1
|
Witkowska A, Jaromirska J, Gabryelska A, Sochal M. Obstructive Sleep Apnea and Serotoninergic Signalling Pathway: Pathomechanism and Therapeutic Potential. Int J Mol Sci 2024; 25:9427. [PMID: 39273373 PMCID: PMC11395478 DOI: 10.3390/ijms25179427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Obstructive Sleep Apnea (OSA) is a disorder characterized by repeated upper airway collapse during sleep, leading to apneas and/or hypopneas, with associated symptoms like intermittent hypoxia and sleep fragmentation. One of the agents contributing to OSA occurrence and development seems to be serotonin (5-HT). Currently, the research focuses on establishing and interlinking OSA pathogenesis and the severity of the disease on the molecular neurotransmitter omnipresent in the human body-serotonin, its pathway, products, receptors, drugs affecting the levels of serotonin, or genetic predisposition. The 5-HT system is associated with numerous physiological processes such as digestion, circulation, sleep, respiration, and muscle tone-all of which are considered factors promoting and influencing the course of OSA because of correlations with comorbid conditions. Comorbidities include obesity, physiological and behavioral disorders as well as cardiovascular diseases. Additionally, both serotonin imbalance and OSA are connected with psychiatric comorbidities, such as depression, anxiety, or cognitive dysfunction. Pharmacological agents that target 5-HT receptors have shown varying degrees of efficacy in reducing the Apnea-Hypopnea Index and improving OSA symptoms. The potential role of the 5-HT signaling pathway in modulating OSA provides a promising avenue for new therapeutic interventions that could accompany the primary treatment of OSA-continuous positive airway pressure. Thus, this review aims to elucidate the complex role of 5-HT and its regulatory mechanisms in OSA pathophysiology, evaluating its potential as a therapeutic target. We also summarize the relationship between 5-HT signaling and various physiological functions, as well as its correlations with comorbid conditions.
Collapse
Affiliation(s)
- Alicja Witkowska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Julia Jaromirska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
2
|
Choi BY, Kim JK, Cho JH. A Review of a Recent Meta-Analysis Study on Obstructive Sleep Apnea. JOURNAL OF RHINOLOGY 2022; 29:134-140. [PMID: 39664309 PMCID: PMC11524374 DOI: 10.18787/jr.2022.00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022] Open
Abstract
This paper summarizes a recent meta-analysis of various topics in obstructive sleep apnea (OSA). In addition to cardiovascular disease and neurocognitive dysfunction, a wide variety of diseases have been associated with OSA, and associations with cancer have also been reported. Although continuous positive airway pressure is a very effective treatment, the results have shown that it does not reduce the incidence of various complications. It has been reported that uvulopalatopharyngoplasty was effective, and robotic surgery for the tongue root and hypoglossal nerve stimulation were also effective. The effectiveness of various medications to reduce daytime sleepiness has also been demonstrated. Although exercise lowered the apnea-hypopnea index, it was not related to changes in body composition, and it was also reported that exercise combined with weight control were effective. Additionally, interesting and clinically meaningful meta-analysis results were summarized and presented.
Collapse
Affiliation(s)
- Bo Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine Konkuk University, Seoul, Republic of Korea
| | - Jin Kook Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine Konkuk University, Seoul, Republic of Korea
| | - Jae Hoon Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Abstract
Despite extensive research, there is currently no approved drug for obstructive sleep apnea (OSA) treatment. OSA is a heterogeneous condition that involves multiple dominating pathophysiological traits. Drug development in this field needs to address both pathophysiological mechanisms and associated comorbid conditions in order to meet requirements for long-term therapy in OSA. Several drug candidates have been proposed and ongoing phase II trials that target various forms of sleep-disordered breathing have been initiated. The field is moving toward tailored therapeutic approaches in patients with OSA.
Collapse
|
4
|
Kubin L. Breathing during sleep. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:179-199. [PMID: 35965026 DOI: 10.1016/b978-0-323-91534-2.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The depth, rate, and regularity of breathing change following transition from wakefulness to sleep. Interactions between sleep and breathing involve direct effects of the central mechanisms that generate sleep states exerted at multiple respiratory regulatory sites, such as the central respiratory pattern generator, respiratory premotor pathways, and motoneurons that innervate the respiratory pump and upper airway muscles, as well as effects secondary to sleep-related changes in metabolism. This chapter discusses respiratory effects of sleep as they occur under physiologic conditions. Breathing and central respiratory neuronal activities during nonrapid eye movement (NREM) sleep and REM sleep are characterized in relation to activity of central wake-active and sleep-active neurons. Consideration is given to the obstructive sleep apnea syndrome because in this common disorder, state-dependent control of upper airway patency by upper airway muscles attains high significance and recurrent arousals from sleep are triggered by hypercapnic and hypoxic episodes. Selected clinical trials are discussed in which pharmacological interventions targeted transmission in noradrenergic, serotonergic, cholinergic, and other state-dependent pathways identified as mediators of ventilatory changes during sleep. Central pathways for arousals elicited by chemical stimulation of breathing are given special attention for their important role in sleep loss and fragmentation in sleep-related respiratory disorders.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
5
|
Messineo L, Loffler K, Chiang A, Osman A, Taranto-Montemurro L, Eckert DJ. The Combination of Betahistine and Oxybutynin Increases Respiratory Control Sensitivity (Loop Gain) in People with Obstructive Sleep Apnea: A Randomized, Placebo-Controlled Trial. Nat Sci Sleep 2022; 14:1063-1074. [PMID: 35698591 PMCID: PMC9188336 DOI: 10.2147/nss.s362205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
RATIONALE There are widespread histaminergic projections throughout the brain, including hypoglossal nuclei, that modulate pharyngeal muscle tone and respiratory control. Hence, histaminergic stimulation pharmacologically may increase pharyngeal muscle tone and stabilize respiratory control (loop gain) to reduce obstructive sleep apnea (OSA) severity. Antimuscarinics also increase REM pharyngeal muscle tone in rats. Thus, a combination of histaminergic and anti-muscarinic drugs may be a novel target for OSA pharmacotherapy. However, this has not been investigated. Accordingly, we aimed to test the effects of betahistine (Beta), an H3-autoreceptor antagonist which thereby increases histamine levels, in combination with the antimuscarinic oxybutynin (Oxy), on OSA severity, OSA endotypes, polysomnography parameters and next-day sleepiness and alertness. METHODS Thirteen adults with OSA received either Beta-Oxy (96-5mg) or placebo according to a randomized, crossover, double-blind design, prior to polysomnography. Participants completed the Karolinska Sleep Scale and Leeds Sleep Evaluation Questionnaire and a driving simulation task to quantify next-day sleepiness and alertness. OSA endotypes were estimated through validated algorithms using polysomnography. RESULTS Compared to placebo, Beta-Oxy increased respiratory control sensitivity (loop gain) (0.52[0.24] vs 0.60[0.34], median [IQR], P = 0.021) without systematically changing OSA severity (34.4±17.2 vs 40.3±27.3 events/h, mean±SD, P = 0.124), sleep efficiency, arousal index or markers of hypoxemia. Beta-Oxy was well tolerated and did not worsen next-day sleepiness/alertness. CONCLUSION Rather than stabilize breathing during sleep, Beta-Oxy increases loop gain, which is likely to be deleterious for most people with OSA. However, in certain conditions characterized by blunted respiratory control (eg, obesity hypoventilation syndrome), interventions to increase loop gain may be beneficial.
