1
|
Virkel G, Maté L, Ichinose P, Lanusse C, Lifschitz A. Further insights into the hepatic metabolism of benzimidazole anthelmintics in sheep: Impact of dexamethasone-mediated induction of the cytochrome P450 3A pathway. Res Vet Sci 2025; 187:105589. [PMID: 40014966 DOI: 10.1016/j.rvsc.2025.105589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
The anthelmintics albendazole (ABZ) and fenbendazole (FBZ) undergo enantiospecific hepatic S‑oxygenation into sulfoxide metabolites, albendazole sulfoxide (ABZSO) and oxfendazole (OFZ), respectively. Flavin-monooxygenases (FMO) and cytochromes P450 (CYP) are involved in this process. While most is known on the FMO-dependent S‑oxygenation of both anthelmintics, the participation of different CYPs remains to be elucidated. This research investigated the role of the CYP3A pathway in the S‑oxygenation of ABZ and FBZ in sheep liver, particularly following induction with the glucocorticoid dexamethasone (DEX). Liver microsomes from DEX-treated (3 mg/kg/day for seven days) and untreated (control) sheep were prepared to determine monooxygenase activities and the involvement of the FMO and CYP pathways in the enantiospecific production of (+) and (-) sulfoxide enantiomers. DEX treatment significantly induced CYP3A marker catalytic activities, triacetyl-oleandomycin (TAO) and erythromycin (ERTM) N-demethylations [3.5-fold (p = 0.01) and 4.8-fold (p = 0.02), respectively]. Additionally, the FMO-dependent methimazole (MTZ) S‑oxygenase activity decreased by 28 % (p = 0.02) in DEX-treated sheep. A significant reduction in FMO-dependent production rates of (+) ABZSO (61 %, p < 0.05) and (+) OFZ (71 %, p < 0.05) was observed in DEX-treated sheep compared to controls. No changes in the FMO-mediated production of (-) enantiomers were observed between both experimental groups. DEX treatment induced the CYP-specific production of (-) ABZSO (2.5-fold, p = 0.03) and both (+) OFZ (1.8-fold, p = 0.04) and (-) OFZ (3-fold, p = 0.04). This work shows some distinctive enantiospecific metabolic differences between the two anthelmintic drugs and further contributes to understanding the pathways involved in their hepatic metabolism.
Collapse
Affiliation(s)
- Guillermo Virkel
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET; Tandil, Buenos Aires, Argentina.
| | - Laura Maté
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET; Tandil, Buenos Aires, Argentina
| | - Paula Ichinose
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET; Tandil, Buenos Aires, Argentina
| | - Carlos Lanusse
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET; Tandil, Buenos Aires, Argentina
| | - Adrián Lifschitz
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET; Tandil, Buenos Aires, Argentina
| |
Collapse
|
2
|
Montanucci L, Iori S, Lahtela-Kakkonen M, Pauletto M, Giantin M, Dacasto M. Impact of Missense Mutations on AFB1 Metabolism in Bovine Cytochrome P4503A Isoforms: A Computational Mutagenesis and Molecular Docking Analysis. Int J Mol Sci 2024; 25:12529. [PMID: 39684241 DOI: 10.3390/ijms252312529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Cytochrome P450 3A (CYP3A) enzymes catalyze the metabolism of a wide range of endogenous and exogenous compounds. Genetic variations in the 3 CYP3A isoforms (CYP3A28, CYP3A74, and CYP3A76) may influence their expression and activity, leading to inter-individual differences in xenobiotic metabolism. In domestic cattle, understanding how genetic variations modulate CYP3A activity is crucial for both its therapeutic implications (clinical efficacy and adverse drug effects) and food safety (residues in foodstuff). Here, we updated the variant calling of CYP3As in 300 previously sequenced Piedmontese beef cattle, using the most recent reference genome, which contains an updated, longer sequence for CYP3A28. All but one previously identified missense variants were confirmed and a new variant, R105W in CYP3A28, was discovered. Through computational mutagenesis and molecular docking, we computationally predicted the impact of all identified CYP3A variant enzymes on protein stability and their affinity for aflatoxin B1 (AFB1), a potent carcinogen and food contaminant. For CYP3A28, we also computationally predicted its affinity for the probe substrate nifedipine (NIF). We found that CYP3A28 with R105W variant cannot accommodate NIF nor AFB1 in the binding pocket, thus affecting their metabolism. Our work provides computational foundation and prioritized ranking of CYP3A variants for future experimental validations.
