1
|
Liu LP, Fang YD, Kang PT, Gao XY, Zhang GW, Pan J, Lu J, Liu JX, Zhang WD. Isolation, identification and characteristics of Aeromonas sobria from diseased rainbow trout ( Oncorhynchus mykiss). Front Microbiol 2025; 15:1499126. [PMID: 39839118 PMCID: PMC11748802 DOI: 10.3389/fmicb.2024.1499126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
Aeromonas sobria is an opportunistic pathogen that can infect humans, animals and aquatic species, which is widely distributed in different aquatic environments and products. In recent years, with the rapid expansion of intensive aquaculture, the disease caused by A. sobria has occurred. This study aims to understand the pathogenic characteristics of A. sobria and provide scientific basis for the prevention and control of the epidemic. The dominant strain As012 was isolated from the diseased rainbow trout during the outbreak. Through physiological and biochemical experiments, sequencing and phylogenetic tree analysis of 16S rRNA and gyrB genes, the strain As012 was identified as A. sobria. The clinical signs of the diseased rainbow trout in the experimental infection were consistent with those in the farm, and the LD50 was 1.0 × 106.6 CFU/mL. The histopathological lesions in the gills, heart, liver, spleen and intestines were mainly extensive hemorrhage. In addition, eight virulence genes were screened from strain As012, including Act, Aer, AexT4, Alt, ahyB, ascV, Nuc and Hly. The strain As012 can grow in the environment with pH 1-11, temperature 8-43°C and NaCl concentration 0-8%. The drug sensitivity results showed that it was resistant to 12 antibiotics including penicillin G, vancomycin, and clindamycin, and highly sensitive to 16 antibiotics including cefazolin, ciprofloxacin, and furadantin. The results showed that A. sobria, the dominant strain isolated from diseased rainbow trout, was the main pathogen causing the epidemic in the farm. The strain As012 has a very wide range of growth and strong pathogenicity, causing widespread hemorrhaging in various tissues of rainbow trout. It is multi-resistant, but highly sensitive to cephalosporins, quinolones, nitrofurans and sulfonamides. Among them, ciprofloxacin will be one of the effective antibiotics for preventing and controlling A. sobria infection in Chinese aquaculture.
Collapse
Affiliation(s)
- Li-Ping Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Lanzhou Witsen Biotechnology Co., LTD, Lanzhou, China
| | - Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng-Tian Kang
- Department of Disease Control, Gansu Fishery Technology Extension Station, Lanzhou, China
| | - Xiang-Yun Gao
- Department of Disease Control, Gansu Fishery Technology Extension Station, Lanzhou, China
| | - Guo-Wei Zhang
- Department of Disease Control, Gansu Fishery Technology Extension Station, Lanzhou, China
| | - Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jia Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ji-Xing Liu
- Lanzhou Witsen Biotechnology Co., LTD, Lanzhou, China
| | - Wang-Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Marcoux PÉ, Girard SB, Fournier KC, Tardif CA, Gosselin A, Charette SJ. Interaction of pAsa5 and pAsa8 Plasmids in Aeromonas salmonicida subsp. salmonicida. Microorganisms 2023; 11:2685. [PMID: 38004697 PMCID: PMC10673383 DOI: 10.3390/microorganisms11112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The plasmid known as pAsa5 is present in Aeromonas salmonicida subsp. salmonicida, a fish pathogen. The pAsa5 plasmid carries genes that are essential for the bacterium's virulence. Recombination events are known to occur in pAsa5, resulting in the loss of certain segments or the acquisition of additional genetic elements. For example, the transposon carried by the large pAsa8 plasmid was found to be inserted into the pAsa5 plasmid in the SHY16-3432 strain, enabling the addition of antibiotic resistance genes to this plasmid, which does not normally possess any. In this study, we present the isolation of additional strains carrying pAsa8. Further analyses of these strains revealed that a fusion between pAsa5 and the complete version of pAsa8 is possible. The pAsa8 transposon insertion in pAsa5 seen in the SHY16-3432 strain appears to be an aberrant event compared to the fusion of the two full-length plasmids. A 22-nucleotide sequence, present in both plasmids, serves as the site for the fusion of the two plasmids. Moreover, it is possible to introduce pAsa8 through conjugation into naive strains of A. salmonicida subsp. salmonicida and once the plasmid is within a new strain, the fusion with pAsa5 is detectable. This study reveals a previously unexplored aspect of pAsa5 plasmid biology, highlighting an additional risk for the spread of antibiotic resistance genes in A. salmonicida subsp. salmonicida.
