1
|
Ivanova D, Voliotis M, Tsaneva-Atanasova K, O'Byrne KT, Li XF. NK3R signalling in the posterodorsal medial amygdala is involved in stress-induced suppression of pulsatile LH secretion in female mice. J Neuroendocrinol 2024; 36:e13384. [PMID: 38516965 PMCID: PMC11411622 DOI: 10.1111/jne.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Psychosocial stress negatively impacts reproductive function by inhibiting pulsatile luteinizing hormone (LH) secretion. The posterodorsal medial amygdala (MePD) is responsible in part for processing stress and modulating the reproductive axis. Activation of the neurokinin 3 receptor (NK3R) suppresses the gonadotropin-releasing hormone (GnRH) pulse generator, under hypoestrogenic conditions, and NK3R activity in the amygdala has been documented to play a role in stress and anxiety. We investigate whether NK3R activation in the MePD is involved in mediating the inhibitory effect of psychosocial stress on LH pulsatility in ovariectomised female mice. First, we administered senktide, an NK3R agonist, into the MePD and monitored the effect on pulsatile LH secretion. We then delivered SB222200, a selective NK3R antagonist, intra-MePD in the presence of predator odour, 2,4,5-trimethylthiazole (TMT) and examined the effect on LH pulses. Senktide administration into the MePD dose-dependently suppresses pulsatile LH secretion. Moreover, NK3R signalling in the MePD mediates TMT-induced suppression of the GnRH pulse generator, which we verified using a mathematical model. The model verifies our experimental findings: (i) predator odour exposure inhibits LH pulses, (ii) activation of NK3R in the MePD inhibits LH pulses and (iii) NK3R antagonism in the MePD blocks stressor-induced inhibition of LH pulse frequency in the absence of ovarian steroids. These results demonstrate for the first time that NK3R neurons in the MePD mediate psychosocial stress-induced suppression of the GnRH pulse generator.
Collapse
Affiliation(s)
- Deyana Ivanova
- Department of Women and Children's Health, Faculty of Life Science and Medicine, King's College London, London, UK
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaritis Voliotis
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin T O'Byrne
- Department of Women and Children's Health, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Xiao-Feng Li
- Department of Women and Children's Health, Faculty of Life Science and Medicine, King's College London, London, UK
| |
Collapse
|
2
|
Sosa MK, Boorman DC, Keay KA. Sciatic nerve injury rebalances the hypothalamic-pituitary-adrenal axis in rats with persistent changes to their social behaviours. J Neuroendocrinol 2022; 34:e13131. [PMID: 35487591 PMCID: PMC9286784 DOI: 10.1111/jne.13131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
Increased glucocorticoids characterise acute pain responses, but not the chronic pain state, suggesting specific modifications to the hypothalamic-pituitary-adrenal (HPA)-axis preventing the persistent nature of chronic pain from elevating basal glucocorticoid levels. Individuals with chronic pain mount normal HPA-axis responses to acute stressors, indicating a rebalancing of the circuits underpinning these responses. Preclinical models of chronic neuropathic pain generally recapitulate these clinical observations, but few studies have considered that the underlying neuroendocrine circuitry may be altered. Additionally, individual differences in the behavioural outcomes of these pain models, which are strikingly similar to the range of behavioural subpopulations that manifest in response to stress, threat and motivational cues, may also be reflected in divergent patterns of HPA-axis activity, which characterises these other behavioural subpopulations. We investigated the effects of sciatic nerve chronic constriction injury (CCI) on adrenocortical and hypothalamic markers of HPA-axis activity in the subpopulation of rats showing persistent changes in social interactions after CCI (Persistent Effect) and compared them with rats that do not show these changes (No Effect). Basal plasma corticosterone did not change after CCI and did not differ between groups. However, adrenocortical sensitivity to adrenocorticotropic hormone (ACTH) diverged between these groups. No Effect rats showed large increases in basal plasma ACTH with no change in adrenocortical melanocortin 2 receptor (MC2 R) expression, whereas Persistent Effect rats showed modest decreases in plasma ACTH and large increases in MC2 R expression. In the paraventricular nucleus of the hypothalamus of Persistent Effect rats, single labelling revealed significantly increased numbers of corticotropin releasing factor (CRF) +ve and glucocorticoid receptor (GR) +ve neurons. Double-labelling revealed fewer GR +ve CRF +ve neurons, suggesting a decreased hypothalamic sensitivity of CRF neurons to circulating corticosterone in Persistent Effect rats. We suggest that in addition to rebalancing the HPA-axis, the increased CRF expression in Persistent Effect rats contributes to changes in complex behaviours, and in particular social interactions.