Collapse
Affiliation(s)
- Ludovica Montanucci
- Department of Neurology, McGovern Medical School, UTHealth-University of Texas Health Science Centre at Houston, Houston, TX 77030, USA
| | - Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| | | | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Padua, Italy
| |
Collapse
|
3
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Montanucci L, Lopparelli RM, Bonsembiante F, Capolongo F, Pauletto M, Dacasto M, Giantin M. Generation and characterization of cytochrome P450 3A74 CRISPR/Cas9 knockout bovine foetal hepatocyte cell line (BFH12). Biochem Pharmacol 2024; 224:116231. [PMID: 38648904 DOI: 10.1016/j.bcp.2024.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
In human, the cytochrome P450 3A (CYP3A) subfamily of drug-metabolizing enzymes (DMEs) is responsible for a significant number of phase I reactions, with the CYP3A4 isoform superintending the hepatic and intestinal metabolism of diverse endobiotic and xenobiotic compounds. The CYP3A4-dependent bioactivation of chemicals may result in hepatotoxicity and trigger carcinogenesis. In cattle, four CYP3A genes (CYP3A74, CYP3A76, CYP3A28 and CYP3A24) have been identified. Despite cattle being daily exposed to xenobiotics (e.g., mycotoxins, food additives, drugs and pesticides), the existing knowledge about the contribution of CYP3A in bovine hepatic metabolism is still incomplete. Nowadays, CRISPR/Cas9 mediated knockout (KO) is a valuable method to generate in vivo and in vitro models for studying the metabolism of xenobiotics. In the present study, we successfully performed CRISPR/Cas9-mediated KO of bovine CYP3A74, human CYP3A4-like, in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP3A74 ablation was confirmed at the DNA, mRNA, and protein level. The subsequent characterization of the CYP3A74 KO clone highlighted significant transcriptomic changes (RNA-sequencing) associated with the regulation of cell cycle and proliferation, immune and inflammatory response, as well as metabolic processes. Overall, this study successfully developed a new CYP3A74 KO in vitro model by using CRISPR/Cas9 technology, which represents a novel resource for xenobiotic metabolism studies in cattle. Furthermore, the transcriptomic analysis suggests a key role of CYP3A74 in bovine hepatocyte cell cycle regulation and metabolic homeostasis.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211 Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Ludovica Montanucci
- Department of Neurology, University of Texas Health Science Center, 6431 Fannin Street, Houston, TX, OH 44106, USA
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Federico Bonsembiante
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, 35020 Padua, Italy.
| |
Collapse
|
4
|
Iori S, D'Onofrio C, Laham-Karam N, Mushimiyimana I, Lucatello L, Lopparelli RM, Gelain ME, Capolongo F, Pauletto M, Dacasto M, Giantin M. Establishment and characterization of cytochrome P450 1A1 CRISPR/Cas9 Knockout Bovine Foetal Hepatocyte Cell Line (BFH12). Cell Biol Toxicol 2024; 40:18. [PMID: 38528259 PMCID: PMC10963470 DOI: 10.1007/s10565-024-09856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
The cytochrome P450 1A (CYP1A) subfamily of xenobiotic metabolizing enzymes (XMEs) consists of two different isoforms, namely CYP1A1 and CYP1A2, which are highly conserved among species. These two isoenzymes are involved in the biotransformation of many endogenous compounds as well as in the bioactivation of several xenobiotics into carcinogenic derivatives, thereby increasing the risk of tumour development. Cattle (Bos taurus) are one of the most important food-producing animal species, being a significant source of nutrition worldwide. Despite daily exposure to xenobiotics, data on the contribution of CYP1A to bovine hepatic metabolism are still scarce. The CRISPR/Cas9-mediated knockout (KO) is a useful method for generating in vivo and in vitro models for studying xenobiotic biotransformations. In this study, we applied the ribonucleoprotein (RNP)-complex approach to successfully obtain the KO of CYP1A1 in a bovine foetal hepatocyte cell line (BFH12). After clonal expansion and selection, CYP1A1 excision was confirmed at the DNA, mRNA and protein level. Therefore, RNA-seq analysis revealed significant transcriptomic changes associated with cell cycle regulation, proliferation, and detoxification processes as well as on iron, lipid and mitochondrial homeostasis. Altogether, this study successfully generates a new bovine CYP1A1 KO in vitro model, representing a valuable resource for xenobiotic metabolism studies in this important farm animal species.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Caterina D'Onofrio
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Nihay Laham-Karam
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Isidore Mushimiyimana
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Neulaniementie 2, 70211, Kuopio, Finland
| | - Lorena Lucatello
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Rosa Maria Lopparelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Dell'Università 16, Legnaro, 35020, Padua, Italy.