Collapse
Affiliation(s)
- Pierre-Étienne Marcoux
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sarah B. Girard
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Kim C. Fournier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Catherine A. Tardif
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Ariane Gosselin
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
| |
Collapse
|
3
|
Pradhan SK, Devi R, Khan MIR, Kamilya D, Gon Choudhury T, Parhi J. Isolation of Aeromonas salmonicida subspecies salmonicida from aquaculture environment in India: Polyphasic identification, virulence characterization, and antibiotic susceptibility. Microb Pathog 2023; 179:106100. [PMID: 37028687 DOI: 10.1016/j.micpath.2023.106100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
This study reports the polyphasic identification, characterization of virulence potential, and antibiotic susceptibility of Aeromonas salmonicida subspecies salmonicida COFCAU_AS, isolated from an aquaculture system in India. The physiological, biochemical, 16s rRNA gene sequencing and PAAS PCR test identified the strain as Aeromonas salmonicida. The MIY PCR tests established the subspecies as 'salmonicida'. The in vitro tests showed the isolated bacterium as haemolytic with casein, lipid, starch, and gelatin hydrolysis activity, indicating its pathogenic attributes. It also showed the ability to produce slime and biofilm, and additionally, it possessed an A-layer surface protein. In vivo pathogenicity test was performed to determine the LD50 dose of the bacterium in Labeo rohita fingerlings (14.42 ± 1.01 g), which was found to be 106.9 cells fish-1. The bacteria-challenged fingerlings showed skin lesions, erythema at the base of the fins, dropsy, and ulcer. Almost identical clinical signs and mortalities were observed when the same LD50 dose was injected into other Indian major carp species, L. catla and Cirrhinus mrigala. Out of the twelve virulent genes screened, the presence of nine genes viz., aerA, act, ast, alt, hlyA, vapA, exsA, fstA, and lip were detected, whereas ascV, ascC, and ela genes were absent. The A. salmonicida subsp. salmonicida COFCAU_AS was resistant to antibiotics such as penicillin G, rifampicin, ampicillin, and vancomycin while highly sensitive to amoxiclav, nalidixic acid, chloramphenicol, ciprofloxacin, and tetracycline. In summary, we have isolated a virulent A. salmonicida subsp. salmonicida from a tropical aquaculture pond which can cause significant mortality and morbidity in Indian major carp species.
Collapse
Affiliation(s)
- Subham Kumar Pradhan
- Dept. of Aquatic Health & Environment, College of Fisheries, CAU, Lembucherra, Tripura, 799210, India
| | - Rajashree Devi
- Dept. of Aquatic Health & Environment, College of Fisheries, CAU, Lembucherra, Tripura, 799210, India
| | - Md Idrish Raja Khan
- Dept. of Aquatic Health & Environment, College of Fisheries, CAU, Lembucherra, Tripura, 799210, India; Late Shri Punaram Nishad College of Fisheries, DSVCKU, Kawardha, 491995, Chhattisgarh, India
| | - Dibyendu Kamilya
- Dept. of Aquatic Health & Environment, College of Fisheries, CAU, Lembucherra, Tripura, 799210, India; Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Tanmoy Gon Choudhury
- Dept. of Aquatic Health & Environment, College of Fisheries, CAU, Lembucherra, Tripura, 799210, India.
| | - Janmejay Parhi
- Dept. of Fish Genetics & Reproduction, College of Fisheries, CAU, Lembucherra, Tripura, 799210, India
| |
Collapse
|
4
|
Leduc GR, Paquet VE, Piché LC, Vincent AT, Charette SJ. Isolation of vB_AsaM_LPM4 reveals the dynamics of Prophage 3 in Aeromonas salmonicida subsp. salmonicida. Arch Virol 2023; 168:72. [PMID: 36670249 DOI: 10.1007/s00705-022-05623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/24/2022] [Indexed: 01/21/2023]
Abstract
Aeromonas salmonicida subsp. salmonicida causes furunculosis, a major infection that affects fish farms worldwide. We isolated phage vB_AsaM_LPM4 (LPM4) from a diseased fish. Based on its DNA sequence, LPM4 is identical to the uncharacterized Prophage 3, a prophage present mostly in North American A. salmonicida subsp. salmonicida isolates that bear the genomic island AsaGEI2a. Prophage 3 and AsaGEI2a are inserted side by side in the bacterial chromosome. The LPM4/Prophage 3 sequence is similar to that of other prophages found in various members of the genus Aeromonas. LPM4 specifically infects A. salmonicida subsp. salmonicida strains that do not already bear Prophage 3. The presence of an A-layer on the surface of the bacteria is not necessary for the adsorption of phage LPM4 but seems to facilitate its infection process. We also successfully produced lysogenic strains that bear Prophage 3 using sensitive strains with different genetic backgrounds, suggesting that there is no interdependency between LPM4 and AsaGEIs. PCR analysis of the excision dynamics of Prophage 3 and AsaGEIs revealed that these genetic elements can spontaneously excise themselves from the bacterial chromosome independently of one another. Through the isolation and characterization of LPM4, this study reveals new facets of Prophage 3 and AsaGEIs.
