1
|
Hunne B, Stebbing MJ, McQuade RM, Furness JB. Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa. Cell Tissue Res 2019; 378:33-48. [PMID: 31049687 DOI: 10.1007/s00441-019-03029-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
This paper provides quantitative data on the distributions of enteroendocrine cells (EEC), defined by the hormones they contain, patterns of colocalisation between hormones and EEC relations to nerve fibres in the rat gastric mucosa. The rat stomach has three mucosal types: non-glandular stratified squamous epithelium of the fundus and esophageal groove, a region of oxyntic glands in the corpus, and pyloric glands of the antrum and pylorus. Ghrelin and histamine were both contained in closed cells, not contacting the lumen, and were most numerous in the corpus. Gastrin cells were confined to the antrum, and 5-hydroxytryptamine (5-HT) and somatostatin cells were more frequent in the antrum than the corpus. Most somatostatin cells had basal processes that in the antrum commonly contacted gastrin cells. Peptide YY (PYY) cells were rare and mainly in the antrum. The only numerous colocalisations were 5-HT and histamine, PYY and gastrin and gastrin and histamine in the antrum, but each of these populations was small. Peptide-containing nerve fibres were found in the mucosa. One of the most common types was vasoactive intestinal peptide (VIP) fibres. High-resolution analysis showed that ghrelin cells were closely and selectively approached by VIP fibres. In contrast, gastrin cells were not selectively innervated by VIP or CGRP fibres. The study indicates that there are distinct populations of gastric EEC and selective innervation of ghrelin cells. It also shows that, in contrast to EEC of the small intestine, the majority of EEC within the stomach contained only a single hormone.
Collapse
Affiliation(s)
- Billie Hunne
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Martin J Stebbing
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| | - Rachel M McQuade
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia.
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
2
|
Fakhry J, Stebbing MJ, Hunne B, Bayguinov Y, Ward SM, Sasse KC, Callaghan B, McQuade RM, Furness JB. Relationships of endocrine cells to each other and to other cell types in the human gastric fundus and corpus. Cell Tissue Res 2018; 376:37-49. [PMID: 30467709 DOI: 10.1007/s00441-018-2957-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Gastric endocrine cell hormones contribute to the control of the stomach and to signalling to the brain. In other gut regions, enteroendocrine cells (EECs) exhibit extensive patterns of colocalisation of hormones. In the current study, we characterise EECs in the human gastric fundus and corpus. We utilise immunohistochemistry to investigate EECs with antibodies to ghrelin, serotonin (5-HT), somatostatin, peptide YY (PYY), glucagon-like peptide 1, calbindin, gastrin and pancreastatin, the latter as a marker of enterochromaffin-like (ECL) cells. EECs were mainly located in regions of the gastric glands populated by parietal cells. Gastrin cells were absent and PYY cells were very rare. Except for about 25% of 5-HT cells being a subpopulation of ECL cells marked by pancreastatin, colocalisation of hormones in gastric EECs was infrequent. Ghrelin cells were distributed throughout the fundus and corpus; most were basally located in the glands, often very close to parietal cells and were closed cells i.e., not in contact with the lumen. A small proportion had long processes located close to the base of the mucosal epithelium. The 5-HT cells were of at least three types: small, round, closed cells; cells with multiple, often very long, processes; and a subgroup of ECL cells. Processes were in contact with their surrounding cells, including parietal cells. Mast cells had very weak or no 5-HT immunoreactivity. Somatostatin cells were a closed type with long processes. In conclusion, four major chemically defined EEC types occurred in the human oxyntic mucosa. Within each group were cells with distinct morphologies and relationships to other mucosal cells.