| |
Collapse
|
5
|
Pietropoli E, Pauletto M, Tolosi R, Iori S, Lopparelli RM, Montanucci L, Giantin M, Dacasto M, De Liguoro M. An In Vivo Whole-Transcriptomic Approach to Assess Developmental and Reproductive Impairments Caused by Flumequine in Daphnia magna. Int J Mol Sci 2023; 24:9396. [PMID: 37298348 PMCID: PMC10253896 DOI: 10.3390/ijms24119396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Among veterinary antibiotics, flumequine (FLU) is still widely used in aquaculture due to its efficacy and cost-effectiveness. Although it was synthesized more than 50 years ago, a complete toxicological framework of possible side effects on non-target species is still far from being achieved. The aim of this research was to investigate the FLU molecular mechanisms in Daphnia magna, a planktonic crustacean recognized as a model species for ecotoxicological studies. Two different FLU concentrations (2.0 mg L-1 and 0.2 mg L-1) were assayed in general accordance with OECD Guideline 211, with some proper adaptations. Exposure to FLU (2.0 mg L-1) caused alteration of phenotypic traits, with a significant reduction in survival rate, body growth, and reproduction. The lower concentration (0.2 mg L-1) did not affect phenotypic traits but modulated gene expression, an effect which was even more evident under the higher exposure level. Indeed, in daphnids exposed to 2.0 mg L-1 FLU, several genes related with growth, development, structural components, and antioxidant response were significantly modulated. To the best of our knowledge, this is the first work showing the impact of FLU on the transcriptome of D. magna.
Collapse
Affiliation(s)
- Edoardo Pietropoli
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Marianna Pauletto
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Roberta Tolosi
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Silvia Iori
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Rosa Maria Lopparelli
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Ludovica Montanucci
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Mery Giantin
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Mauro Dacasto
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Marco De Liguoro
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| |
Collapse
|
6
|
Induction by Phenobarbital of Phase I and II Xenobiotic-Metabolizing Enzymes in Bovine Liver: An Overall Catalytic and Immunochemical Characterization. Int J Mol Sci 2022; 23:ijms23073564. [PMID: 35408925 PMCID: PMC8998613 DOI: 10.3390/ijms23073564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
In cattle, phenobarbital (PB) upregulates target drug-metabolizing enzyme (DME) mRNA levels. However, few data about PB's post-transcriptional effects are actually available. This work provides the first, and an almost complete, characterization of PB-dependent changes in DME catalytic activities in bovine liver using common probe substrates and confirmatory immunoblotting investigations. As expected, PB increased the total cytochrome P450 (CYP) content and the extent of metyrapone binding; moreover, an augmentation of protein amounts and related enzyme activities was observed for known PB targets such as CYP2B, 2C, and 3A, but also CYP2E1. However, contradictory results were obtained for CYP1A, while a decreased catalytic activity was observed for flavin-containing monooxygenases 1 and 3. The barbiturate had no effect on the chosen hydrolytic and conjugative DMEs. For the first time, we also measured the 26S proteasome activity, and the increase observed in PB-treated cattle would suggest this post-translational event might contribute to cattle DME regulation. Overall, this study increased the knowledge of cattle hepatic drug metabolism, and further confirmed the presence of species differences in DME expression and activity between cattle, humans, and rodents. This reinforced the need for an extensive characterization and understanding of comparative molecular mechanisms involved in expression, regulation, and function of DMEs.