Collapse
Affiliation(s)
- Ludovico Messineo
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kelly Loffler
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
| | - Alan Chiang
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Amal Osman
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
| | - Luigi Taranto-Montemurro
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danny J Eckert
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
6
|
Mohit, Shrivastava A, Chand P. Molecular determinants of obstructive sleep apnea. Sleep Med 2021; 80:105-112. [PMID: 33592435 DOI: 10.1016/j.sleep.2021.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/19/2020] [Accepted: 01/24/2021] [Indexed: 12/13/2022]
Abstract
Obstructive sleep apnea (OSA) is characterized as recurrent episodes of obstruction in the upper airway during the period of sleep. The condition occurs in approximately 11% and 4% of middle-aged men and middle-aged women, respectively. Polysomnography is a diagnostic procedure that involves the constant observation of oxygen saturation and unsaturation during sleep. Usually, positive airway pressure is considered a benchmark treatment for OSA. This review summarizes the recent developments and emerging evidence from molecular biology-based research studies that show that genetic factors have an influence on OSA. The genetic aspects of OSA that have been identified include heritability and other phenotypic co-factors such as anatomical morphology. It also draws attention to the results of a polymorphic-based study that was conducted to determine the causative single nucleotide mutations associated with obesity and adverse cardiovascular risk in OSA. However, the role of such mutations and their linkage to OSA can not yet be established. Nonetheless, a large body of evidence supports a strong association between inflammatory cytokine polymorphism and obesity in the development of OSA. There are also probable intermediate factors with several gene-gene interactions. Therefore, advanced applications and modern techniques should be applied to facilitate new findings and to minimize the risk of developing OSA.
Collapse
Affiliation(s)
- Mohit
- Department of Prosthodontics, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Pooran Chand
- Department of Prosthodontics, King George's Medical University, Lucknow, Uttar Pradesh, 226003, India.
| |
Collapse
|
7
|
Xie L, Wu Q, Hu W, Wu X, Xiang G, Hao S, Guo H, Li S. Impact of histaminergic H3 receptor antagonist on hypoglossal nucleus in chronic intermittent hypoxia conditions. Psychopharmacology (Berl) 2021; 238:121-131. [PMID: 32964244 DOI: 10.1007/s00213-020-05663-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/10/2020] [Indexed: 11/27/2022]
Abstract
RATIONALE The hypoglossal nucleus (HN) controls the movement of the genioglossus (GG) muscle whose dysfunction leads to airway occlusion and occurrence of obstructive sleep apnea (OSA). Histamine produced by the tuberomammillary nucleus (TMN) has a potent excitatory action on GG muscle activity. OBJECTIVES The aim of the study was to investigate the role histaminergic neurons play in the regulation of the genioglossus. METHODS C57BL/6 mice were exposed to chronic intermittent hypoxia (CIH) for 3 weeks to resemble OSA. The histamine H3 receptor (H3R) antagonist ciproxifan was applied to increase histamine in the brain. Histamine levels and GG activity were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and electromyogram (EMG) separately. Neuronal activity and repair ability of the HN and TMN and key proteins of histamine were analyzed by immunohistochemistry and western blots. RESULTS Significant decline of histamine level and GG activity of the HN and TMN induced by CIH exposure could be ameliorated by ciproxifan. Application of ciproxifan could also partly reverse the decline of the histidine decarboxylase (HDC) by CIH. CONCLUSIONS This investigation studied the impacts of ciproxifan on the HN and TMN in CIH conditions and revealed that the negative effects on the HN and TMN caused by CIH could be partly ameliorated by ciproxifan, which might open new perspectives for the development of pharmacological treatment for OSA.
Collapse
Affiliation(s)
- Liang Xie
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qinhan Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiping Hu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guiling Xiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Guo
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China.
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China.