Collapse
Affiliation(s)
- M. Karmina Sosa
- School of Medical Sciences and the Brain and Mind CentreThe University of SydneyCamperdownNew South WalesAustralia
| | - Damien C. Boorman
- School of Medical Sciences and the Brain and Mind CentreThe University of SydneyCamperdownNew South WalesAustralia
| | - Kevin A. Keay
- School of Medical Sciences and the Brain and Mind CentreThe University of SydneyCamperdownNew South WalesAustralia
| |
Collapse
|
3
|
Culman J, Mühlenhoff S, Blume A, Hedderich J, Lützen U, Hunt SP, Rupniak NMJ, Zhao Y. The Hypothalamic-Pituitary-Adrenal Axis and Serotonin Metabolism in Individual Brain Nuclei of Mice with Genetic Disruption of the NK1 Receptor Exposed to Acute Stress. Cell Mol Neurobiol 2018; 38:1271-1281. [PMID: 29948553 PMCID: PMC11481836 DOI: 10.1007/s10571-018-0594-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Mice lacking the substance P (SP) neurokinin-1 (NK1) receptor (NK1R-/-mice) were used to investigate whether SP affects serotonin (5-HT) function in the brain and to assess the effects of acute immobilisation stress on the hypothalamic-pituitary-adrenocortical (HPA) axis and 5-HT turnover in individual brain nuclei. Basal HPA activity and the expression of hypothalamic corticotropin-releasing hormone (CRH) in wild-type (WT)- and NK1R-/- mice were identical. Stress-induced increases in plasma ACTH concentration were considerably higher in NK1R-/- mice than in WT mice while corticosterone concentrations were equally elevated in both mouse lines. Acute stress did not alter the expression of CRH. In the dorsal raphe nucleus (DRN), basal 5-HT turnover was increased in NK1R-/- mice and a 15 min stress further magnified 5-HT utilisation in this region. In the frontoparietal cortex, medial prefrontal cortex, central nucleus of amygdala, and the hippocampal CA1 region, stress increased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) concentrations to a similar extent in WT and NK1R-/- mice. 5-HT turnover in the hypothalamic paraventricular nucleus was not affected by stress, but stress induced similar increases in 5-HT and 5-HIAA in the ventromedial and dorsomedial hypothalamic nuclei in WT and NK1R-/- mice. Our findings indicate that NK1 receptor activation suppresses ACTH release during acute stress but does not exert sustained inhibition of the HPA axis. Genetic deletion of the NK1 receptor accelerates 5-HT turnover in DRN under basal and stress conditions. No differences between the responses of serotonergic system to acute stress in WT and NK1R-/- mice occur in forebrain nuclei linked to the regulation of anxiety and neuroendocrine stress responses.
Collapse
Affiliation(s)
- Juraj Culman
- Institute of Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany.
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany.