Collapse
Affiliation(s)
- Gabrielle R Leduc
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada.,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada
| | - Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada.,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada
| | - Laurie C Piché
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada.,Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Antony T Vincent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada.,Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada. .,Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, G1V 0A6, Canada. .,Centre de recherche de l'Institut universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC, G1V 4G5, Canada.
| |
Collapse
|
5
|
Chen YW, Su SL, Li CW, Tsai CS, Lo CL, Syue LS, Li MC, Lee CC, Lee NY, Ko WC, Chen PL. Pancreaticobiliary Cancers and Aeromonas Isolates Carrying Type Ⅲ Secretion System Genes ascF-ascG Are Associated With Increased Mortality: An Analysis of 164 Aeromonas Infection Episodes in Southern Taiwan. Front Cell Infect Microbiol 2021; 11:749269. [PMID: 34737976 PMCID: PMC8562565 DOI: 10.3389/fcimb.2021.749269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
This prospective study aimed to investigate the clinical and microbiological characteristics of different Aeromonas species. Clinical isolates of Aeromonas species between 2016 to 2018 were collected in a university hospital in southern Taiwan. The species was determined by rpoD or gyrB sequencing. A total of 222 Aeromonas isolates from 160 patients in 164 episodes were identified. The crude in-hospital mortality was 17.2%. The most frequently isolated species was Aeromonas veronii (30.6%), followed by A. caviae (24.8%), A. hydrophila (23%), and A. dhakensis (16.7%). The major clinical manifestations were primary bacteremia (31.1%), skin and soft tissue infection (22.6%), and biliary tract infection (18.3%). The most common underlying diseases were malignancy (45.1%), diabetes mellitus (27.4%), and liver cirrhosis or chronic hepatitis (26.2%). A. hydrophila and A. dhakensis predominated in the skin and soft tissue infection (p<0.0001), whereas A. vernoii and A. caviae prevailed in primary bacteremia and biliary tract infections (p=0.012). Pneumonia, malignancy, and ascF-ascG genotype were independent factors associated with mortality. Ertapenem susceptibility was decreased in A. sobria (42.9%), A. veronii (66.7%), A. dhakensis (73%), and A. hydrophila (84.3%). Cefotaxime resistance was found in 30.9% of A. caviae and 18.9% of A. dhakensis isolates, much more prevalent than the other species. The metallo-β-lactamase blaCphA was almost invariably present in A. dhakensis, A. hydrophila, and A. veronii (100%, 100% and 89.9%, respectively). Amp-C β-lactamases such as blaMOX and blaAQU-1 were identified in all A. caviae and 91.9% of A. dhakensis isolates. Cefepime, fluoroquinolones and tigecycline showed good in vitro activity against aeromonads.
Collapse
Affiliation(s)
- Ying-Wen Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Li Su
- Diagnostic Microbiology and Antimicrobial Resistance Laboratory, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Wen Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Shiang Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Lung Lo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Shan Syue
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Min-Chi Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Chi Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infection Control Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Studies on The Inhibitory Properties of Leaf Ethanolic Extracts Obtained from Ficus ( Moraceae) Species Against Aeromonas Spp. Strains. J Vet Res 2021; 65:59-66. [PMID: 33817396 PMCID: PMC8009583 DOI: 10.2478/jvetres-2021-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction The most frequently isolated bacteria in Polish aquaculture are of the Aeromonas genus; also pathogenic to human fish consumers, they cause substantial economic losses, and require antibiotic therapy to treat. Antibiotic residues in animal-derived food provoke concern. The aim of the study was to appraise the antimicrobial activity of ethanolic extracts of Ficus plant species against Aeromonas strains. Material and Methods Leaves of 41 Ficus species were collected from two Ukrainian botanic gardens. They were crushed, washed, homogenized in ethanol and centrifuged, and the supernatants were applied in the Kirby–Bauer disc-diffusion method to assess the susceptibility to them of Aeromonas hydrophila, A. sobria, and A. salmonicia subsp. salmonicida isolates confirmed as K886, K825, and St30 strains. Analogous assessment was also made of these bacteria’s susceptibility to sulfonamides, quinolones, tetracyclines, and one amphenicol. Data were analysed statistically. Results The majority of the extracts considerably inhibited bacterial growth, A. sobria being susceptible to 14 Ficus species, A. salmonicida subsp. salmonicida to 13, and A. hydrophila to 10. Conclusion Treatment with plant extracts has promise as an alternative to antibiotic therapy. Botanic gardens may offer new sources of plant-derived agents with a broad spectrum of biological and antimicrobial action. Further research will be useful to broaden knowledge of Ficus’ therapeutic potential.
Collapse
|
7
|
Characterization of bacteriophage T7-Ah reveals its lytic activity against a subset of both mesophilic and psychrophilic Aeromonas salmonicida strains. Arch Virol 2021; 166:521-533. [PMID: 33394168 DOI: 10.1007/s00705-020-04923-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
Aeromonas salmonicida strains cause problematic bacterial infections in the aquaculture industry worldwide. The genus Aeromonas includes both mesophilic and psychrophilic species. Bacteriophages that infect Aeromonas spp. strains are usually specific for mesophilic or psychrophilic species; only a few bacteriophages can infect both types of strains. In this study, we characterized the podophage T7-Ah, which was initially found to infect the Aeromonas salmonicida HER1209 strain. The burst size of T7-Ah against its original host is 72 new virions per infected cell, and its burst time is 30 minutes. It has been found that this phage can lyse both mesophilic and psychrophilic A. salmonicida strains, as well as one strain of Escherichia coli. Its genome comprises 40,153 bp of DNA and does not contain any recognizable toxin or antibiotic resistance genes. The adsorption rate of the phage on highly sensitive bacterial strains was variable and could not be related to the presence or absence of a functional A-layer on the surface of the bacterial strains. The lipopolysaccharide migration patterns of both resistant and sensitive bacterial strains were also studied and compared to investigate the nature of the potential receptor of this phage on the bacterial surface. This study sheds light on the surprising diversity of lifestyles of the bacterial strains sensitive to phage T7-Ah and opens the door to the potential use of this phage against A. salmonicida infections in aquaculture.