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Tang S, Zhou X, Hu K, Liu P, Xiong M, Li H. The role of gonadal hormones in the hypoglossal discharge activity of rats exposed to chronic intermittent hypoxia. Brain Res Bull 2019; 149:175-183. [PMID: 31022436 DOI: 10.1016/j.brainresbull.2019.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/15/2019] [Accepted: 04/18/2019] [Indexed: 10/27/2022]
|
9
|
Li WY, Wang A, Jin H, Zou Y, Wang Z, Wang W, Kang J. Transient upregulation of TASK-1 expression in the hypoglossal nucleus during chronic intermittent hypoxia is reduced by serotonin 2A receptor antagonist. J Cell Physiol 2019; 234:17886-17895. [PMID: 30864194 DOI: 10.1002/jcp.28419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 11/11/2022]
Abstract
Hypoglossal motoneurons innervate genioglossus muscle, the contraction of which is critical in the maintenance of upper airway patency in patients with obstructive sleep apnea. As a potassium channel distributed in hypoglossal motoneurons, TWIK-related acid-sensitive K+ channel-1 (TASK-1) could be inhibited by 5-HT. This study aimed to investigate if TASK-1 expression in hypoglossal nucleus could be influenced by chronic intermittent hypoxia (CIH) and 5-HT2A receptors antagonist. Two hundred twenty-eight rats were exposed to CIH or normoxia (NO) in the presence and absence of 5-HT 2A receptor antagonist (MDL-100907) microinjected into the hypoglossal nucleus. The expression of 5-HT and TASK-1 in the hypoglossal nucleus were detected by immunohistochemistry and reverse transcription quantitative polymerase chain reaction on the 1st, 3rd, 7th, 14th and 21st day of CIH exposure. The mean optical density (MOD) of 5-HT in the XII nucleus was significantly increased in the CIH and CIH + MDL group than the NO group on the 7th and 21st day ( p < 0.05). Compared with the NO group, the MOD and gene expression of TASK-1 in the CIH group was significantly increased on the 7th and 14th day ( p < 0.05), then normalized on the 21st day. The TASK-1 expression in the CIH + MDL group was significantly lower than the CIH + PBS and CIH group on the 7th and 14th day ( p < 0.05). The CIH-induced transiently upregulation of the TASK-1 expression in the hypoglossal nucleus could be reversed by 5-HT 2A receptor antagonist, indicating that the modulation of the TASK-1 expression in response to CIH involves 5-HT and 5-HT 2A receptors, and this CIH effect might be 5-HT 2A receptor-dependent.
Collapse
Affiliation(s)
- Wen-Yang Li
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Aidi Wang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongyu Jin
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Zou
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zanfeng Wang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Wang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Kang
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
|
11
|
Cori JM, O'Donoghue FJ, Jordan AS. Sleeping tongue: current perspectives of genioglossus control in healthy individuals and patients with obstructive sleep apnea. Nat Sci Sleep 2018; 10:169-179. [PMID: 29942169 PMCID: PMC6007201 DOI: 10.2147/nss.s143296] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The focus of this review was on the genioglossus (GG) muscle and its role in maintaining upper airway patency in both healthy individuals and obstructive sleep apnea (OSA) patients. This review provided an overview of GG anatomy and GG control and function during both wakefulness and sleep in healthy individuals and in those with OSA. We reviewed evidence for the role of the GG in OSA pathogenesis and also highlighted abnormalities in GG morphology, responsiveness, tissue movement patterns and neurogenic control that may contribute to or result from OSA. We summarized the different methods for improving GG function and/or activity in OSA and their efficacy. In addition, we discussed the possibility that assessing the synergistic activation of multiple upper airway dilator muscles may provide greater insight into upper airway function and OSA pathogenesis, rather than assessing the GG in isolation.
Collapse
Affiliation(s)
- Jennifer M Cori
- Department of Respiratory and Sleep Medicine, Institute for Breathing and Sleep, Austin Hospital, Heidelberg, VIC, Australia
| | - Fergal J O'Donoghue
- Department of Respiratory and Sleep Medicine, Institute for Breathing and Sleep, Austin Hospital, Heidelberg, VIC, Australia
| | - Amy S Jordan
- Department of Psychology, Melbourne School of Psychological Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Song G, Poon CS. α2-Adrenergic blockade rescues hypoglossal motor defense against obstructive sleep apnea. JCI Insight 2017; 2:e91456. [PMID: 28239660 DOI: 10.1172/jci.insight.91456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Decreased noradrenergic excitation of hypoglossal motoneurons during sleep causing hypotonia of pharyngeal dilator muscles is a major contributor to the pathogenesis of obstructive sleep apnea (OSA), a widespread disease for which treatment options are limited. Previous OSA drug candidates targeting various excitatory/inhibitory receptors on hypoglossal motoneurons have proved unviable in reactivating these neurons, particularly during rapid-eye-movement (REM) sleep. To identify a viable drug target, we show that the repurposed α2-adrenergic antagonist yohimbine potently reversed the depressant effect of REM sleep on baseline hypoglossal motoneuron activity (a first-line motor defense against OSA) in rats. Remarkably, yohimbine also restored the obstructive apnea-induced long-term facilitation of hypoglossal motoneuron activity (hLTF), a much-neglected form of noradrenergic-dependent neuroplasticity that could provide a second-line motor defense against OSA but was also depressed during REM sleep. Corroborating immunohistologic, optogenetic, and pharmacologic evidence confirmed that yohimbine's beneficial effects on baseline hypoglossal motoneuron activity and hLTF were mediated mainly through activation of pontine A7 and A5 noradrenergic neurons. Our results suggest a 2-tier (impaired first- and second-line motor defense) mechanism of noradrenergic-dependent pathogenesis of OSA and a promising pharmacotherapy for rescuing both these intrinsic defenses against OSA through disinhibition of A7 and A5 neurons by α2-adrenergic blockade.