| | - Stephan Mühlenhoff
- Institute of Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Annegret Blume
- Institute of Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Jürgen Hedderich
- Institute of Medical Informatics and Statistics, University Hospital of Schleswig-Holstein, Campus Kiel, Brunswiker Strasse 10, 24105, Kiel, Germany
| | - Ulf Lützen
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Stephen P Hunt
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Yi Zhao
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| |
Collapse
|
4
|
Gao Y, Zhou JJ, Zhu Y, Wang L, Kosten TA, Zhang X, Li DP. Neuroadaptations of presynaptic and postsynaptic GABA B receptor function in the paraventricular nucleus in response to chronic unpredictable stress. Br J Pharmacol 2017. [PMID: 28635080 DOI: 10.1111/bph.13924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Chronic stress impairs GABAA (GABA type A) receptor-mediated inhibition in the hypothalamic paraventricular nucleus (PVN). It is not clear whether GABAB receptor function is also altered. We hypothesize that chronic stress alters GABAB receptor function in PVN corticotrophin-releasing hormone (CRH) neurons to control hypothalamus-pituitary-adrenal axis activity. EXPERIMENTAL APPROACH Whole-cell patch clamp recordings were made of PVN-CRH neurons expressing eGFP driven by CRH promoter in brain slices from unstressed rats and rats exposed to chronic unpredictable mild stress (CUMS). KEY RESULTS CUMS elevated the basal circulating corticosterone levels and increased the basal firing activity of PVN-CRH neurons. Microinjection of GABAB receptor agonist baclofen into the PVN suppressed the increased corticosterone levels in CUMS rats compared with unstressed rats. CUMS blunted the baclofen-induced inhibition on PVN-CRH neurons and outward currents in these neurons. Furthermore, CUMS reduced expression of GABAB1 (GABAB R1) protein in the PVN. Blocking NMDA receptors with AP5 restored the reduced baclofen-induced currents in CUMS rats but had no effect on GABAB1 expression. Furthermore, CUMS treatment augmented the baclofen-induced decrease in the frequency of glutamatergic excitatory postsynaptic currents (EPSCs) and GABAergic inhibitor postsynaptic currents in PVN-CRH neurons. The GABAB receptor antagonist CGP55845 increased the firing activity of PVN-CRH neurons only in CUMS-treated rats and not in unstressed rats. CONCLUSIONS AND IMPLICATIONS These findings suggest that chronic stress impairs postsynaptic GABAB receptor function but augments presynaptic GABAB receptor function in controlling glutamatergic and GABAergic synaptic inputs in PVN-CRH neurons.
Collapse
Affiliation(s)
- Yonggang Gao
- Department of Critical Care and Anesthesiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Preventive Medicine, Hebei University of Chinese Medicine, Shijiazhuang, HeBei, China
| | - Jing-Jing Zhou
- Department of Critical Care and Anesthesiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun Zhu
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- Department of Critical Care and Anesthesiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Therese A Kosten
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Hebei Collaborative Innovation Center for Cardiocerebrovascular Disease, Shijiazhuang, Hebei, China
| | - De-Pei Li
- Department of Critical Care and Anesthesiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Mistrova E, Kruzliak P, Chottova Dvorakova M. Role of substance P in the cardiovascular system. Neuropeptides 2016; 58:41-51. [PMID: 26706184 DOI: 10.1016/j.npep.2015.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023]
Abstract
This article provides an overview of the structure and function of substance P signalling system and its involvement in the cardiovascular regulation. Substance P is an undecapeptide originating from TAC1 gen and belonging to the tachykinin family. The biological actions of substance P are mainly mediated through neurokinin receptor 1 since substance P is the ligand with the highest affinity to neurokinin receptor 1. Substance P is widely distributed within the central and peripheral nervous systems as well as in the cardiovascular system. Substance P is involved in the regulation of heart frequency, blood pressure and in the stretching of vessels. Substance P plays an important role in ischemia and reperfusion and cardiovascular response to stress. Additionally, it has been also implicated in angiogenesis, pain transmission and inflammation. The substance P/neurokinin receptor 1 receptor system is involved in the molecular bases of many human pathological processes. Antagonists of neurokinin receptor 1 receptor could provide clinical solutions for a variety of diseases. Neurokinin receptor 1 antagonists are already used in the prevention of chemotherapy induced nausea and vomiting.
