1
|
Li M, Mainquist-Whigham C, Karriker LA, Wulf LW, Zeng D, Gehring R, Riviere JE, Coetzee JF, Lin Z. An integrated experimental and physiologically based pharmacokinetic modeling study of penicillin G in heavy sows. J Vet Pharmacol Ther 2019; 42:461-475. [PMID: 31012501 DOI: 10.1111/jvp.12766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/12/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023]
Abstract
Penicillin G is widely used in food-producing animals at extralabel doses and is one of the most frequently identified violative drug residues in animal-derived food products. In this study, the plasma pharmacokinetics and tissue residue depletion of penicillin G in heavy sows after repeated intramuscular administrations at label (6.5 mg/kg) and 5 × label (32.5 mg/kg) doses were determined. Plasma, urine, and environmental samples were tested as potential antemortem markers for penicillin G residues. The collected new data and other available data from the literature were used to develop a population physiologically based pharmacokinetic (PBPK) model for penicillin G in heavy sows. The results showed that antemortem testing of urine provided potential correlation with tissue residue levels. Based on the United States Department of Agriculture Food Safety and Inspection Service action limit of 25 ng/g, the model estimated a withdrawal interval of 38 days for penicillin G in heavy sows after 3 repeated intramuscular injections at 5 × label dose. This study improves our understanding of penicillin G pharmacokinetics and tissue residue depletion in heavy sows and provides a tool to predict proper withdrawal intervals after extralabel use of penicillin G in heavy sows, thereby helping safety assessment of sow-derived meat products.
Collapse
Affiliation(s)
- Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Christine Mainquist-Whigham
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Locke A Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.,Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Larry W Wulf
- Pharmacology Analytical Support Team (PhAST), Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Dongping Zeng
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ronette Gehring
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Johann F Coetzee
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.,Pharmacology Analytical Support Team (PhAST), Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
2
|
Li M, Gehring R, Riviere JE, Lin Z. Development and application of a population physiologically based pharmacokinetic model for penicillin G in swine and cattle for food safety assessment. Food Chem Toxicol 2017. [DOI: 10.1016/j.fct.2017.06.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Milanova A, Lashev L. Pharmacokinetics of oleandomycin in dogs after intravenous or oral administration alone and after pretreatment with metamizole or dexamethasone. Vet Res Commun 2002; 26:61-71. [PMID: 11860088 DOI: 10.1023/a:1013309922721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The pharmacokinetics of oleandomycin (OLD) after intravenous and oral administration, both alone and after intramuscular pretreatment with metamizole or dexamethasone, were studied in healthy dogs. After intravenous injection of OLD alone (10 mg/kg as bolus), the elimination half-life (t 1/2 beta, volume of distribution (Vd,area), body clearance (ClB) and area under the concentration time curve (AUC) were 1.60 h, 1.11 L/kg. 7.36 (ml/kg)/min and 21.66 microg h/ml, respectively. There were no statistically significant differences following pretreatment with metamizole or dexamethasone. After oral administration of OLD alone, the t 1/2 beta, maximum plasma concentrations (Cmax), time of Cmax (tmax), mean absorption time (MAT) and absolute bioavailability (Fabs) were 1.6 h, 5.34 microg/ml, 1.5 h, 1.34 h and 84.29%, respectively. Pretreatment with metamizole caused a significantly decreased value for Cmax (2.93 microg/ml) but the MAT value (2.23 h) was significantly increased. Statistically significant changes in the pharmacokinetic parameters of OLD following oral administration were also observed as a result of pretreatment with dexamethasone. The Cmax was increased (8.24 microg/ml) and the tmax (0.5 h) and MAT (0.45 h) were lower.
Collapse
Affiliation(s)
- A Milanova
- Department of Pharmacology, Toxicology and Therapeutics, Faculty of Veterinary Medicine, Thracia University, Star Zagora, Bulgaria
| | | |
Collapse
|