Collapse
|
13
|
Kubin L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr Physiol 2016; 6:1801-1850. [PMID: 27783860 DOI: 10.1002/cphy.c160002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. © 2016 American Physiological Society. Compr Physiol 6:1801-1850, 2016.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Liu ZL, Wu X, Luo YJ, Wang L, Qu WM, Li SQ, Huang ZL. Signaling mechanism underlying the histamine-modulated action of hypoglossal motoneurons. J Neurochem 2016; 137:277-86. [PMID: 26811198 DOI: 10.1111/jnc.13548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 01/14/2023]
Abstract
Histamine, an important modulator of the arousal states of the central nervous system, has been reported to contribute an excitatory drive at the hypoglossal motor nucleus to the genioglossus (GG) muscle, which is involved in the pathogenesis of obstructive sleep apnea. However, the effect of histamine on hypoglossal motoneurons (HMNs) and the underlying signaling mechanisms have remained elusive. Here, whole-cell patch-clamp recordings were conducted using neonatal rat brain sections, which showed that histamine excited HMNs with an inward current under voltage-clamp and a depolarization membrane potential under current-clamp via histamine H1 receptors (H1Rs). The phospholipase C inhibitor U-73122 blocked H1Rs-mediated excitatory effects, but protein kinase A inhibitor and protein kinase C inhibitor did not, indicating that the signal transduction cascades underlying the excitatory action of histamine on HMNs were H1R/Gq/11 /phospholipase C/inositol-1,4,5-trisphosphate (IP3). The effects of histamine were also dependent on extracellular Na(+) and intracellular Ca(2+), which took place via activation of Na(+)-Ca(2+) exchangers. These results identify the signaling molecules associated with the regulatory effect of histamine on HMNs. The findings of this study may provide new insights into therapeutic approaches in obstructive sleep apnea. We proposed the post-synaptic mechanisms underlying the modulation effect of histamine on hypoglossal motoneuron. Histamine activates the H1Rs via PLC and IP3, increases Ca(2+) releases from intracellular stores, promotes Na(+) influx and Ca(2+) efflux via the NCXs, and then produces an inward current and depolarizes the neurons. Histamine modulates the excitability of HMNs with other neuromodulators, such as noradrenaline, serotonin and orexin. We think that these findings should provide an important new direction for drug development for the treatment of obstructive sleep apnea.
Collapse
Affiliation(s)
- Zi-Long Liu
- Department of Pulmonary Medicine, Center of Snoring and Sleep Apnea Medicine, Zhongshan Hospital of Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, and Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,The Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xu Wu
- Department of Pulmonary Medicine, Center of Snoring and Sleep Apnea Medicine, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yan-Jia Luo
- State Key Laboratory of Medical Neurobiology, and Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,The Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lu Wang
- State Key Laboratory of Medical Neurobiology, and Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology, and Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,The Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Shan-Qun Li
- Department of Pulmonary Medicine, Center of Snoring and Sleep Apnea Medicine, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zhi-Li Huang
- State Key Laboratory of Medical Neurobiology, and Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,The Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Sacchetti M, Della Marca G. Are stroke cases affected by sleep disordered breathings all the same? Med Hypotheses 2014; 83:217-23. [DOI: 10.1016/j.mehy.2014.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 01/14/2023]
|
16
|
Kernder A, De Luca R, Yanovsky Y, Haas HL, Sergeeva OA. Acid-sensing hypothalamic neurons controlling arousal. Cell Mol Neurobiol 2014; 34:777-89. [PMID: 24798513 PMCID: PMC11488898 DOI: 10.1007/s10571-014-0065-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/16/2014] [Indexed: 12/30/2022]
Abstract
Breathing and vigilance are regulated by pH and CO2 levels in the central nervous system. The hypocretin/orexin (Hcrt/Orx)- and histamine (HA)-containing hypothalamic neurons synergistically control different aspects of the waking state. Acidification inhibits firing of most neurons but these two groups in the caudal hypothalamus are excited by hypercapnia and protons, similar to the chemosensory neurons in the brain stem. Activation of hypothalamic wake-on neurons in response to hypercapnia, seen with the c-Fos assay, is supported by patch-clamp recordings in rodent brain slices: Hcrt/Orx and HA neurons are excited by acidification in the physiological range (pH from 7.4 to 7.0). Multiple molecular mechanisms mediate wake-promoting effects of protons in HA neurons in the tuberomamillary nucleus (TMN): among them are acid-sensing ion channels, Na(+),K(+)-ATPase, group I metabotropic glutamate receptors (mGluRI). HA neurons are remarkably sensitive to the mGluRI agonist DHPG (threshold concentration 0.5 µM) and mGluRI antagonists abolish proton-induced excitation of HA neurons. Hcrt/Orx neurons are excited through block of a potassium conductance and release glutamate with their peptides in TMN. The two hypothalamic nuclei and the serotonergic dorsal raphe cooperate toward CO2/acid-induced arousal. Their interactions and molecular mechanisms of H(+)/CO2-induced activation are relevant for the understanding and treatment of respiratory and metabolic disorders related to sleep-waking such as obstructive sleep apnea and sudden infant death syndrome.