Collapse
Affiliation(s)
- Eliska Mistrova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Peter Kruzliak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic; 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Magdalena Chottova Dvorakova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic; Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| |
Collapse
|
6
|
Dias JP, Gariépy HDB, Ongali B, Couture R. Brain kinin B1 receptor is upregulated by the oxidative stress and its activation leads to stereotypic nociceptive behavior in insulin-resistant rats. Peptides 2015; 69:118-26. [PMID: 25959537 DOI: 10.1016/j.peptides.2015.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 11/22/2022]
Abstract
Kinin B1 receptor (B1R) is virtually absent under physiological condition, yet it is highly expressed in models of diabetes mellitus. This study aims at determining: (1) whether B1R is induced in the brain of insulin-resistant rat through the oxidative stress; (2) the consequence of B1R activation on stereotypic nocifensive behavior; (3) the role of downstream putative mediators in B1R-induced behavioral activity. Sprague-Dawley rats were fed with 10% D-glucose in their drinking water or tap water (controls) for 4 or 12 weeks, combined either with a standard chow diet or a diet enriched with α-lipoic acid (1 g/kg feed) for 4 weeks. The distribution and density of brain B1R binding sites were assessed by autoradiography. Behavioral activity evoked by i.c.v. injection of the B1R agonist Sar-[D-Phe(8)]-des-Arg(9)-BK (10 μg) was measured before and after i.c.v. treatments with selective antagonists (10 μg) for kinin B1 (R-715, SSR240612), tachykinin NK1 (RP-67580) and glutamate NMDA (DL-AP5) receptors or with the inhibitor of NOS (L-NNA). Results showed significant increases of B1R binding sites in various brain areas of glucose-fed rats that could be prevented by the diet containing α-lipoic acid. The B1R agonist elicited head scratching, grooming, sniffing, rearing, digging, licking, face washing, wet dog shake, teeth chattering and biting in glucose-fed rats, which were absent after treatment with α-lipoic acid or antagonists/inhibitors. Data suggest that kinin B1R is upregulated by the oxidative stress in the brain of insulin-resistant rats and its activation causes stereotypic nocifensive behavior through the release of substance P, glutamate and NO.
Collapse
Affiliation(s)
- Jenny Pena Dias
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Helaine De Brito Gariépy
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Brice Ongali
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Réjean Couture
- Department of Molecular and Integrative Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
7
|
Feetham CH, Nunn N, Lewis R, Dart C, Barrett-Jolley R. TRPV4 and K(Ca) ion channels functionally couple as osmosensors in the paraventricular nucleus. Br J Pharmacol 2015; 172:1753-68. [PMID: 25421636 PMCID: PMC4376454 DOI: 10.1111/bph.13023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 11/13/2014] [Accepted: 11/16/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential vanilloid type 4 (TRPV4) and calcium-activated potassium channels (KCa ) mediate osmosensing in many tissues. Both TRPV4 and KCa channels are found in the paraventricular nucleus (PVN) of the hypothalamus, an area critical for sympathetic control of cardiovascular and renal function. Here, we have investigated whether TRPV4 channels functionally couple to KCa channels to mediate osmosensing in PVN parvocellular neurones and have characterized, pharmacologically, the subtype of KCa channel involved. EXPERIMENTAL APPROACH We investigated osmosensing roles for TRPV4 and KCa channels in parvocellular PVN neurones using cell-attached and whole-cell electrophysiology in mouse brain slices and rat isolated PVN neurons. Intracellular Ca(2+) was recorded using Fura-2AM. The system was modelled in the NEURON simulation environment. KEY RESULTS Hypotonic saline reduced action current frequency in hypothalamic slices; a response mimicked by TRPV4 channel agonists 4αPDD (1 μM) and GSK1016790A (100 nM), and blocked by inhibitors of either TRPV4 channels (RN1734 (5 μM) and HC067047 (300 nM) or the low-conductance calcium-activated potassium (SK) channel (UCL-1684 30 nM); iberiotoxin and TRAM-34 had no effect. Our model was compatible with coupling between TRPV4 and KCa channels, predicting the presence of positive and negative feedback loops. These predictions were verified using isolated PVN neurons. Both hypotonic challenge and 4αPDD increased intracellular Ca(2+) and UCL-1684 reduced the action of hypotonic challenge. CONCLUSIONS AND IMPLICATIONS There was functional coupling between TRPV4 and SK channels in parvocellular neurones. This mechanism contributes to osmosensing in the PVN and may provide a novel pharmacological target for the cardiovascular or renal systems.