Collapse
|
7
|
Nassi A, Quintieri L, Merlanti R, Pezzato F, Capolongo F, Pauletto M, Dacasto M, Giantin M. Midazolam oxidation in cattle liver microsomes: The role of cytochrome P450 3A. J Vet Pharmacol Ther 2020; 43:608-613. [PMID: 32893906 DOI: 10.1111/jvp.12906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/24/2020] [Accepted: 08/13/2020] [Indexed: 11/30/2022]
Abstract
In humans, the cytochrome P450 3A (CYP3A) subfamily is involved in midazolam (MDZ) biotransformation into 1'- and 4-hydroxy metabolites, and the former serves as a probe for CYP3A catalytic activity. In veterinary species is still crucial to identify enzyme- and species-specific CYP substrates; thus, the aim of this study was to characterize MDZ oxidation in cattle liver. A HPLC-UV method was used to measure 1'- and 4-hydroxy MDZ (1'- and 4-OHMDZ, respectively) formation in cattle liver microsomes and assess the role of CYP3A by an immunoinhibition study. Moreover, MDZ hydroxylation was evaluated in 300 cattle liver samples and results were correlated with testosterone hydroxylation. Formation of both metabolites conformed to a single-enzyme Michaelis-Menten kinetics. Values of Vmax and Km were 0.67 nmol/min/mg protein and 6.16 μM for 4-OHMDZ, and 0.06 nmol/min/mg protein and 10.08 μM for 1'-OHMDZ. An anti-rat CYP3A1 polyclonal antibody inhibited up to 50% and 94% 1'- and 4-OHMDZ formation, respectively. MDZ oxidation in liver microsomes was poorly correlated with testosterone hydroxylation. In conclusion, cattle metabolized MDZ to 1'-OHMDZ and 4-OHMDZ. The immunoinhibition results indicated a major contribution of CYP3As to 4-OHMDZ formation and the involvement of other CYPs in 1'-OHMDZ production, paving the way for further investigations.
Collapse
Affiliation(s)
- Alberto Nassi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Luigi Quintieri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Roberta Merlanti
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Francesca Pezzato
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Francesca Capolongo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
8
|
Pauletto M, Tolosi R, Dacasto M, Giantin M. Missense single nucleotide variants affecting CYP3A catalytic activity are present in Limousine cattle. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1808100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Marianna Pauletto
- Dipartimento di Biomedicina Comparata e Alimentazione, Area di Farmacologia e Tossicologia Veterinaria, Università di Padova, Padova, Italy
| | - Roberta Tolosi
- Dipartimento di Biomedicina Comparata e Alimentazione, Area di Farmacologia e Tossicologia Veterinaria, Università di Padova, Padova, Italy
| | - Mauro Dacasto
- Dipartimento di Biomedicina Comparata e Alimentazione, Area di Farmacologia e Tossicologia Veterinaria, Università di Padova, Padova, Italy
| | - Mery Giantin
- Dipartimento di Biomedicina Comparata e Alimentazione, Area di Farmacologia e Tossicologia Veterinaria, Università di Padova, Padova, Italy
| |
Collapse
|
9
|
Hu SX, Mazur CA, Feenstra KL. Assessment of Inhibition of Bovine Hepatic Cytochrome P450 by 43 Commercial Bovine Medicines Using a Combination of In Vitro Assays and Pharmacokinetic Data from the Literature. Drug Metab Lett 2020; 13:123-131. [PMID: 31750810 DOI: 10.2174/1872312813666191120094649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND There has been a lack of information about the inhibition of bovine medicines on bovine hepatic CYP450 at their commercial doses and dosing routes. OBJECTIVE The aim of this work was to assess the inhibition of 43 bovine medicines on bovine hepatic CYP450 using a combination of in vitro assay and Cmax values from pharmacokinetic studies with their commercial doses and dosing routes in the literature. METHODS Those drugs were first evaluated through a single point inhibitory assay at 3 μM in bovine liver microsomes for six specific CYP450 metabolisms, phenacetin o-deethylation, coumarin 7- hydroxylation, tolbutamide 4-hydroxylation, bufuralol 1-hydroxylation, chlorzoxazone 6-hydroxylation and midazolam 1'-hydroxylation. When the inhibition was greater than 20% in the assay, IC50 values were then determined. The potential in vivo bovine hepatic CYP450 inhibition by those drugs was assessed using a combination of the IC50 values and in vivo Cmax values from pharmacokinetic studies at their commercial doses and administration routes in the literature. RESULTS Fifteen bovine medicines or metabolites showed in vitro inhibition on one or more bovine hepatic CYP450 metabolisms with different IC50 values. Desfuroylceftiour (active metabolite of ceftiofur), nitroxinil and flunixin have the potential to inhibit one of the bovine hepatic CYP450 isoforms in vivo at their commercial doses and administration routes. The rest of the bovine medicines had low risks of in vivo bovine hepatic CYP450 inhibition. CONCLUSION This combination of in vitro assay and in vivo Cmax data provides a good approach to assess the inhibition of bovine medicines on bovine hepatic CYP450.