Collapse
|
8
|
Vincent AT, Hosseini N, Charette SJ. The Aeromonas salmonicida plasmidome: a model of modular evolution and genetic diversity. Ann N Y Acad Sci 2020; 1488:16-32. [PMID: 33040386 DOI: 10.1111/nyas.14503] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/30/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
High-throughput genomic sequencing has helped to reveal the plasmidome of Aeromonas salmonicida. This literature review provides an overview of A. salmonicida's rich plasmidome by presenting all the plasmids identified so far, addressing their biological importance and the functional links between them. The plasmids of A. salmonicida, especially those bearing antibiotic resistance genes, can provide clues about interactions of this species with other pathogens (animals and humans), as is the case for pRAS3-3432 and Chlamydia suis or pSN254b and Salmonella enterica. In addition to antibiotic resistance, plasmids play an important role in the virulence of A. salmonicida, particularly for the subspecies salmonicida and the plasmid pAsa5, which carries genes for the type-three secretion system, a virulence factor essential for the bacterium. The A. salmonicida plasmidome also has many cryptic plasmids with no known biological function, but which can be used for the acquisition of new genetic elements. Striking examples are pAsa7 and pAsaXII that provide, respectively, resistance to chloramphenicol and formaldehyde and are derivatives of cryptic pAsa2.
Collapse
Affiliation(s)
- Antony T Vincent
- Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
| | - Nava Hosseini
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Quebec City, Quebec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
9
|
Fernández-Bravo A, Figueras MJ. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 2020; 8:microorganisms8010129. [PMID: 31963469 PMCID: PMC7022790 DOI: 10.3390/microorganisms8010129] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The genus Aeromonas belongs to the Aeromonadaceae family and comprises a group of Gram-negative bacteria widely distributed in aquatic environments, with some species able to cause disease in humans, fish, and other aquatic animals. However, bacteria of this genus are isolated from many other habitats, environments, and food products. The taxonomy of this genus is complex when phenotypic identification methods are used because such methods might not correctly identify all the species. On the other hand, molecular methods have proven very reliable, such as using the sequences of concatenated housekeeping genes like gyrB and rpoD or comparing the genomes with the type strains using a genomic index, such as the average nucleotide identity (ANI) or in silico DNA–DNA hybridization (isDDH). So far, 36 species have been described in the genus Aeromonas of which at least 19 are considered emerging pathogens to humans, causing a broad spectrum of infections. Having said that, when classifying 1852 strains that have been reported in various recent clinical cases, 95.4% were identified as only four species: Aeromonas caviae (37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%). Since aeromonads were first associated with human disease, gastroenteritis, bacteremia, and wound infections have dominated. The literature shows that the pathogenic potential of Aeromonas is considered multifactorial and the presence of several virulence factors allows these bacteria to adhere, invade, and destroy the host cells, overcoming the immune host response. Based on current information about the ecology, epidemiology, and pathogenicity of the genus Aeromonas, we should assume that the infections these bacteria produce will remain a great health problem in the future. The ubiquitous distribution of these bacteria and the increasing elderly population, to whom these bacteria are an opportunistic pathogen, will facilitate this problem. In addition, using data from outbreak studies, it has been recognized that in cases of diarrhea, the infective dose of Aeromonas is relatively low. These poorly known bacteria should therefore be considered similarly as enteropathogens like Salmonella and Campylobacter.
Collapse
|
10
|
Rupp M, Pilo P, Müller B, Knüsel R, von Siebenthal B, Frey J, Sindilariu PD, Schmidt-Posthaus H. Systemic infection in European perch with thermoadapted virulent Aeromonas salmonicida (Perca fluviatilis). JOURNAL OF FISH DISEASES 2019; 42:685-691. [PMID: 30806486 DOI: 10.1111/jfd.12970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
In non-salmonid fish, Aeromonas salmonicidacan cause local infections with severe skin ulcerations, known as atypical furunculosis. In this study, we present a systemic infection by a virulent A. salmonicidain European perch (Perca fluviatilis).This infection was diagnosed in a Swiss warm water recirculation aquaculture system. The isolate of A. salmonicida encodes a type three secretion system (TTSS) most likely located on a plasmid similar to pAsa5/pASvirA, which is known to specify one of the main virulence attributes of the species A. salmonicida. However, the genes specifying the TTSS of the perch isolate show a higher temperature tolerance than strains isolated from cold-water fish. The function of the TTSS in virulence was verified in a cytotoxicity test using bluegill fry and epithelioma papulosum cyprinid cells.