Collapse
Affiliation(s)
- C H Feetham
- Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of LiverpoolLiverpool, L69 3GA, UK
| | - N Nunn
- Faculty of Life Sciences, University of ManchesterManchester, M13 9PT, UK
| | - R Lewis
- Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of LiverpoolLiverpool, L69 3GA, UK
| | - C Dart
- Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of LiverpoolLiverpool, L69 3GA, UK
| | - R Barrett-Jolley
- Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of LiverpoolLiverpool, L69 3GA, UK
| |
Collapse
|
8
|
Feetham CH, Barrett-Jolley R. NK1-receptor-expressing paraventricular nucleus neurones modulate daily variation in heart rate and stress-induced changes in heart rate variability. Physiol Rep 2014; 2:e12207. [PMID: 25472606 PMCID: PMC4332202 DOI: 10.14814/phy2.12207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is an established center of cardiovascular control, receiving projections from other nuclei of the hypothalamus such as the dorsomedial hypothalamus and the suprachiasmatic nucleus. The PVN contains a population of "pre-autonomic neurones" which project to the intermediolateralis of the spinal cord and increase sympathetic activity, blood pressure, and heart rate. These spinally projecting neurones express a number of membrane receptors including GABA and substance P NK1 receptors. Activation of NK1-expressing neurones increases heart rate, blood pressure, and sympathetic activity. However, their role in the pattern of overall cardiovascular control remains unknown. In this work, we use specific saporin lesion of NK1-expressing PVN rat neurones with SSP-SAP and telemetrically measure resting heart rate and heart rate variability (HRV) parameters in response to mild psychological stress. The HRV parameter "low frequency/high frequency ratio" is often used as an indicator of sympathetic activity and is significantly increased with psychological stress in control rats (0.84 ± 0.14 to 2.02 ± 0.15; P < 0.001; n = 3). We find the stress-induced increase in this parameter to be blunted in the SSP-SAP-lesioned rats (0.83 ± 0.09 to 0.93 ± 0.21; P > 0.05; n = 3). We also find a shift in daily variation of heart rate rhythm and conclude that NK1-expressing PVN neurones are involved with coupling of the cardiovascular system to daily heart rate variation and the sympathetic response to psychological stress.
Collapse
Affiliation(s)
- Claire H Feetham
- Institute of Ageing and Chronic Disease, Centre for Integrative Mammalian Biology, University of Liverpool, Liverpool, UK
| | - Richard Barrett-Jolley
- Institute of Ageing and Chronic Disease, Centre for Integrative Mammalian Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
9
|
Miklos Z, Flynn FW, Lessard A. Stress-induced dendritic internalization and nuclear translocation of the neurokinin-3 (NK3) receptor in vasopressinergic profiles of the rat paraventricular nucleus of the hypothalamus. Brain Res 2014; 1590:31-44. [DOI: 10.1016/j.brainres.2014.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 01/31/2023]
|
10
|
Behavioural and neurochemical changes induced by stress-related conditions are counteracted by the neurokinin-2 receptor antagonist saredutant. Int J Neuropsychopharmacol 2013; 16:813-23. [PMID: 22695046 DOI: 10.1017/s1461145712000612] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
These experiments were undertaken to assess the mechanisms underlying the antidepressant-like effects of the neurokinin-2 (NK(2)) receptor antagonist saredutant (SR48968) in rats tested in the forced swim test (FST), by analysing hippocampal brain-derived neurotrophic factor (BDNF) and plasma corticosterone [as index of hypothalamic-pituitary-adrenal (HPA) axis activity]. Male Wistar rats received three intraperitoneal injections over 24 h of vehicle, saredutant (5 mg/kg), citalopram (15 mg/kg), clomipramine (50 mg/kg). Rats were subjected to restraint stress (4 h) 24 h prior to the FST procedure. This stress procedure increased immobility and decreased swimming behaviour in the FST; furthermore, it lowered hippocampal BDNF protein expression and increased plasma corticosterone levels. Saredutant and clomipramine or citalopram, used here as positive controls, reduced the immobility time in the FST both under basal conditions and after stress exposure. This effect was not attributable to changes in locomotion, because locomotor activity was unchanged when assessed in the open field test. Pretreatment with para-cholorophenylalanine (150 mg/kg, 72 h and 48 h prior to FST) abolished the effect of citalopram and saredutant on immobility time. At neurochemical level, saredutant attenuated activation of HPA axis in stressed animals more than clomipramine or citalopram. The behavioural effects of saredutant support the hypothesis that NK(2) receptor activity is involved in stress-related disorders. These effects of saredutant may be related to normalization of the HPA axis. Moreover, saredutant increases BDNF expression in the hippocampus, confirming the role of NK(2) receptor blockade in BDNF activation following stressor application.