Collapse
Affiliation(s)
- Anna Kernder
- Department of Neurophysiology, Molecular Neurophysiology, Medical Faculty, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Roberto De Luca
- Department of Neurophysiology, Molecular Neurophysiology, Medical Faculty, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Yevgenij Yanovsky
- Department of Neurophysiology, Molecular Neurophysiology, Medical Faculty, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Helmut L. Haas
- Department of Neurophysiology, Molecular Neurophysiology, Medical Faculty, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Olga A. Sergeeva
- Department of Neurophysiology, Molecular Neurophysiology, Medical Faculty, Heinrich-Heine University, 40225 Duesseldorf, Germany
| |
Collapse
|
17
|
Fung SJ, Chase MH. Control of hypoglossal motoneurones during naturally occurring sleep and wakefulness in the intact, unanaesthetized cat: a field potential study. J Sleep Res 2014; 23:469-74. [PMID: 24605864 DOI: 10.1111/jsr.12137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/18/2014] [Indexed: 12/26/2022]
Abstract
The present electrophysiological study was designed to determine the discharge threshold of hypoglossal motoneurones during naturally occurring states of sleep and wakefulness in the intact, unanaesthetized cat. The antidromic field potential, which reflects the net level of membrane excitability of motoneurones and therefore their discharge threshold, was recorded in the hypoglossal nucleus following stimulation of the hypoglossal nerve. The amplitude of the antidromic field potential was larger during wakefulness and non-rapid eye movement (NREM) sleep compared with REM sleep. There was no significant difference in the amplitude of the field potential when wakefulness was compared with NREM sleep (P = 0.103, df = 3, t = 2.324). However, there was a 46% reduction in amplitude during REM sleep compared with NREM sleep (P < 0.001, df = 10, t = 6.421) or wakefulness (P < 0.01, df = 4, t = -4.598). These findings indicate that whereas the excitability of motoneurones that comprise the hypoglossal motor pool is relatively constant during wakefulness and NREM sleep, their excitability is significantly reduced during REM sleep. This state-dependent pattern of control of hypoglossal motoneurones during REM sleep is similar to that reported for motoneurones in other motor nuclei at all levels of the neuraxis. The decrease in the evoked response of hypoglossal motoneurones, which reflects a significant increase in the discharge threshold of individual motoneurones, results in atonia of the lingual and related muscles during REM sleep.
Collapse
Affiliation(s)
- Simon J Fung
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Websciences International, Los Angeles, CA, USA
| | | |
Collapse
|
18
|
Kubin L. Sleep-wake control of the upper airway by noradrenergic neurons, with and without intermittent hypoxia. PROGRESS IN BRAIN RESEARCH 2014; 209:255-74. [PMID: 24746052 PMCID: PMC4498577 DOI: 10.1016/b978-0-444-63274-6.00013-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hypoglossal (XII) motoneurons innervate muscles of the tongue whose tonic and inspiratory modulated activity protects the upper airway from collapse in patients affected by the obstructive sleep apnea (OSA) syndrome. Both norepinephrine and serotonin provide wakefulness-related excitatory drives that maintain activity in XII motoneurons, with the noradrenergic system playing a particularly prominent role in rats. When noradrenergic and serotonergic drives are antagonized, no further decline of XII nerve activity occurs during pharmacologically induced rapid eye movement (REM) sleep-like state. This is the best evidence to date that, at least in this model, the entire REM sleep-related decline of upper airway muscle tone results from withdrawal of these two excitatory inputs. A major component of noradrenergic input to XII motoneurons originates from pontine noradrenergic neurons that have state-dependent patterns of activity, maximal during wakefulness, and minimal, or absent during REM sleep. Our data suggest that not all ventrolateral medullary catecholaminergic neurons follow this pattern, with adrenergic C1 neurons probably increasing their activity during REM sleep. When rats are subjected to chronic-intermittent hypoxia, noradrenergic drive to XII motoneurons is increased by mechanisms that include sprouting of noradrenergic terminals in the XII nucleus, and increased expression of α1-adrenoceptors; an outcome that may underlie the elevated baseline activity of upper airway muscles during wakefulness in OSA patients.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Effects of dorsomedial medullary 5-HT2 receptor antagonism on initial ventilatory airway responses to hypercapnic hypoxia in mice. Exp Brain Res 2013; 230:547-54. [DOI: 10.1007/s00221-013-3493-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 03/15/2013] [Indexed: 11/28/2022]
|
20
|
Luppi PH, Clément O, Valencia Garcia S, Brischoux F, Fort P. New aspects in the pathophysiology of rapid eye movement sleep behavior disorder: the potential role of glutamate, gamma-aminobutyric acid, and glycine. Sleep Med 2013; 14:714-8. [DOI: 10.1016/j.sleep.2013.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 02/12/2013] [Accepted: 02/14/2013] [Indexed: 10/26/2022]
|
21
|
Grace KP, Hughes SW, Shahabi S, Horner RL. K+ channel modulation causes genioglossus inhibition in REM sleep and is a strategy for reactivation. Respir Physiol Neurobiol 2013; 188:277-88. [PMID: 23872455 DOI: 10.1016/j.resp.2013.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 12/23/2022]
Abstract
Rapid eye movement (REM) sleep is accompanied by periods of upper airway motor suppression that cause hypoventilation and obstructive apneas in susceptible individuals. A common idea has been that upper airway motor suppression in REM sleep is caused by the neurotransmitters glycine and γ-amino butyric acid (GABA) acting at pharyngeal motor pools to inhibit motoneuron activity. Data refute this as a workable explanation because blockade of this putative glycine/GABAergic mechanism releases pharyngeal motor activity in all states, and least of all in REM sleep. Here we summarize a novel motor-inhibitory mechanism that suppresses hypoglossal motor activity largely in REM sleep, this being a muscarinic receptor mechanism linked to G-protein-coupled inwardly rectifying potassium (GIRK) channels. We then outline how this discovery informs efforts to pursue therapeutic targets to reactivate hypoglossal motor activity throughout sleep via potassium channel modulation. One such target is the inwardly rectifying potassium channel Kir2.4 whose expression in the brain is almost exclusive to cranial motor nuclei.