Collapse
Affiliation(s)
- Melanie Rupp
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | - Paola Pilo
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Barbara Müller
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | | | | | - Joachim Frey
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
11
|
Vincent AT, Charette SJ. Phylogenetic analysis of the fish pathogen Aeromonas salmonicida underlines the dichotomy between European and Canadian strains for the salmonicida subspecies. JOURNAL OF FISH DISEASES 2017; 40:1241-1247. [PMID: 28105757 DOI: 10.1111/jfd.12595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Affiliation(s)
- A T Vincent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC, Canada
| | - S J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC, Canada
| |
Collapse
|
12
|
Fernández-Álvarez C, González SF, Santos Y. Development of a SYBR green I real-time PCR assay for specific identification of the fish pathogen Aeromonas salmonicida subspecies salmonicida. Appl Microbiol Biotechnol 2016; 100:10585-10595. [PMID: 27838837 DOI: 10.1007/s00253-016-7929-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
A SYBR Green I real-time polymerase chain reaction protocol for specific detection of the fish pathogen Aeromonas salmonicida subsp. salmonicida was developed and validated for rapid diagnosis of typical furunculosis. The sequence of the aopO gene of A. salmonicida subsp. salmonicida, which encodes for a serine/threonine protein kinase linked to virulence, was chosen for primer design. The selected primers amplified a 119-bp internal fragment of the aopO gene. The specificity test proved that 100 % (40/40) of the A. salmonicida subsp. salmonicida strains tested showed a positive amplification with subspecies-specific melting temperatures (Tm) of 80.75 ± 0.35 °C. Atypical A. salmonicida subspecies and other non-related bacterial fish pathogens did not amplify or showed unspecific melting profiles, except for one strain of A. salmonicida subsp. achromogenes and one strain of A. salmonicida subsp. smithia. The detection sensitivity was 21 fg of purified bacterial DNA per reaction, corresponding to 1-2 bacterial cells and 6-60 bacteria per reaction for seeded kidney and blood. The assay was highly reproducible with low variation coefficient values for intra-run and inter-run assays. The assay also allowed the specific detection of A. salmonicida subsp. salmonicida in tissues of fish naturally and experimentally infected. No amplification was detected when tissues from healthy fish or fish affected by other diseases were tested. The SYBR Green real-time PCR and melt curve analysis developed in this study is a rapid and accurate method for the specific identification of A. salmonicida subsp. salmonicida isolates and its detection on tissues of fish affected by furunculosis.
Collapse
Affiliation(s)
- Clara Fernández-Álvarez
- Departamento de Microbiología y Parasitología, Edificio CIBUS Facultad de Biología and Instituto de Investigación y Análisis Alimentario, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Santiago F González
- Institute for Research in Biomedicine, Università della Suvizzera Italiana, 6500, Bellinzona, Switzerland
| | - Ysabel Santos
- Departamento de Microbiología y Parasitología, Edificio CIBUS Facultad de Biología and Instituto de Investigación y Análisis Alimentario, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
13
|
Tanaka KH, Vincent AT, Trudel MV, Paquet VE, Frenette M, Charette SJ. The mosaic architecture of Aeromonas salmonicida subsp. salmonicida pAsa4 plasmid and its consequences on antibiotic resistance. PeerJ 2016; 4:e2595. [PMID: 27812409 PMCID: PMC5088629 DOI: 10.7717/peerj.2595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023] Open
Abstract
Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis in salmonids, is an issue especially because many isolates of this bacterium display antibiotic resistances, which limit treatments against the disease. Recent results suggested the possible existence of alternative forms of pAsa4, a large plasmid found in A. salmonicida subsp. salmonicida and bearing multiple antibiotic resistance genes. The present study reveals the existence of two newly detected pAsa4 variants, pAsa4b and pAsa4c. We present the extensive characterization of the genomic architecture, the mobile genetic elements and the antimicrobial resistance genes of these plasmids in addition to the reference pAsa4 from the strain A449. The analysis showed differences between the three architectures with consequences on the content of resistance genes. The genomic plasticity of the three pAsa4 variants could be partially explained by the action of mobile genetic elements like insertion sequences. Eight additional isolates from Canada and Europe that bore similar antibiotic resistance patterns as pAsa4-bearing strains were genotyped and specific pAsa4 variants could be attributed to phenotypic profiles. pAsa4 and pAsa4c were found in Europe, while pAsa4b was found in Canada. In accordance with their content in conjugative transfer genes, only pAsa4b and pAsa4c can be transferred by conjugation in Escherichia coli. The plasticity of pAsa4 variants related to the acquisition of antibiotic resistance indicates that these plasmids may pose a threat in terms of the dissemination of antimicrobial-resistant A. salmonicida subsp. salmonicida bacteria.