Collapse
|
11
|
Brain kinin B₁ receptor contributes to the onset of stereotypic nocifensive behavior in rat. Behav Brain Res 2012; 241:17-26. [PMID: 23219968 DOI: 10.1016/j.bbr.2012.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 11/19/2012] [Accepted: 11/23/2012] [Indexed: 12/26/2022]
Abstract
While brain kinin B(1) receptor (B(1)R) is virtually absent in control rats, it contributes to hypertension via a midbrain dopaminergic (DA) mechanism in spontaneously hypertensive rat (SHR) and Angiotensin II (Ang II)-induced hypertension. This study aims at determining whether B(1)R can also affect stereotypic nocifensive behavior through DA and/or other neuromediators in the same models. The selective B(1)R agonist Sar[D-Phe(8)][des-Arg(9)]BK was injected i.c.v. (1 μg/site) to freely behaving SHR (16 weeks), Ang II-hypertensive rats (200 ng/kg/min × 2 weeks, s.c.) and control Wistar-Kyoto rats (WKY). Behavioral activity to the agonist was measured before and after treatment with receptor antagonists (10 μg/site i.c.v. or otherwise stated) for B(1) (SSR240612), tachykinin NK(1) (RP67580), glutamate NMDA (DL-AP5), DA D(1) (SCH23390, 0.2mg/kg s.c.) and D(2) (Raclopride, 0.16 mg/kg s.c.). Other studies included inhibitors (10 μg/site) of NOS (l-NNA) and iNOS (1400W). The possible desensitisation of B(1)R upon repeated intracerebral stimulation was also excluded. B(1)R expression was measured by qRT-PCR in selected areas and by immunohistochemistry in the ventral tegmental area. Results showed that the B(1)R agonist had no effect in WKY, yet it induced nocifensive behavioral manifestations in both models of hypertension (face washing, sniffing, head scratching, rearing, teeth chattering, grooming, digging, licking, wet-dog shakes). These responses were prevented by all antagonists and inhibitors tested, but 1400 W had a less inhibitory effect on most behaviors. Compared with WKY, B(1)R mRNA levels were markedly enhanced in hypothalamus, ventral tegmental area and nucleus accumbens of SHR and Ang II-treated rats. B(1)R was detected on DA neuron of the ventral tegmental area in SHR. Data suggest that kinin B(1)R is upregulated in midbrain DA system in hypertensive rats and its i.c.v. activation induced stereotypic nocifensive behavior that is mediated by several mediators, notably substance P, glutamate, DA and NO.
Collapse
|
12
|
Hayes DJ, Northoff G. Common brain activations for painful and non-painful aversive stimuli. BMC Neurosci 2012; 13:60. [PMID: 22676259 PMCID: PMC3464596 DOI: 10.1186/1471-2202-13-60] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/18/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Identification of potentially harmful stimuli is necessary for the well-being and self-preservation of all organisms. However, the neural substrates involved in the processing of aversive stimuli are not well understood. For instance, painful and non-painful aversive stimuli are largely thought to activate different neural networks. However, it is presently unclear whether there is a common aversion-related network of brain regions responsible for the basic processing of aversive stimuli. To help clarify this issue, this report used a cross-species translational approach in humans (i.e. meta-analysis) and rodents (i.e. systematic review of functional neuroanatomy). RESULTS Animal and human data combined to show a core aversion-related network, consisting of similar cortical (i.e. MCC, PCC, AI, DMPFC, RTG, SMA, VLOFC; see results section or abbreviation section for full names) and subcortical (i.e. Amyg, BNST, DS, Hab, Hipp/Parahipp, Hyp, NAc, NTS, PAG, PBN, raphe, septal nuclei, Thal, LC, midbrain) regions. In addition, a number of regions appeared to be more involved in pain-related (e.g. sensory cortex) or non-pain-related (e.g. amygdala) aversive processing. CONCLUSIONS This investigation suggests that aversive processing, at the most basic level, relies on similar neural substrates, and that differential responses may be due, in part, to the recruitment of additional structures as well as the spatio-temporal dynamic activity of the network. This network perspective may provide a clearer understanding of why components of this circuit appear dysfunctional in some psychiatric and pain-related disorders.