Collapse
Affiliation(s)
- Josiane Fakhry
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Martin J Stebbing
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - Billie Hunne
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yulia Bayguinov
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Kent C Sasse
- School of Medicine, Universiity of Nevada, Reno, NV, 89557, USA.,Renown Regional Medical Center, Reno, NV, 89502, USA
| | - Brid Callaghan
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rachel M McQuade
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia. .,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia.
| |
Collapse
|
3
|
Waldum HL, Öberg K, Sørdal ØF, Sandvik AK, Gustafsson BI, Mjønes P, Fossmark R. Not only stem cells, but also mature cells, particularly neuroendocrine cells, may develop into tumours: time for a paradigm shift. Therap Adv Gastroenterol 2018; 11:1756284818775054. [PMID: 29872453 PMCID: PMC5974566 DOI: 10.1177/1756284818775054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/03/2018] [Indexed: 02/04/2023] Open
Abstract
Stem cells are considered the origin of neoplasms in general, and malignant tumours in particular, and the stage at which the stem cells stop their differentiation determines the degree of malignancy. However, there is increasing evidence supporting an alternative paradigm. Tumours may develop by dedifferentiation from mature cells able to proliferate. Studies of gastric carcinogenesis demonstrate that mature neuroendocrine (NE) cells upon long-term overstimulation may develop through stages of hyperplasia, dysplasia, and rather benign tumours, into highly malignant carcinomas. Dedifferentiation of cells may change the histological appearance and impede the identification of the cellular origin, as seen with gastric carcinomas, which in many cases are dedifferentiated neuroendocrine tumours. Finding the cell of origin is important to identify risk factors for cancer, prevent tumour development, and tailor treatment. In the present review, we focus not only on gastric tumours, but also evaluate the role of neuroendocrine cells in tumourigenesis in two other foregut-derived organs, the lungs and the pancreas, as well as in the midgut-derived small intestine.
Collapse
Affiliation(s)
- Helge L. Waldum
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, N-7491, Norway Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Kjell Öberg
- Department of Endocrine Oncology Uppsala University and University Hospital, Uppsala, Sweden
| | - Øystein F. Sørdal
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Arne K. Sandvik
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Bjørn I. Gustafsson
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| | - Patricia Mjønes
- epartment of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, St. Olav’s University Hospital, Trondheim, Norway
| | - Reidar Fossmark
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Gastroenterology and Hepatology, St. Olav’s University Hospital, Trondheim, Norway
| |
Collapse
|
4
|
Kidd M, Modlin IM, Bodei L, Drozdov I. Decoding the Molecular and Mutational Ambiguities of Gastroenteropancreatic Neuroendocrine Neoplasm Pathobiology. Cell Mol Gastroenterol Hepatol 2015; 1:131-153. [PMID: 28210673 PMCID: PMC5301133 DOI: 10.1016/j.jcmgh.2014.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN), considered a heterogeneous neoplasia, exhibit ill-defined pathobiology and protean symptomatology and are ubiquitous in location. They are difficult to diagnose, challenging to manage, and outcome depends on cell type, secretory product, histopathologic grading, and organ of origin. A morphologic and molecular genomic review of these lesions highlights tumor characteristics that can be used clinically, such as somatostatin-receptor expression, and confirms features that set them outside the standard neoplasia paradigm. Their unique pathobiology is useful for developing diagnostics using somatostatin-receptor targeted imaging or uptake of radiolabeled amino acids specific to secretory products or metabolism. Therapy has evolved via targeting of protein kinase B signaling or somatostatin receptors with drugs or isotopes (peptide-receptor radiotherapy). With DNA sequencing, rarely identified activating mutations confirm that tumor suppressor genes are relevant. Genomic approaches focusing on cancer-associated genes and signaling pathways likely will remain uninformative. Their uniquely dissimilar molecular profiles mean individual tumors are unlikely to be easily or uniformly targeted by therapeutics currently linked to standard cancer genetic paradigms. The prevalence of menin mutations in pancreatic NEN and P27KIP1 mutations in small intestinal NEN represents initial steps to identifying a regulatory commonality in GEP-NEN. Transcriptional profiling and network-based analyses may define the cellular toolkit. Multianalyte diagnostic tools facilitate more accurate molecular pathologic delineations of NEN for assessing prognosis and identifying strategies for individualized patient treatment. GEP-NEN remain unique, poorly understood entities, and insight into their pathobiology and molecular mechanisms of growth and metastasis will help identify the diagnostic and therapeutic weaknesses of this neoplasia.