Collapse
Affiliation(s)
- Katherine H Tanaka
- Institut de biologie intégrative et des systèmes, Québec, Canada; Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada; Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada
| | - Antony T Vincent
- Institut de biologie intégrative et des systèmes, Québec, Canada; Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada; Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada
| | - Mélanie V Trudel
- Institut de biologie intégrative et des systèmes, Québec, Canada; Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada; Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada
| | - Valérie E Paquet
- Institut de biologie intégrative et des systèmes, Québec, Canada; Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada; Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada
| | - Michel Frenette
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada; Groupe de recherche en écologie buccale (GREB), Université Laval, Québec, Canada
| | - Steve J Charette
- Institut de biologie intégrative et des systèmes, Québec, Canada; Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada; Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada
| |
Collapse
|
14
|
Long M, Nielsen TK, Leisner JJ, Hansen LH, Shen ZX, Zhang QQ, Li A. Aeromonas salmonicidasubsp.salmonicidastrains isolated from Chinese freshwater fish contain a novel genomic island and possible regional-specific mobile genetic elements profiles. FEMS Microbiol Lett 2016; 363:fnw190. [DOI: 10.1093/femsle/fnw190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 01/15/2023] Open
|
15
|
Vincent AT, Emond-Rheault JG, Barbeau X, Attéré SA, Frenette M, Lagüe P, Charette SJ. Antibiotic resistance due to an unusual ColE1-type replicon plasmid in Aeromonas salmonicida. Microbiology (Reading) 2016; 162:942-953. [DOI: 10.1099/mic.0.000286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Antony T. Vincent
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec (Hôpital Laval), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada, G1V 4G5
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Quebec City, QC, Canada, G1V 0A6
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, 1045 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6
| | - Jean-Guillaume Emond-Rheault
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Quebec City, QC, Canada, G1V 0A6
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec (Hôpital Laval), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada, G1V 4G5
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, 1045 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6
| | - Xavier Barbeau
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Quebec City, QC, Canada, G1V 0A6
- Département de Chimie, Université Laval, Québec, Canada
| | - Sabrina A. Attéré
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Quebec City, QC, Canada, G1V 0A6
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec (Hôpital Laval), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada, G1V 4G5
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, 1045 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6
| | - Michel Frenette
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, 1045 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, QC, Canada, G1V 0A6
| | - Patrick Lagüe
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Quebec City, QC, Canada, G1V 0A6
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, 1045 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6
| | - Steve J. Charette
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Quebec City, QC, Canada, G1V 0A6
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec (Hôpital Laval), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada, G1V 4G5
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, 1045 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6
| |
Collapse
|
16
|
Attéré SA, Vincent AT, Trudel MV, Chanut R, Charette SJ. Diversity and Homogeneity among Small Plasmids of Aeromonas salmonicida subsp. salmonicida Linked with Geographical Origin. Front Microbiol 2015; 6:1274. [PMID: 26635745 PMCID: PMC4655240 DOI: 10.3389/fmicb.2015.01274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/31/2015] [Indexed: 01/31/2023] Open
Abstract
Furunculosis, which is caused by Aeromonas salmonicida subsp. salmonicida, is a major salmonid disease in fish farms worldwide. Several plasmids found in this bacterium confer phenotypes such drug resistance and virulence. Small plasmids (pAsa1, pAsa2, pAsa3, and pAsal1) related to ColE1- and ColE2-type replicons are usually present in its normal plasmidome. In the present study, with the objective to investigate if these plasmids display particularities related to the origin of the isolates bearing them, a total of 153 isolates, including 78 new and 75 previously described, were analyzed for the presence of small plasmids by PCR and DNA restriction fragment profiling. A geographical dichotomy between Canadian and European isolates for their propensity to do not have pAsa3 or pAsal1 was found. In addition, the genotyping analysis led to the identification of two European isolates harboring an unusual pAsal1. An investigation by next-generation sequencing (NGS) of these two isolates shed light on two pAsal1 variants (pAsal1C and pAsal1D). As with pAsal1B, another pAsal1 variant previously described, these two new variants bore a second insertion sequence (ISAS5) in addition to the usual ISAS11. The characterization of these variants suggested that they could predominate over the wild-type pAsal1 in stressful conditions such as growth at temperatures of 25°C and above. To obtain a comprehensive portrait of the mutational pressure on small plasmids, 26 isolates whose DNA had been sequenced by NGS were investigated. pAsa3 and pAsal1 were more prone to mutations than pAsa1 and pAsa2, especially in the mobA gene, which encodes a relaxase and a primase. Lastly, the average copy number of each plasmid per cell was assessed using raw sequencing data. A clear trend with respect to the relative proportion per cell of each plasmid was identified. Our large-scale study revealed a geographical dichotomy in small plasmid repertoire in addition to a clear trend for pAsa3 and pAsal1 to be more frequently altered. Moreover, we present the discovery of two new variants of pAsal1: pAsal1C and pAsal1D.