Collapse
Affiliation(s)
- Steven X Hu
- Veterinary Medicine Research and Development, Zoetis, Inc, 333 Portage Street, Kalamazoo, MI-49007, United States
| | - Chase A Mazur
- Veterinary Medicine Research and Development, Zoetis, Inc, 333 Portage Street, Kalamazoo, MI-49007, United States
| | - Kenneth L Feenstra
- Veterinary Medicine Research and Development, Zoetis, Inc, 333 Portage Street, Kalamazoo, MI-49007, United States
| |
Collapse
|
10
|
Functional impact of cytochrome P450 3A (CYP3A) missense variants in cattle. Sci Rep 2019; 9:19672. [PMID: 31873175 PMCID: PMC6927969 DOI: 10.1038/s41598-019-56271-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Cytochrome P450 3A is the most important CYP subfamily in humans, and CYP3A4/CYP3A5 genetic variants contribute to inter-individual variability in drug metabolism. However, no information is available for bovine CYP3A (bCYP3A). Here we described bCYP3A missense single nucleotide variants (SNVs) and evaluated their functional effects. CYP3A28, CYP3A38 and CYP3A48 missense SNVs were identified in 300 bulls of Piedmontese breed through targeted sequencing. Wild-type and mutant bCYP3A cDNAs were cloned and expressed in V79 cells. CYP3A-dependent oxidative metabolism of testosterone (TST) and nifedipine (NIF) was assessed by LC-MS/MS. Finally, SNVs functional impact on TST hydroxylation was measured ex vivo in liver microsomes from individually genotyped animals. Thirteen missense SNVs were identified and validated. Five variants showed differences in CYP3A catalytic activity: three CYP3A28 SNVs reduced TST 6β-hydroxylation; one CYP3A38 variant increased TST 16β-hydroxylation, while a CYP3A48 SNV showed enhanced NIF oxidation. Individuals homozygous for rs384467435 SNV showed a reduced TST 6β-hydroxylation. Molecular modelling showed that most of SNVs were distal to CYP3A active site, suggesting indirect effects on the catalytic activity. Collectively, these findings demonstrate the importance of pharmacogenetics studies in veterinary species and suggest bCYP3A genotype variation might affect the fate of xenobiotics in food-producing species such as cattle.
Collapse
|
11
|
Giantin M, Küblbeck J, Zancanella V, Prantner V, Sansonetti F, Schoeniger A, Tolosi R, Guerra G, Da Ros S, Dacasto M, Honkakoski P. DNA elements for constitutive androstane receptor- and pregnane X receptor-mediated regulation of bovine CYP3A28 gene. PLoS One 2019; 14:e0214338. [PMID: 30908543 PMCID: PMC6433341 DOI: 10.1371/journal.pone.0214338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
The regulation of cytochrome P450 3A (CYP3A) enzymes is established in humans, but molecular mechanisms of its basal and xenobiotic-mediated regulation in cattle are still unknown. Here, ~10 kbp of the bovine CYP3A28 gene promoter were cloned and sequenced, and putative transcription factor binding sites were predicted. The CYP3A28 proximal promoter (PP; -284/+71 bp) contained DNA elements conserved among species. Co-transfection of bovine nuclear receptors (NRs) pregnane X and constitutive androstane receptor (bPXR and bCAR) with various CYP3A28 promoter constructs into hepatoma cell lines identified two main regions, the PP and the distal fragment F3 (-6899/-4937 bp), that were responsive to bPXR (both) and bCAR (F3 fragment only). Site-directed mutagenesis and deletion of NR motif ER6, hepatocyte nuclear factor 1 (HNF-1) and HNF-4 binding sites in the PP suggested either the involvement of ER6 element in bPXR-mediated activation or the cooperation between bPXR and liver-enriched transcription factors (LETFs) in PP transactivation. A putative DR5 element within the F3 fragment was involved in bCAR-mediated PP+F3 transactivation. Although DNA enrichment by anti-human NR antibodies was quite low, ChIP investigations in control and RU486-treated BFH12 cells, suggested that retinoid X receptor α (RXRα) bound to ER6 and DR5 motifs and its recruitment was enhanced by RU486 treatment. The DR5 element seemed to be recognized mainly by bCAR, while no clear-cut results were obtained for bPXR. Present results point to species-differences in CYP3A regulation and the complexity of bovine CYP3A28 regulatory elements, but further confirmatory studies are needed.