Collapse
Key Words
- 5-HT, serotonin, 5-hydroxytryptamine
- Akt, protein kinase B
- BRAF, gene encoding serine/threonine-protein kinase B-Raf
- Blood
- CGH, comparative genomic hybridization
- CREB, cAMP response element-binding protein
- Carcinoid
- CgA, chromogranin A
- D cell, somatostatin
- DAG, diacylglycerol
- EC, enterochromaffin
- ECL, enterochromaffin-like
- EGFR, epidermal growth factor receptor
- ERK, extracellular-signal-regulated kinase
- G cell, gastrin
- GABA, γ-aminobutyric acid
- GEP-NEN, gastroenteropancreatic neuroendocrine neoplasms
- GPCR, G-protein coupled receptor
- Gastroenteropancreatic Neuroendocrine Neoplasms
- IGF-I, insulin-like growth factor-I
- ISG, immature secretory vesicles
- Ki-67
- LOH, loss of heterozygosity
- MAPK, mitogen-activated protein kinase
- MEN-1/MEN1, multiple endocrine neoplasia type 1
- MSI, microsatellite instability
- MTA, metastasis associated-1
- NEN, neuroendocrine neoplasms
- NFκB, nuclear factor κB
- PET, positron emission tomography
- PI3, phosphoinositide-3
- PI3K, phosphoinositide-3 kinase
- PKA, protein kinase A
- PKC, protein kinase C
- PTEN, phosphatase and tensin homolog deleted on chromosome 10
- Proliferation
- SD-208, 2-(5-chloro-2-fluorophenyl)-4-[(4-pyridyl)amino]p-teridine
- SNV, single-nucleotide variant
- SSA, somatostatin analog
- SST, somatostatin
- Somatostatin
- TGF, transforming growth factor
- TGN, trans-Golgi network
- TSC2, tuberous sclerosis complex 2 (tuberin)
- Transcriptome
- VMAT, vesicular monoamine transporters
- X/A-like cells, ghrelin
- cAMP, adenosine 3′,5′-cyclic monophosphate
- mTOR, mammalian target of rapamycin
- miR/miRNA, micro-RNA
Collapse
Affiliation(s)
| | - Irvin M. Modlin
- Correspondence Address correspondence to: Irvin M. Modlin, MD, PhD, The Gnostic Consortium, Wren Laboratories, 35 NE Industrial Road, Branford, Connecticut, 06405.
| | | | | |
Collapse
|
5
|
Choi E, Roland JT, Barlow BJ, O’Neal R, Rich AE, Nam KT, Shi C, Goldenring JR. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum. Gut 2014; 63:1711-20. [PMID: 24488499 PMCID: PMC4117823 DOI: 10.1136/gutjnl-2013-305964] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The glands of the stomach body and antral mucosa contain a complex compendium of cell lineages. In lower mammals, the distribution of oxyntic glands and antral glands define the anatomical regions within the stomach. We examined in detail the distribution of the full range of cell lineages within the human stomach. DESIGN We determined the distribution of gastric gland cell lineages with specific immunocytochemical markers in entire stomach specimens from three non-obese organ donors. RESULTS The anatomical body and antrum of the human stomach were defined by the presence of ghrelin and gastrin cells, respectively. Concentrations of somatostatin cells were observed in the proximal stomach. Parietal cells were seen in all glands of the body of the stomach as well as in over 50% of antral glands. MIST1 expressing chief cells were predominantly observed in the body although individual glands of the antrum also showed MIST1 expressing chief cells. While classically described antral glands were observed with gastrin cells and deep antral mucous cells without any parietal cells, we also observed a substantial population of mixed type glands containing both parietal cells and G cells throughout the antrum. CONCLUSIONS Enteroendocrine cells show distinct patterns of localisation in the human stomach. The existence of antral glands with mixed cell lineages indicates that human antral glands may be functionally chimeric with glands assembled from multiple distinct stem cell populations.