Collapse
Affiliation(s)
- Sabrina A Attéré
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval Quebec City, QC, Canada ; Institut de Biologie Intégrative et des Systèmes, Université Laval Quebec City, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Quebec City, QC, Canada
| | - Antony T Vincent
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval Quebec City, QC, Canada ; Institut de Biologie Intégrative et des Systèmes, Université Laval Quebec City, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Quebec City, QC, Canada
| | - Mélanie V Trudel
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval Quebec City, QC, Canada ; Institut de Biologie Intégrative et des Systèmes, Université Laval Quebec City, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Quebec City, QC, Canada
| | - Romain Chanut
- Institut de Biologie Intégrative et des Systèmes, Université Laval Quebec City, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Quebec City, QC, Canada
| | - Steve J Charette
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval Quebec City, QC, Canada ; Institut de Biologie Intégrative et des Systèmes, Université Laval Quebec City, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Quebec City, QC, Canada
| |
Collapse
|
17
|
Vanden Bergh P, Frey J. Aeromonas salmonicida subsp. salmonicida in the light of its type-three secretion system. Microb Biotechnol 2013; 7:381-400. [PMID: 24119189 PMCID: PMC4229320 DOI: 10.1111/1751-7915.12091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/30/2022] Open
Abstract
Aeromonas salmonicida subsp. salmonicida is an important pathogen in salmonid aquaculture and is responsible for the typical furunculosis. The type-three secretion system (T3SS) is a major virulence system. In this work, we review structure and function of this highly sophisticated nanosyringe in A. salmonicida. Based on the literature as well as personal experimental observations, we document the genetic (re)organization, expression regulation, anatomy, putative functional origin and roles in the infectious process of this T3SS. We propose a model of pathogenesis where A. salmonicida induces a temporary immunosuppression state in fish in order to acquire free access to host tissues. Finally, we highlight putative important therapeutic and vaccine strategies to prevent furunculosis of salmonid fish.
Collapse
Affiliation(s)
- Philippe Vanden Bergh
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, Bern, Switzerland
| | | |
Collapse
|
18
|
Dallaire-Dufresne S, Tanaka KH, Trudel MV, Lafaille A, Charette SJ. Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet Microbiol 2013; 169:1-7. [PMID: 23890675 DOI: 10.1016/j.vetmic.2013.06.025] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/13/2013] [Accepted: 06/22/2013] [Indexed: 11/24/2022]
Abstract
The bacterium Aeromonas salmonicida subsp. salmonicida is the causative agent of furunculosis, a systemic disease of fish in the salmonid family. Furunculosis is a ubiquitous disease that affects aquaculture operations worldwide and is characterized by high mortality and morbidity. A better understanding of the bacterium is required to find a cure. Thereby, this review centers on A. salmonicida subsp. salmonicida, its major virulence factors, and its genome. The classification and characteristics of A. salmonicida subsp. salmonicida, the virulence factors, such as the A-layer, extracellular molecules, and type three secretion system as well as the characteristics and plasticity of its genome are described.
Collapse
Affiliation(s)
- Stéphanie Dallaire-Dufresne
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (Hôpital Laval), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada G1V 4G5
| | - Katherine H Tanaka
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (Hôpital Laval), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada G1V 4G5
| | - Mélanie V Trudel
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (Hôpital Laval), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada G1V 4G5
| | - Andrée Lafaille
- Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, QC, Canada J2S 7C6
| | - Steve J Charette
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (Hôpital Laval), 2725 Chemin Sainte-Foy, Quebec City, QC, Canada G1V 4G5; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, 1045 avenue de la Médecine, Quebec City, QC, Canada G1V 0A6.
| |
Collapse
|
19
|
Studer N, Frey J, Vanden Bergh P. Clustering subspecies of Aeromonas salmonicida using IS630 typing. BMC Microbiol 2013; 13:36. [PMID: 23406017 PMCID: PMC3608246 DOI: 10.1186/1471-2180-13-36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/05/2013] [Indexed: 11/17/2022] Open
Abstract
Background The insertion element IS630 found in Aeromonas salmonicida belongs to the IS630-Tc1-mariner superfamily of transposons. It is present in multiple copies and represents approximately half of the IS present in the genome of A. salmonicida subsp. salmonicida A449. Results By using High Copy Number IS630 Restriction Fragment Length Polymorphism (HCN-IS630-RFLP), strains of various subspecies of Aeromonas salmonicida showed conserved or clustering patterns, thus allowing their differentiation from each other. Fingerprints of A. salmonicida subsp. salmonicida showed the highest homogeneity while ‘atypical’ A. salmonicida strains were more heterogeneous. IS630 typing also differentiated A. salmonicida from other Aeromonas species. The copy number of IS630 in Aeromonas salmonicida ranges from 8 to 35 and is much lower in other Aeromonas species. Conclusions HCN-IS630-RFLP is a powerful tool for subtyping of A. salmonicida. The high stability of IS630 insertions in A. salmonicida subsp. salmonicida indicates that it might have played a role in pathoadaptation of A. salmonicida which has reached an optimal configuration in the highly virulent and specific fish pathogen A. salmonicida subsp. salmonicida.
Collapse
Affiliation(s)
- Nicole Studer
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, Bern, Switzerland
| | | | | |
Collapse
|
20
|
Characterization and virulence potential of phenotypically diverse Aeromonas veronii isolates recovered from moribund freshwater ornamental fishes of Kerala, India. Antonie van Leeuwenhoek 2012; 103:53-67. [DOI: 10.1007/s10482-012-9786-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022]
|
21
|
Lago EP, Nieto TP, Farto R. Virulence factors of Aeromonas salmonicida subsp. salmonicida strains associated with infections in turbot Psetta maxima. DISEASES OF AQUATIC ORGANISMS 2012; 99:145-151. [PMID: 22691983 DOI: 10.3354/dao02467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Virulence factors for Aeromonas salmonicida subsp. salmonicida (ASS) strains isolated from cultured turbot Psetta maxima L. are unknown with regard to this host. The presence of virulence genes associated with different stages of ASS infection in salmonids (vapA, tapA, fla, ascV, ascC, aexT, satA and aspA) was analysed using a polymerase chain reaction (PCR) technique in ASS strains isolated from turbot. Other ASS strains isolated from salmonids and environmental A. salmonicida (AS) strains were included for comparison. The presence of the genes was evaluated with respect to ASS virulence in turbot based on intraperitoneal and bath challenges. The genetic profile, including all of the genes studied, that was linked to virulent behaviour after intraperitoneal challenge was significantly more frequent in strains isolated from turbot than in those from salmonids or the environment. The data prove that it is not possible to predict the virulence of ASS in turbot based only on the presence of all genes tested. Moreover, the combined PCR results of vapA, aexT, ascV and ascC were useful for separating most of the ASS from environmental A. salmonicida strains. An association between virulence or genetic profile and the geographical or facility origin of the strains was not found.