Collapse
Affiliation(s)
- Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
- * E-mail:
| | - Jenni Küblbeck
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Vanessa Zancanella
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Viktoria Prantner
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Fabiana Sansonetti
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Axel Schoeniger
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Giorgia Guerra
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Silvia Da Ros
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Paavo Honkakoski
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Gleich A, Kaiser B, Honscha W, Fuhrmann H, Schoeniger A. Evaluation of the hepatocyte-derived cell line BFH12 as an in vitro model for bovine biotransformation. Cytotechnology 2019; 71:231-244. [PMID: 30617848 DOI: 10.1007/s10616-018-0279-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
The knowledge of drug metabolising enzymes (DMEs) in cattle is rather limited. The capability of the bovine foetal hepatocyte-derived cell line BFH12 to serve as model for biotransformation was evaluated. Gene expression analysis of DMEs was performed by reverse transcription PCR (RT-PCR). The presence of efflux transporters was visualised by immunocytochemistry, and functional induction of cytochrome P450 (CYP) 1A was assessed by the ethoxyresorufin-O-deethylase (EROD) assay. The production of bile acids was measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RT-PCR revealed the expression of cytochromes 1A1, 1A2, 3A4 and phase II enzymes UGT1A1, UGT1A6 and GSTM1. Immunofluorescence demonstrated efflux transporters ABCG2 and ABCC1. The EROD assay revealed a dose-dependent CYP1A induction after treatment with benzo[a]pyrene (BP). LC-MS/MS analysis of cell culture supernatants showed the production of bile acids including taurocholic acid, tauro-chenodeoxycholic acid, taurodeoxycholic acid and taurolithocholic acid. The results strongly suggest the applicability of the cell line BFH12 for subsequent experiments in the emerging field of bovine biotransformation.
Collapse
Affiliation(s)
- Alexander Gleich
- Institute of Biochemistry, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Bastian Kaiser
- Institute of Veterinary Physiology, University of Leipzig, An den Tierkliniken 7, 04103, Leipzig, Germany
| | - Walther Honscha
- Institute of Veterinary Pharmacology and Toxicology, University of Leipzig, An den Tierkliniken 15, 04103, Leipzig, Germany
| | - Herbert Fuhrmann
- Institute of Biochemistry, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany
| | - Axel Schoeniger
- Institute of Biochemistry, University of Leipzig, An den Tierkliniken 1, 04103, Leipzig, Germany.
| |
Collapse
|
13
|
Wilkens MR, Maté LM, Schnepel N, Klinger S, Muscher-Banse AS, Ballent M, Virkel G, Lifschitz AL. Influence of 25-hydroxyvitamin D 3 and 1,25-dihydroxyvitamin D 3 on expression of P-glycoprotein and cytochrome P450 3A in sheep. J Steroid Biochem Mol Biol 2016; 164:271-276. [PMID: 26319202 DOI: 10.1016/j.jsbmb.2015.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023]
Abstract
In order to improve calcium and phosphorus balance, beef cattle and dairy cows can be supplemented with vitamin D. However, different vitamin D metabolites have been shown to increase expression of P-glycoprotein (P-gp, MDR1, ABCB1) and cytochrome P450 3A (CYP3A) in rodents as well as in cell culture systems. As such interferences might have an impact on pharmacokinetics of some drugs widely-used in veterinary medicine, we investigated the expression of P-gp, CYP3A, vitamin D receptor (VDR), pregnane X receptor (PXR) and retinoid X receptor α (RXRα) in sheep either treated orally with 6μg/kg body weight (BW) 25-hydroxyvitamin D3 (OHD3) for ten days before sacrifice or 12h after intravenous injection of 0.5μg/kg BW 1,25-dihydroxyvitamin D3 (1,25- (OH)2D3). Down-regulation of ruminal, jejunal and hepatic, but not renal P-gp could be found with 25-OHD3 supplementation. Interestingly, this effect on P-gp was not observed in tissues from 1,25-(OH)2D3-treated sheep. In contrast, 1,25-(OH)2D3 induced a significant up-regulation of renal and jejunal CYP3A expression, while 25-OHD3 had no impact. Renal expression of VDR and PXR was also increased by treatment with 1,25-(OH)2D3, while jejunal PXR expression was only stimulated in sheep supplemented with 25-OHD3. Either treatments increased renal, but not ruminal, jejunal or hepatic expression of RXRα. These results demonstrate that the impact of large doses of vitamin D metabolites on different target organs and potential interactions with other medications should be further investigated in vitro and in vivo to understand the effects of vitamin D metabolites on metabolism and excretion pathways in livestock.