Collapse
Affiliation(s)
- Dave J Hayes
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, K1Z 7K4, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, K1Z 7K4, Canada
| |
Collapse
|
13
|
A mouse model of high trait anxiety shows reduced heart rate variability that can be reversed by anxiolytic drug treatment. Int J Neuropsychopharmacol 2011; 14:1341-55. [PMID: 21320392 PMCID: PMC3198175 DOI: 10.1017/s1461145711000058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Increasing evidence suggests that specific physiological measures may serve as biomarkers for successful treatment to alleviate symptoms of pathological anxiety. Studies of autonomic function investigating parameters such as heart rate (HR), HR variability and blood pressure (BP) indicated that HR variability is consistently reduced in anxious patients, whereas HR and BP data show inconsistent results. Therefore, HR and HR variability were measured under various emotionally challenging conditions in a mouse model of high innate anxiety (high anxiety behaviour; HAB) vs. control normal anxiety-like behaviour (NAB) mice. Baseline HR, HR variability and activity did not differ between mouse lines. However, after cued Pavlovian fear conditioning, both elevated tachycardia and increased fear responses were observed in HAB mice compared to NAB mice upon re-exposure to the conditioning stimulus serving as the emotional stressor. When retention of conditioned fear was tested in the home cage, HAB mice again displayed higher fear responses than NAB mice, while the HR responses were similar. Conversely, in both experimental settings HAB mice consistently exhibited reduced HR variability. Repeated administration of the anxiolytic NK1 receptor antagonist L-822429 lowered the conditioned fear response and shifted HR dynamics in HAB mice to a more regular pattern, similar to that in NAB mice. Additional receiver-operating characteristic (ROC) analysis demonstrated the high specificity and sensitivity of HR variability to distinguish between normal and high anxiety trait. These findings indicate that assessment of autonomic response in addition to freezing might be a useful indicator of the efficacy of novel anxiolytic treatments.
Collapse
|
14
|
Delgado-Morales R, del Río E, Gómez-Román A, Bisagno V, Nadal R, de Felipe C, Armario A. Adrenocortical and behavioural response to chronic restraint stress in neurokinin-1 receptor knockout mice. Physiol Behav 2011; 105:669-75. [PMID: 22019828 DOI: 10.1016/j.physbeh.2011.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 11/15/2022]
Abstract
Brain substance P and its receptor (neurokinin-1, NK1) have a widespread brain distribution and are involved in an important number of behavioural and physiological responses to emotional stimuli. However, the role of NK1 receptors in the consequences of exposure to chronic stress has not been explored. The present study focused on the role of these receptors in the hypothalamic-pituitary-adrenal (HPA) response to daily repeated restraint stress (evaluated by plasma corticosterone levels), as well as on the effect of this procedure on anxiety-like behaviour, spatial learning and memory in the Morris water maze (MWM), a hippocampus-dependent task. Adult null mutant NK1-/- mice, with a C57BL/6J background, and the corresponding wild-type mice showed similar resting corticosterone levels and, also, did not differ in corticosterone response to a first restraint. Nevertheless, adaptation to the repeated stressor was faster in NK1-/- mice. Chronic restraint modestly increased anxiety-like behaviour in the light-dark test, irrespective of genotype. Throughout the days of the MWM trials, NK1-/- mice showed a similar learning rate to that of wild-type mice, but had lower levels of thigmotaxis and showed a better retention in the probe trial. Chronic restraint stress did not affect these variables in either genotype. These results indicate that deletion of the NK1 receptor does not alter behavioural susceptibility to chronic repeated stress in mice, but accelerates adaptation of the HPA axis. In addition, deletion may result in lower levels of thigmotaxis and improved short-term spatial memory, perhaps reflecting a better learning strategy in the MWM.
Collapse
|
15
|
Lyon P, Cohen M, Quintner J. An Evolutionary Stress-Response Hypothesis for Chronic Widespread Pain (Fibromyalgia Syndrome). PAIN MEDICINE 2011; 12:1167-78. [DOI: 10.1111/j.1526-4637.2011.01168.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|