1
|
Hargrove JS, Delomas TA, Powell JH, Hess JE, Narum SR, Campbell MR. Efficient population representation with more genetic markers increases performance of a steelhead (Oncorhynchus mykiss) genetic stock identification baseline. Evol Appl 2024; 17:e13610. [PMID: 38343774 PMCID: PMC10853585 DOI: 10.1111/eva.13610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2024] Open
Abstract
Genetic stock identification (GSI) is an important fisheries management tool to identify the origin of fish harvested in mixed stock fisheries. Periodic updates of genetic baselines can improve performance via the addition of unsampled or under-sampled populations and the inclusion of more informative markers. We used a combination of baselines to evaluate how population representation, marker number, and marker type affected the performance and accuracy of genetic stock assignments (self-assignment, bias, and holdout group tests) for steelhead (Oncorhynchus mykiss) in the Snake River basin. First, we compared the performance of an existing genetic baseline with a newly developed one which had a reduced number of individuals from more populations using the same set of markers. Self-assignment rates were significantly higher (p < 0.001; +5.4%) for the older, larger baseline, bias did not differ significantly between the two, but there was a significant improvement in performance for the new baseline in holdout results (p < 0.001; mean increase of 25.0%). Second, we compared the performance of the new baseline with increased numbers of genetic markers (~2x increase of single-nucleotide polymorphisms; SNPs) for the same set of baseline individuals. In this comparison, results produced significantly higher rates of self-assignment (p < 0.001; +9.7%) but neither bias nor leave-one-out were significantly affected. Third, we compared 334 SNPs versus opportunistically discovered microhaplotypes from the same amplicons for the new baseline, and showed the latter produced significantly higher rates of self-assignment (p < 0.01; +2.6%), similar bias, but slightly lower holdout performance (-0.1%). Combined, we show the performance of genetic baselines can be improved via representative and efficient sampling, that increased marker number consistently improved performance over the original baseline, and that opportunistic discovery of microhaplotypes can lead to small improvements in GSI performance.
Collapse
Affiliation(s)
| | - Thomas A. Delomas
- U.S. Department of AgricultureAgricultural Research Service National Cold Water Marine Aquaculture CenterKingstonRhode IslandUSA
| | | | - Jon E. Hess
- Columbia River Inter‐Tribal Fish CommissionPortlandOregonUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| | | |
Collapse
|
2
|
Rondeau EB, Christensen KA, Johnson HA, Sakhrani D, Biagi CA, Wetklo M, Despins CA, Leggatt RA, Minkley DR, Withler RE, Beacham TD, Koop BF, Devlin RH. Insights from a chum salmon (Oncorhynchus keta) genome assembly regarding whole-genome duplication and nucleotide variation influencing gene function. G3 (BETHESDA, MD.) 2023; 13:jkad127. [PMID: 37293843 PMCID: PMC10411575 DOI: 10.1093/g3journal/jkad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Chum salmon are ecologically important to Pacific Ocean ecosystems and commercially important to fisheries. To improve the genetic resources available for this species, we sequenced and assembled the genome of a male chum salmon using Oxford Nanopore read technology and the Flye genome assembly software (contig N50: ∼2 Mbp, complete BUSCOs: ∼98.1%). We also resequenced the genomes of 59 chum salmon from hatchery sources to better characterize the genome assembly and the diversity of nucleotide variants impacting phenotype variation. With genomic sequences from a doubled haploid individual, we were able to identify regions of the genome assembly that have been collapsed due to high sequence similarity between homeologous (duplicated) chromosomes. The homeologous chromosomes are relics of an ancient salmonid-specific genome duplication. These regions were enriched with genes whose functions are related to the immune system and responses to toxins. From analyzing nucleotide variant annotations of the resequenced genomes, we were also able to identify genes that have increased levels of variants thought to moderately impact gene function. Genes related to the immune system and the detection of chemical stimuli (olfaction) had increased levels of these variants based on a gene ontology enrichment analysis. The tandem organization of many of the enriched genes raises the question of why they have this organization.
Collapse
Affiliation(s)
- Eric B Rondeau
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Kris A Christensen
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Hollie A Johnson
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Carlo A Biagi
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Mike Wetklo
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Cody A Despins
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Rosalind A Leggatt
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - David R Minkley
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Ruth E Withler
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Terry D Beacham
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| |
Collapse
|
3
|
Weiner L, Brissette JL. Finding meaning in chaos: a selection signature for functional interactions and its use in molecular biology. FEBS J 2023; 290:3914-3927. [PMID: 35653424 DOI: 10.1111/febs.16542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/18/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
A primary goal of biomedical research is to elucidate molecular mechanisms, particularly those responsible for human traits, either normal or pathological. Yet achieving this goal is difficult if not impossible when the traits of interest lack tractable models and so cannot be dissected through time-honoured approaches like forward genetics or reconstitution. Arguably, no biological problem has hindered scientific progress more than this: the inability to dissect a trait's mechanism without a tractable likeness of the trait. At root, forward genetics and reconstitution are powerful approaches because they assay for specific molecular functions. Here, we discuss an alternative way to uncover important mechanistic interactions, namely, to assay for positive natural selection. If an interaction has been selected for, then it must perform an important function, a function that significantly promotes reproductive success. Accordingly, selection is a consequence and indicator of function, and uncovering multimolecular selection will reveal important functional interactions. We propose a selection signature for interactions and review recent selection-based approaches through which to dissect traits that are not inherently tractable. The review includes proof-of-principle studies in which important interactions were uncovered by screening for selection. In sum, screens for selection appear feasible when screens for specific functions are not. Selection screens thus constitute a novel tool through which to reveal the mechanisms that shape the fates of organisms.