Collapse
Affiliation(s)
- E P Lago
- Departamento de Biología Funcional y Ciencias de la Salud, Universidad de Vigo, Vigo, Spain
| | | | | |
Collapse
|
22
|
Sreedharan K, Philip R, Singh ISB. Virulence potential and antibiotic susceptibility pattern of motile aeromonads associated with freshwater ornamental fish culture systems: a possible threat to public health. Braz J Microbiol 2012; 43:754-65. [PMID: 24031887 PMCID: PMC3768817 DOI: 10.1590/s1517-83822012000200040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 01/16/2012] [Indexed: 11/21/2022] Open
Abstract
Aeromonas spp. are ubiquitous aquatic organisms, associated with multitude of diseases in several species of animals, including fishes and humans. In the present study, water samples from two ornamental fish culture systems were analyzed for the presence of Aeromonas. Nutrient agar was used for Aeromonas isolation, and colonies (60 No) were identified through biochemical characterization. Seven clusters could be generated based on phenotypic characters, analyzed by the programme NTSYSpc, Version 2.02i, and identified as: Aeromonas caviae (33.3%), A. jandaei (38.3%) and A. veronii biovar sobria (28.3%). The strains isolated produced highly active hydrolytic enzymes, haemolytic activity and slime formation in varying proportions. The isolates were also tested for the enterotoxin genes (act, alt and ast), haemolytic toxins (hlyA and aerA), involved in type 3 secretion system (TTSS: ascV, aexT, aopP, aopO, ascF-ascG, and aopH), and glycerophospholipid-cholesterol acyltransferase (gcat). All isolates were found to be associated with at least one virulent gene. Moreover, they were resistant to frequently used antibiotics for human infections. The study demonstrates the pathogenic potential of Aeromonas, associated with ornamental fish culture systems suggesting the emerging threat to public health.
Collapse
Affiliation(s)
- Krishnan Sreedharan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin-682 016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Cochin-682 016, Kerala, India
| | - Isaac Sarojani Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin-682 016, Kerala, India
| |
Collapse
|
23
|
Sreedharan K, Philip R, Singh ISB. Isolation and characterization of virulent Aeromonas veronii from ascitic fluid of oscar Astronotus ocellatus showing signs of infectious dropsy. DISEASES OF AQUATIC ORGANISMS 2011; 94:29-39. [PMID: 21553566 DOI: 10.3354/dao02304] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The cichlid oscar Astronotus ocellatus has worldwide commercial value in the pet fish industry because of its early maturation, relatively high fecundity, ability to identify its caretaker and also to alter colouration amongst conspecifics. Pathogenic strains of Aeromonas veronii resistant to multiple antibiotics were isolated from A. ocellatus individuals showing signs of infectious abdominal dropsy. The moribund fish showed haemorrhage in all internal organs, and pure cultures could be obtained from the abdominal fluid. The isolates recovered were biochemically identified as A. veronii biovar sobria and genetically confirmed as A. veronii based on 16S rRNA gene sequence analysis (GenBank accession no. FJ573179). The RAPD profile using 3 primers (OPA-3, OPA-4 and OPD-20) generated similar banding patterns for all isolates. They displayed cytotoxic and haemolytic activity and produced several exoenzymes which were responsible for the pathogenic potential of the isolates. In the representative isolate MCCB 137, virulence genes such as enterotoxin act, haemolytic toxin aerA, type 3 secretion genes such as aexT, ascVand ascF-ascG, and gcat (glycerophospholipid-cholesterol acyltransferase) could be amplified. MCCB 137 exhibited a 50% lethal dose (LD50) of 10(5.071) colony-forming units ml(-1) in goldfish and could be subsequently recovered from lesions as well as from the internal organs. This is the first description of a virulent A. veronii from oscar.
Collapse
Affiliation(s)
- K Sreedharan
- National Centre for Aquatic Animal Health, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Cochin 682 016, Kerala, India
| | | | | |
Collapse
|
24
|
Najimi M, Balado M, Lemos ML, Osorio CR. Genetic characterization of pAsa6, a new plasmid from Aeromonas salmonicida subsp. salmonicida that encodes a type III effector protein AopH homolog. Plasmid 2009; 61:176-81. [DOI: 10.1016/j.plasmid.2009.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 11/28/2022]
|