Collapse
Affiliation(s)
- Eunyoung Choi
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Joseph T. Roland
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Brittney J. Barlow
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Ryan O’Neal
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Amy E. Rich
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Ki Taek Nam
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea 120-752
| | - Chanjuan Shi
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - James R. Goldenring
- Nashville VA Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232,Correspondence to: James R. Goldenring, M.D., Ph.D. Vanderbilt University School of Medicine, Section of Surgical Sciences, Epithelial Biology Center, 10435G MRB-IV, 2213 Garland Avenue, Nashville, TN 37232-2733, USA, TEL: (615) 936-3726, FAX: (615) 343-1591,
| |
Collapse
|
6
|
Heiskala K, Andersson LC. Reg IV is differently expressed in enteroendocrine cells of human small intestine and colon. ACTA ACUST UNITED AC 2013; 183:27-34. [PMID: 23499801 DOI: 10.1016/j.regpep.2013.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 03/03/2013] [Indexed: 12/19/2022]
Abstract
Reg IV is a 17 kD secreted C-type lectin physiologically found in selected enteroendocrine cells (EEC). It is thought be involved in the regulation of normal and pathological intestinal and/or neuroendocrine differentiation and proliferation but its ultimate functional role(s) is still unclear. We used immunostaining and compared the cellular expression of Reg IV with a panel of neuroendocrine markers in human GI-tract tissue samples. Reg IV showed cellular co-distribution with serotonin and chromogranin A in all parts of GI-tract. Co-localization of Reg IV with somatostatin was seen in colon and with substance P in ileum. Subpopulations of cells expressing Reg IV overlapped with EECs containing GLP-1, GLP-2, secretin, PYY, and ghrelin, depending on the anatomical localization of the samples. The results further underscore the high degree of diversity among EECs and suggest that Reg IV may be involved in the finetuning of functions exerted by the neuroendocrine cells in the GI-tract.
Collapse
Affiliation(s)
- Kukka Heiskala
- Department of Pathology, Haartman Institute, Haartmaninkatu 3 (P.O. Box 21), FIN-00014 University of Helsinki, Finland
| | - Leif C Andersson
- Department of Pathology, Haartman Institute, Haartmaninkatu 3 (P.O. Box 21), FIN-00014 University of Helsinki, Finland; HUSLAB, Haartmaninkatu 3 (P.O. Box 21), FIN-00014 University of Helsinki, Finland.
| |
Collapse
|
7
|
Gustafsson BI, Bakke I, Hauso Ø, Kidd M, Modlin IM, Fossmark R, Brenna E, Waldum HL. Parietal cell activation by arborization of ECL cell cytoplasmic projections is likely the mechanism for histamine induced secretion of hydrochloric acid. Scand J Gastroenterol 2011; 46:531-7. [PMID: 21342027 DOI: 10.3109/00365521.2011.558113] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Enterochromaffin-like (ECL) cells are central in the regulation of acid secretion. G cells release gastrin and activate ECL cell histamine secretion which stimulates parietal cell H(2) receptors initiating acid secretion. It is unclear whether histamine-mediated parietal cell activation is via a vascular or paracrine pathway. To assess this, we utilized immunohistochemistry (IHC) and electron microscopy to examine gastric tissue and used visualization of formalin fixed dispersed gastric cells and glands to investigate and define the anatomical relationship between ECL and parietal cells. MATERIAL AND METHODS Sprague-Dawley rat stomachs were instilled with formalin. Thereafter fixed mucosal cells and whole gastric glands were dispersed by mechanical and chemical dissolution and enzymatic digestion. Smears with fixed isolated cells and whole glands were stained by IHC with histidine decarboxylase (HDC) and H+/K+-ATPase antibodies. Whole tissue samples of Sprague-Dawley and cotton rat oxyntic mucosa were investigated with IHC using HDC, VMAT2 and H+/K+-ATPase antibodies, and electron microscopy was performed to further delineate the precise anatomic relationship between ECL cells and parietal cells. RESULTS Each ECL cell generated a network of HDC- and VMAT2-positive dendritic-like elongations that were in direct contact with several parietal cells. Thus, ECL cells at the base of the gland were in communication with parietal cells in the middle of the gland. Electron microscopy confirmed that the cytoplasmic ECL cell elongations containing secretory vesicles were in direct juxtaposition to parietal cells. CONCLUSIONS These findings indicate that ECL cells directly regulate parietal cell function in a neurocrine manner via slender neuron-like elongations.