Collapse
Affiliation(s)
- M R Wilkens
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany.
| | - L M Maté
- Laboratory of Veterinary Pharmacology, Center of Veterinary Research (CIVETAN, CONICET) Faculty of Veterinary Sciences, UNCPBA, B7000 Tandil, Argentina
| | - N Schnepel
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - S Klinger
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - A S Muscher-Banse
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - M Ballent
- Laboratory of Veterinary Pharmacology, Center of Veterinary Research (CIVETAN, CONICET) Faculty of Veterinary Sciences, UNCPBA, B7000 Tandil, Argentina
| | - G Virkel
- Laboratory of Veterinary Pharmacology, Center of Veterinary Research (CIVETAN, CONICET) Faculty of Veterinary Sciences, UNCPBA, B7000 Tandil, Argentina
| | - A L Lifschitz
- Laboratory of Veterinary Pharmacology, Center of Veterinary Research (CIVETAN, CONICET) Faculty of Veterinary Sciences, UNCPBA, B7000 Tandil, Argentina
| |
Collapse
|
14
|
Dhamankar V, Assem M, Donovan MD. Gene expression and immunochemical localization of major cytochrome P450 drug-metabolizing enzymes in bovine nasal olfactory and respiratory mucosa. Inhal Toxicol 2015; 27:767-77. [PMID: 26572092 DOI: 10.3109/08958378.2015.1066903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite tremendous advancement in the characterization of nasal enzyme expression, knowledge of the role of the nasal mucosa in the metabolism of xenobiotics is still inadequate, primarily due to the limited availability of in vitro models for nasal metabolism screening studies. An extensive knowledge of the oxidative and conjugative metabolizing capacity of the cattle (Bos taurus) olfactory and respiratory mucosa can aid in efficient use of these tissues for pre-clinical investigations of the biotransformation and toxicity of therapeutic agents following nasal administration or inhalation. Cows are also exposed to a variety of airborne pollutants and pesticides during their lifetime, the metabolism of which can have profound toxicological and ecological consequences. The aim of the present study was to characterize cytochrome P450 (CYP) enzyme expression in the bovine nasal mucosa. Amplification of the specific genes through RT-PCR confirmed expression of several CYP enzymes in bovine hepatic and nasal tissues. The results demonstrate that bovine nasal olfactory and respiratory mucosal and liver tissues express similar populations, families, and distributions of CYP enzymes, as has been previously reported with other species, including humans. Bovine ex vivo tissues can serve as a readily available reference tissue to elucidate preclinical toxico-kinetic effects resulting from exposure to substances in the environment or following drug administration.