Collapse
Affiliation(s)
- Kevin P Grace
- Departments of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | | | |
Collapse
|
22
|
Volgin DV, Stettner GM, Kubin L. Circadian dependence of receptors that mediate wake-related excitatory drive to hypoglossal motoneurons. Respir Physiol Neurobiol 2013; 188:301-7. [PMID: 23665050 DOI: 10.1016/j.resp.2013.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Serotonin (5-HT), norepinephrine and orexins (ORX) are the three best established mediators of wake-related activation of hypoglossal (XII) motoneurons that innervate the muscles of the tongue. Since the tongue's use is temporarily closely aligned with the rest-activity cycle, we tested whether expression of mRNA for relevant 5-HT, norepinephrine and ORX receptors varies in the XII nucleus with the rest-activity cycle. Adult rats (n=7-9/group) were decapitated at 8-9 am (near rest period onset) or at 6-7 pm (near active period onset). Tissue micropunches were extracted from medullary slices containing the XII motor and sensory external cuneate (ECN) nuclei. 5-HT2A, α1-adrenergic and ORX type 2 receptor mRNAs were quantified using RT-PCR. Only 5-HT2A receptor mRNA levels differed between the two time points and were higher at the active period onset; no differences were detected in the ECN. Consistent with the mRNA results, 5-HT2A protein levels were also higher in the XII nucleus at the active period onset than at rest onset. Thus, the endogenous serotonergic excitatory drive to XII motoneurons may be enhanced through circadian- or activity-dependent mechanisms that increase the availability of 5-HT2A receptors prior to the active period. Conversely, reduced levels of 5-HT2A receptors during the rest-sleep period may exacerbate the propensity for sleep-disordered breathing in subjects with anatomically compromised upper airway.
Collapse
Affiliation(s)
- Denys V Volgin
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6046, USA.
| | | | | |
Collapse
|
23
|
Neuzeret PC, Gormand F, Reix P, Parrot S, Sastre JP, Buda C, Guidon G, Sakai K, Lin JS. A new animal model of obstructive sleep apnea responding to continuous positive airway pressure. Sleep 2011; 34:541-8. [PMID: 21461333 DOI: 10.1093/sleep/34.4.541] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
STUDY OBJECTIVES An improved animal model of obstructive sleep apnea (OSA) is needed for the development of effective pharmacotherapies. In humans, flexion of the neck and a supine position, two main pathogenic factors during human sleep, are associated with substantially greater OSA severity. We postulated that these two factors might generate OSA in animals. DESIGN We developed a restraining device for conditioning to investigate the effect of the combination of 2 body positions-prone (P) or supine (S)-and 2 head positions-with the neck flexed at right angles to the body (90°) or in extension in line with the body (180°)-during sleep in 6 cats. Polysomnography was performed twice on each cat in each of the 4 sleeping positions-P180, S180, P90, or S90. The effect of continuous positive airway pressure (CPAP) treatment was then investigated in 2 cats under the most pathogenic condition. SETTING NA. PATIENTS OR PARTICIPANTS NA. INTERVENTIONS NA. MEASUREMENTS AND RESULTS Positions P180 and, S90 resulted, respectively, in the lowest and highest apnea-hypopnea index (AHI) (3 ± 1 vs 25 ± 2, P < 0.001), while P90 (18 ± 3, P<0.001) and S180 (13 ± 5, P<0.01) gave intermediate values. In position S90, an increase in slow wave sleep stage 1 (28% ± 3% vs 22% ± 3%, P<0.05) and a decrease in REM sleep (10% ± 2% vs 18% ± 2%, P<0.001) were also observed. CPAP resulted in a reduction in the AHI (8 ± 1 vs 27 ± 3, P<0.01), with the added benefit of sleep consolidation. CONCLUSION By mimicking human pathogenic sleep conditions, we have developed a new reversible animal model of OSA.
Collapse
Affiliation(s)
- Pierre-Charles Neuzeret
- INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Integrated Physiology of Brain Arousal Systems, Lyon, F-69000, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Obstructive sleep apnoea syndrome (OSAS) is a highly prevalent disorder associated with reduced quality of life and adverse cardiovascular and metabolic sequelae. Recent years have seen an intensification of the research effort to establish the genetic contribution to the development of OSAS and its sequelae. This review explores emerging evidence in this field. RECENT FINDINGS A genetic basis for sleep-disordered breathing has been demonstrated for discrete disorders such as Treacher-Collins and Down syndromes, but the picture is less clear in so-called idiopathic OSAS. A degree of heritability appears likely in some of the intermediate phenotypes that lead to OSAS, particularly craniofacial morphology. However, only sparse and often contradictory evidence exists regarding the role of specific polymorphisms in causing OSAS in the general population. Similarly, investigations of the cardiovascular sequelae of OSAS have in general failed to consistently find single causative genetic mutations. Nonetheless, evidence suggests a role for tumour necrosis factor-α polymorphisms in particular, and large-scale family studies have suggested shared pathogenetic pathways for the development of obesity and OSAS. SUMMARY As with other common disorders, OSAS is likely to result from multiple gene-gene interactions occurring in a suitable environment. The application of modern genetic investigative techniques, such as genome-wide association studies, may facilitate new discoveries in this field.
Collapse
|
25
|
Differential respiratory control of the upper airway and diaphragm muscles induced by 5-HT1A receptor ligands. Sleep Breath 2011; 16:135-47. [PMID: 21221824 DOI: 10.1007/s11325-010-0466-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/29/2010] [Accepted: 12/21/2010] [Indexed: 12/18/2022]
Abstract
BACKGROUND Serotonin (5-HT) has a role in respiratory function and dysfunction. Although 5-HT affects respiratory drive to both phrenic and cranial motoneurons, relatively little is known about the role of 5-HT receptor subtypes in the control of upper airway muscle (UAM) respiratory activity. MATERIALS AND METHODS Here, we performed central injections of 5-HT1A agonist (8-OHDPAT) or antagonist (WAY100635) in anesthetized rats and analyzed changes in the electromyographic activity of several UAM and other cardiorespiratory parameters. We also compared the pattern of Fos expression induced after central injection of a control solution or 8-OHDPAT. RESULTS Results showed that 8-OHDPAT induced a robust increase in UAM activity, associated with either tachypnea under volatile anesthesia or bradypnea under liquid anesthesia. Injection of WAY100635 switched off UAM respiratory activity and led to bradypnea, suggesting a tonic excitatory role of endogenous 5-HT1A receptor activation. Co-injection of the agonist and the antagonist blocked the effects produced by each drug alone. Besides drug-induced changes in respiratory frequency, only slight increases in surface of diaphragm bursts were observed. Significant increases in Fos expression after 5-HT1A receptor activation were seen in the nucleus tractus solitarius, nucleus raphe pallidus, parapyramidal region, retrotrapezoid nucleus, lateral parabrachial, and Kölliker-Fuse nuclei. This restricted pattern of Fos expression likely identified the neural substrate responsible for the enhancement of UAM respiratory activity observed after 8-OHDPAT injection. CONCLUSIONS These findings suggest an important role for the 5-HT1A receptors in the neural control of upper airway patency and may be relevant to counteract pharyngeal atonia during obstructive sleep apneas.