Collapse
Affiliation(s)
- Björn I Gustafsson
- Department of Gastroenterology, St Olavs Hospital HF, Trondheim University Hospital, Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gunawardene AR, Corfe BM, Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 2011; 92:219-31. [PMID: 21518048 DOI: 10.1111/j.1365-2613.2011.00767.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With over thirty different hormones identified as being produced in the gastrointestinal (GI) tract, the gut has been described as 'the largest endocrine organ in the body' (Ann. Oncol., 12, 2003, S63). The classification of these hormones and the cells that produce them, the enteroendocrine cells (EECs), has provided the foundation for digestive physiology. Furthermore, alterations in the composition and function of EEC may influence digestive physiology and thereby associate with GI pathologies. Whilst there is a rapidly increasing body of data on the role and function of EEC in the upper GI tract, there is a less clear-cut understanding of the function of EEC in the lower GI. Nonetheless, their presence and diversity are indicative of a role. This review focuses on the EECs of the lower GI where new evidence also suggests a possible relationship with the development and progression of primary adenocarcinoma.
Collapse
Affiliation(s)
- Ashok R Gunawardene
- Department of Oncology, The Medical School, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
9
|
Valeur J, Milde AM, Helle KB, Berstad A. Low serum chromogranin A in patients with self-reported food hypersensitivity. Scand J Gastroenterol 2009; 43:1403-4. [PMID: 18654936 DOI: 10.1080/00365520802273074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Modlin IM, Kidd M, Drozdov I, Siddique ZL, Gustafsson BI. Pharmacotherapy of neuroendocrine cancers. Expert Opin Pharmacother 2009; 9:2617-26. [PMID: 18803449 DOI: 10.1517/14656566.9.15.2617] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuroendocrine tumors (NETs) of the diffuse neuroendocrine cell system often present a considerable diagnostic and therapeutic challenge. METHODS We have reviewed the literature on NET treatment between 1979 and 2008 (PubMed search: carcinoid or neuroendocrine tumor/tumour + treatment or management), and summarized current therapeutic options and recommendations. RESULTS The majority of tumors are diagnosed at a stage that the only curative treatment, radical surgical intervention, is no longer an option. Biotherapy with somatostatin analogs is currently the most efficient treatment to achieve palliation. The interferon class of agents may have a role in selected individuals but substantial adverse events often limit their use. Conventional chemotherapy has minimal efficacy but may have some utility in undifferentiated or highly proliferating neuroendocrine carcinomas and pancreatic NETs. Hepatic metastases, depending on size, location and number, may be amenable to surgical resection, embolization or radio-frequency ablation. Peptide receptor targeted radiotherapy may lead to reduction in tumor size but in most circumstances has a tumor-stabilizing effect. A variety of antiangiogenesis and growth factor-targeted agents have been evaluated but to date the results have failed to meet expectations. Thus, long-acting somatostatin analogs remain the only effective pharmacotherapeutic option that improves symptomatology and quality of life with minimal adverse effects.
Collapse
Affiliation(s)
- I M Modlin
- Yale University School of Medicine, Department of Gastroenterological Surgery, 333 Cedar Street, PO Box 208062, New Haven, CT 06520-8062, USA.
| | | | | | | | | |
Collapse
|