Collapse
Affiliation(s)
- Varsha Dhamankar
- a Division of Pharmaceutics and Translational Therapeutics , College of Pharmacy, University of Iowa , Iowa City , IA , USA
| | - Mahfoud Assem
- a Division of Pharmaceutics and Translational Therapeutics , College of Pharmacy, University of Iowa , Iowa City , IA , USA
| | - Maureen D Donovan
- a Division of Pharmaceutics and Translational Therapeutics , College of Pharmacy, University of Iowa , Iowa City , IA , USA
| |
Collapse
|
15
|
Maté ML, Ballent M, Larsen K, Lifschitz A, Lanusse C, Virkel G. Gene expression and enzyme function of two cytochrome P450 3A isoenzymes in rat and cattle precision cut liver slices. Xenobiotica 2015; 45:563-70. [DOI: 10.3109/00498254.2014.1002122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Zancanella V, Giantin M, Dacasto M. Absolute quantification and modulation of cytochrome P450 3A isoforms in cattle liver. Vet J 2014; 202:106-11. [DOI: 10.1016/j.tvjl.2014.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/17/2022]
|
17
|
Zancanella V, Giantin M, Lopparelli RM, Nebbia C, Dacasto M. Constitutive expression and phenobarbital modulation of drug metabolizing enzymes and related nuclear receptors in cattle liver and extra-hepatic tissues. Xenobiotica 2012; 42:1096-109. [PMID: 22694178 DOI: 10.3109/00498254.2012.694493] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In humans and rodents, phenobarbital (PB) induces hepatic and extra-hepatic drug metabolizing enzymes (DMEs) through the activation of specific nuclear receptors (NRs). In contrast, few data about PB transcriptional effects in veterinary species are available. The constitutive expression and modulation of PB-responsive NR and DME genes, following an oral PB challenge, were investigated in cattle liver and extra-hepatic tissues (duodenum, kidney, lung, testis, adrenal and muscle). Likewise to humans and rodents, target genes were expressed to a lower extent compared to the liver with few exceptions. Phenobarbital significantly affected hepatic CYP2B22, 2C31, 2C87, 3A and UDP-glucuronosyltransferase 1A1-like, glutathione S-transferase A1-like and sulfotransferase 1A1-like (SULT1A1-like) mRNAs and apoprotein amounts; in extra-hepatic tissues, only duodenum showed a significant down-regulation of SULT1A1-like gene and apoprotein. Nuclear receptor mRNAs were never affected by PB. Presented data are the first evidence about the constitutive expression of foremost DME and NR genes in cattle extra-hepatic tissues, and the data obtained following a PB challenge are suggestive of species-differences in drug metabolism; altogether, these information are of value for the extrapolation of pharmacotoxicological data among species, the characterization of drug-drug interactions as well as the animal and consumer's risk caused by harmful residues formation.
Collapse
Affiliation(s)
- Vanessa Zancanella
- Dipartimento di Biomedicina Comparata e Alimentazione, Agripolis Legnaro, Padova, Italy
| | | | | | | | | |
Collapse
|
18
|
Maté ML, Lifschitz A, Sallovitz J, Ballent M, Muscher AS, Wilkens MR, Schröder B, Lanusse C, Virkel G. Cytochrome P450 3A expression and function in liver and intestinal mucosa from dexamethasone-treated sheep. J Vet Pharmacol Ther 2011; 35:319-28. [PMID: 21906085 DOI: 10.1111/j.1365-2885.2011.01334.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effects of repeated administrations of dexamethasone (DEX) (3 mg/kg/day by i.m. route for 7 days) on the gene expression profile of a cytochrome P450 (CYP) 3A28-like isoenzyme, on the expression of a CYP3A-immunoreactive protein and on CYP3A-dependent metabolic activities in sheep liver and small intestinal mucosa were evaluated in the current work. CYP 3A-dependent metabolic activities (erythromycin and triacetyl-oleandomycin N-demethylations) were assessed in microsomal fractions. The mRNA expression of CYP3A28-like, glucocorticoid receptor, constitutive androstane receptor, pregnane X receptor and retinoic X receptor alpha (RXRα) was determined by quantitative real-time PCR. The expression of a CYP3A-immunoreactive protein was measured by Western blot analyses. In the liver, DEX treatment increased CYP3A28-like mRNA levels (2.67-fold, P<0.01) and CYP3A apoprotein expression (1.34-fold, P<0.05) and stimulated CYP3A-dependent metabolism. High and significant correlation coefficients between CYP3A-dependent activities and CYP3A28-like gene (r=0.835-0.856, P<0.01) or protein (r=0.728-0.855, P<0.05) expression profiles were observed. Among the transcriptional factors, DEX only stimulated (2.1-fold, P<0.01) the mRNA expression of RXRα. In sheep small intestine, DEX caused a slight increment (34.6%, P<0.05) in erythromycin N-demethylase activity in the jejunal mucosa and a significant enhancement (P<0.05) of CYP3A apoprotein level in the duodenal mucosa.
Collapse
Affiliation(s)
- M L Maté
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary Sciences, UNCPBA, Tandil, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|