Collapse
|
26
|
Rukhadze I, Fenik VB, Benincasa KE, Price A, Kubin L. Chronic intermittent hypoxia alters density of aminergic terminals and receptors in the hypoglossal motor nucleus. Am J Respir Crit Care Med 2010; 182:1321-9. [PMID: 20622040 DOI: 10.1164/rccm.200912-1884oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Patients with obstructive sleep apnea (OSA) adapt to the anatomical vulnerability of their upper airway by generating increased activity in upper airway-dilating muscles during wakefulness. Norepinephrine (NE) and serotonin (5-HT) mediate, through α₁-adrenergic and 5-HT₂A receptors, a wake-related excitatory drive to upper airway motoneurons. In patients with OSA, this drive is necessary to maintain their upper airway open. We tested whether chronic intermittent hypoxia (CIH), a major pathogenic factor of OSA, affects aminergic innervation of XII motoneurons that innervate tongue-protruding muscles in a manner that could alter their airway-dilatory action. OBJECTIVES To determine the impact of CIH on neurochemical markers of NE and 5-HT innervation of the XII nucleus. METHODS NE and 5-HT terminal varicosities and α₁-adrenergic and 5-HT₂A receptors were immunohistochemically visualized and quantified in the XII nucleus in adult rats exposed to CIH or room air exchanges for 10 h/d for 34 to 40 days. MEASUREMENTS AND MAIN RESULTS CIH-exposed rats had approximately 40% higher density of NE terminals and approximately 20% higher density of 5-HT terminals in the ventromedial quadrant of the XII nucleus, the region that controls tongue protruder muscles, than sham-treated rats. XII motoneurons expressing α₁-adrenoceptors were also approximately 10% more numerous in CIH rats, whereas 5-HT₂A receptor density tended to be lower in CIH rats. CONCLUSIONS CIH-elicited increase of NE and 5-HT terminal density and increased expression of α₁-adrenoceptors in the XII nucleus may lead to augmentation of endogenous aminergic excitatory drives to XII motoneurons, thereby contributing to the increased upper airway motor tone in patients with OSA.
Collapse
Affiliation(s)
- Irma Rukhadze
- Department of Animal Biology, University of Pennsylvania, Philadelphia, 19104-6046, USA.
| | | | | | | | | |
Collapse
|
27
|
Anaclet C, Pedersen NP, Fuller PM, Lu J. Brainstem circuitry regulating phasic activation of trigeminal motoneurons during REM sleep. PLoS One 2010; 5:e8788. [PMID: 20098748 PMCID: PMC2808333 DOI: 10.1371/journal.pone.0008788] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 12/23/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rapid eye movement sleep (REMS) is characterized by activation of the cortical and hippocampal electroencephalogram (EEG) and atonia of non-respiratory muscles with superimposed phasic activity or twitching, particularly of cranial muscles such as those of the eye, tongue, face and jaw. While phasic activity is a characteristic feature of REMS, the neural substrates driving this activity remain unresolved. Here we investigated the neural circuits underlying masseter (jaw) phasic activity during REMS. The trigeminal motor nucleus (Mo5), which controls masseter motor function, receives glutamatergic inputs mainly from the parvocellular reticular formation (PCRt), but also from the adjacent paramedian reticular area (PMnR). On the other hand, the Mo5 and PCRt do not receive direct input from the sublaterodorsal (SLD) nucleus, a brainstem region critical for REMS atonia of postural muscles. We hypothesized that the PCRt-PMnR, but not the SLD, regulates masseter phasic activity during REMS. METHODOLOGY/PRINCIPAL FINDINGS To test our hypothesis, we measured masseter electromyogram (EMG), neck muscle EMG, electrooculogram (EOG) and EEG in rats with cell-body specific lesions of the SLD, PMnR, and PCRt. Bilateral lesions of the PMnR and rostral PCRt (rPCRt), but not the caudal PCRt or SLD, reduced and eliminated REMS phasic activity of the masseter, respectively. Lesions of the PMnR and rPCRt did not, however, alter the neck EMG or EOG. To determine if rPCRt neurons use glutamate to control masseter phasic movements, we selectively blocked glutamate release by rPCRt neurons using a Cre-lox mouse system. Genetic disruption of glutamate neurotransmission by rPCRt neurons blocked masseter phasic activity during REMS. CONCLUSIONS/SIGNIFICANCE These results indicate that (1) premotor glutamatergic neurons in the medullary rPCRt and PMnR are involved in generating phasic activity in the masseter muscles, but not phasic eye movements, during REMS; and (2) separate brainstem neural circuits control postural and cranial muscle phasic activity during REMS.
