four antibiotics induced biofilm formation in some strains. The amount of biofilm induction was as high as 10-fold and was inversely proportional to the amount of biofilm produced by the strain in the absence of antibiotics. MRSA strains of lineages USA300, USA400, and USA500 exhibited the highest levels of methicillin-induced biofilm induction. Biofilm formation induced by low-level methicillin was inhibited by DNase. Low-level methicillin also induced DNase-sensitive autoaggregation and extracellular DNA release. The biofilm induction phenotype was absent in a strain deficient in autolysin (atl). Our findings demonstrate that subminimal inhibitory concentrations of β-lactam antibiotics significantly induce autolysin-dependent extracellular DNA release and biofilm formation in some strains of S. aureus. The widespread use of antibiotics as growth promoters in agriculture may expose bacteria to low levels of the drugs. The aim of this study was to investigate the effects of low levels of antibiotics on bacterial autoaggregation and biofilm formation, two processes that have been shown to foster genetic exchange and antibiotic resistance. We found that low levels of β-lactam antibiotics, a class commonly used in both clinical and agricultural settings, caused significant autoaggregation and biofilm formation by the important human pathogen Staphylococcus aureus. Both processes were dependent on cell lysis and release of DNA into the environment. The effect was most pronounced among multidrug-resistant strains known as methicillin-resistant S. aureus (MRSA). These results may shed light on the recalcitrance of some bacterial infections to antibiotic treatment in clinical settings and the evolution of antibiotic-resistant bacteria in agricultural settings.
Collapse
|
50
|
Subrt N, Mesak LR, Davies J. Modulation of virulence gene expression by cell wall active antibiotics in Staphylococcus aureus. J Antimicrob Chemother 2011; 66:979-84. [PMID: 21393149 DOI: 10.1093/jac/dkr043] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To investigate the effect of subinhibitory concentrations of cell wall active antibiotics on virulence gene expression and biofilm formation in Staphylococcus aureus Newman and in laboratory strains. METHODS Promoter regions of spa, lukE and agr RNAIII were cloned upstream of a modified luxABCDE reporter. Using disc diffusion assays, the effects of antibiotics were observed on gene expression and quantitative real-time PCR was employed to confirm the results. Assays were performed to measure biofilm formation in wild-type S. aureus and respective spa-deficient and small colony variant mutants in the presence of subinhibitory concentrations of antibiotics. RESULTS Expression of spa and lukE was stimulated by subinhibitory concentrations of penicillin and cefalotin, while agr RNAIII expression was not affected. Denser biofilms were formed by S. aureus Newman and its small colony variant in the presence of subinhibitory concentrations of cefalotin. CONCLUSIONS Subinhibitory concentrations of certain antibiotics have been shown to stimulate virulence gene expression in S. aureus; this may alter the progression of infection and thus render antimicrobial therapy unreliable. The use of appropriate combinations of antibiotics might be an approach to avoiding this situation. Promoter-lux reporters are sensitive tools for studying the modulation of transcription by antibiotic inhibitors, and could be used to predict novel therapeutic combinations for the treatment of infection.
Collapse
Affiliation(s)
- Natalia Subrt
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|