Collapse
Affiliation(s)
- Christelle Anaclet
- Division of Sleep Medicine, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nigel P. Pedersen
- Division of Sleep Medicine, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Patrick M. Fuller
- Division of Sleep Medicine, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jun Lu
- Division of Sleep Medicine, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
28
|
Bastedo T, Chan E, Park E, Liu H, Horner RL. Modulation of genioglossus muscle activity across sleep-wake states by histamine at the hypoglossal motor pool. Sleep 2009; 32:1313-24. [PMID: 19848360 DOI: 10.1093/sleep/32.10.1313] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Histamine neurons comprise a major component of the aminergic arousal system and significantly influence sleep-wake states, with antihistamines widely used as sedative hypnotics. Unlike the serotonergic and noradrenergic components of this arousal system, however, the role of histamine in the central control of respiratory motor activity has not been determined. The aims of this study were to characterize the effects of histamine receptor agonists and antagonists at the hypoglossal motor pool on genioglossus muscle activity across sleep and awake states, and also determine if histamine contributes an endogenous excitatory drive to modulate hypoglossal motor outflow to genioglossus muscle. DESIGN, PARTICIPANTS, AND INTERVENTIONS Thirty-three rats were implanted with electroencephalogram and neck electrodes to record sleep-wake states, and genioglossus and diaphragm electrodes for respiratory muscle recordings. Microdialysis probes were inserted into the hypoglossal motor nucleus. MEASUREMENTS AND RESULTS Histamine at the hypoglossal motor nucleus significantly increased tonic genioglossus muscle activity in wakefulness, non-REM sleep and REM sleep. The activating effects of histamine on genioglossus muscle activity also occurred with a histamine type-1 (H1) but not H2 receptor agonist. However, H1 receptor antagonism at the hypoglossal motor nucleus did not decrease genioglossus muscle activity in wakefulness or sleep. CONCLUSIONS The results suggest that histamine at the hypoglossal motor pool increases genioglossus muscle activity in freely behaving rats in wakefulness, non-REM, and REM sleep via an H1 receptor mechanism.
Collapse
Affiliation(s)
- Timothy Bastedo
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
29
|
Fenik VB, Rukhadze I, Kubin L. Antagonism of alpha1-adrenergic and serotonergic receptors in the hypoglossal motor nucleus does not prevent motoneuronal activation elicited from the posterior hypothalamus. Neurosci Lett 2009; 462:80-4. [PMID: 19573578 PMCID: PMC2734450 DOI: 10.1016/j.neulet.2009.06.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/23/2009] [Accepted: 06/25/2009] [Indexed: 11/27/2022]
Abstract
The perifornical (PF) region of the posterior hypothalamus plays an important role in the regulation of sleep-wake states and motor activity. Disinhibition of PF neurons by the GABA(A) receptor antagonist, bicuculline, has been used to study the mechanisms of wake- and motor activity-promoting effects that emanate from the PF region. Bicuculline activates PF neurons, including the orexin-containing cells that have major excitatory projections to brainstem noradrenergic and serotonergic neurons. Since premotor aminergic neurons are an important source of motoneuronal activation, we hypothesized that they mediate the excitation of motoneurons that results from disinhibition of PF neurons with bicuculline. In urethane-anesthetized, paralyzed and artificially ventilated rats, we found that PF bicuculline injections (1mM, 20 nl) made after combined microinjections into the hypoglossal (XII) nucleus of alpha(1)-adrenergic and serotonergic receptor antagonists (prazosin and methysergide) increased XII nerve activity by 80+/-16% (SE) of the control activity level. Thus, activation of XII motoneurons originating in the hypothalamic PF region was not abolished despite effective elimination by the aminergic antagonists of the endogenous noradrenergic and serotonergic excitatory drives to XII motoneurons and abolition of XII motoneuronal activation by exogenous serotonin or phenylephrine. These results show that a major component of XII motoneuronal activation originating in the posterior hypothalamus is mediated by pathways other than the noradrenergic and serotonergic projections to motoneurons.
Collapse
Affiliation(s)
- Victor B Fenik
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6046, USA.
| | | | | |
Collapse
|
30
|
Lu JW, Kubin L. Electromyographic activity at the base and tip of the tongue across sleep-wake states in rats. Respir Physiol Neurobiol 2009; 167:307-15. [PMID: 19539786 DOI: 10.1016/j.resp.2009.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/19/2009] [Accepted: 06/09/2009] [Indexed: 11/19/2022]
Abstract
Obstructive sleep apnea (OSA) patients have elevated tonic and phasic inspiratory activity in the genioglossus and other upper airway muscles during wakefulness; this protects their upper airway from collapse. In this group, sleep-related decrements of upper airway motor tone result in sleep-related upper airway obstructions. We previously reported that in the rat, a species widely used to study the neural mechanisms of both sleep and breathing, lingual electromyographic activity (EMG) is minimal or absent during slow-wave sleep (SWS) and then gradually increases after the onset of rapid eye movement sleep (REMS) due to the appearance of large phasic bursts. Here, we investigated whether sleep-wake patterns and respiratory modulation of lingual EMG depend on the site of EMG recording within the tongue. In nine chronically instrumented rats, we recorded from 17 sites within the tongue and from the diaphragm across sleep-wake states. We quantified lingual EMG in successive 10s intervals of continuous 2h recordings (1-3 p.m.). We found that sleep-wake patterns of lingual EMG did not differ between the base and tip of the tongue, and that respiratory modulation was extremely rare regardless of the recording site. We also determined that the often rhythmic lingual bursts during REMS do not occur with respiratory rhythmicity. This pattern differs from that in OSA subjects who, unlike rats, have collapsible upper airway, exhibit prominent respiratory modulation of upper airway motor tone during quiet wakefulness, retain considerable tonic and inspiratory phasic activity during SWS, and show nadirs of activity during REMS.
Collapse
Affiliation(s)
- Jackie W Lu
- Department of Animal Biology 209E/VET, School of Veterinary Medicine and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6046, USA
| | | |
Collapse
|