Collapse
Affiliation(s)
- Lorin Weiner
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Janice L Brissette
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
4
|
Wenne R. Single Nucleotide Polymorphism Markers with Applications in Conservation and Exploitation of Aquatic Natural Populations. Animals (Basel) 2023; 13:1089. [PMID: 36978629 PMCID: PMC10044284 DOI: 10.3390/ani13061089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
An increasing number of aquatic species have been studied for genetic polymorphism, which extends the knowledge on their natural populations. One type of high-resolution molecular marker suitable for studying the genetic diversity of large numbers of individuals is single nucleotide polymorphism (SNP). This review is an attempt to show the range of applications of SNPs in studies of natural populations of aquatic animals. In recent years, SNPs have been used in the genetic analysis of wild and enhanced fish and invertebrate populations in natural habitats, exploited migratory species in the oceans, migratory anadromous and freshwater fish and demersal species. SNPs have been used for the identification of species and their hybrids in natural environments, to study the genetic consequences of restocking for conservation purposes and the negative effects on natural populations of fish accidentally escaping from culture. SNPs are very useful for identifying genomic regions correlated with phenotypic variants relevant for wildlife protection, management and aquaculture. Experimental size-selective catches of populations created in tanks have caused evolutionary changes in life cycles of fishes. The research results have been discussed to clarify whether the fish populations in natural conditions can undergo changes due to selective harvesting targeting the fastest-growing fishes.
Collapse
Affiliation(s)
- Roman Wenne
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
5
|
Sui J, Luan S, Cao J, Dai P, Meng X, Luo K, Chen B, Tan J, Fu Q, Kong J. Genomic signatures of artificial selection in fecundity of Pacific white shrimp, Penaeus vannamei. Front Genet 2022; 13:929889. [PMID: 36105098 PMCID: PMC9465174 DOI: 10.3389/fgene.2022.929889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Penaeusvannamei is the most important economic shrimp in the world. Many selective breeding programs are carried out to improve its production and performance traits. Although significant differences in the reproductive ability of female P. vannamei under artificial breeding conditions have been reported, the genome-wide adaption of the reproductive ability of domesticated female P. vannamei is less investigated. In this study, whole-genome analysis was performed along with pooled DNA sequencing on two fecundity separated bulks, high fecundity bulk (HB), and low fecundity bulk (LB). Each bulk contained 30 individuals from 3 commercial populations. A sequencing depth of >30× was achieved for each bulk, leading to the identification of 625,181 and 629,748 single nucleotide polymorphisms (SNPs) in HB and LB, respectively. Fixation index (Fst) combined with p ratio allowed for the identification of 145 selective sweep regions, with a sequence length of 14.5 Mb, accounting for 0.59% of the genome. Among the 145 selective sweep regions, a total of 64,046 SNPs were identified, and further verification was performed by genotyping 50 candidate SNPs on 60 samples from the offspring of the three populations. Furthermore, 121 genes were screened from the sweep regions. GO annotation and KEGG enrichment analyses showed that partial genes were essential for fecundity regulation. This study provides important information for in-depth investigation of genomic characteristics for long-term selective breeding on the fecundity of female P. vannamei and will also be important for genome-assisted breeding of P. vannamei in the future.
Collapse
Affiliation(s)
- Juan Sui
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Sheng Luan
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiawang Cao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ping Dai
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xianhong Meng
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kun Luo
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Baolong Chen
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Tan
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiang Fu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Kong
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Jie Kong,
| |
Collapse
|
6
|
Sundaray JK, Dixit S, Rather A, Rasal KD, Sahoo L. Aquaculture omics: An update on the current status of research and data analysis. Mar Genomics 2022; 64:100967. [PMID: 35779450 DOI: 10.1016/j.margen.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Aquaculture is the fast-growing agricultural sector and has the ability to meet the growing demand for protein nutritional security for future population. In future aquaculture is going to be the major source of fish proteins as capture fisheries reached at its maximum. However, several challenges need to overcome such as lack of genetically improved strains/varieties, lack of species-specific feed/functional feed, round the year availability of quality fish seed, pollution of ecosystems and increased frequencies of disease occurrence etc. In recent years, the continuous development of high throughput sequencing technology has revolutionized the biological sciences and provided necessary tools. Application of 'omics' in aquaculture research have been successfully used to resolve several productive and reproductive issues and thus ensure its sustainability and profitability. To date, high quality draft genomes of over fifty fish species have been generated and successfully used to develop large number of single nucleotide polymorphism markers (SNPs), marker panels and other genomic resources etc in several aquaculture species. Similarly, transcriptome profiling and miRNAs analysis have been used in aquaculture research to identify key transcripts and expression analysis of candidate genes/miRNAs involved in reproduction, immunity, growth, development, stress toxicology and disease. Metagenome analysis emerged as a promising scientific tool to analyze the complex genomes contained within microbial communities. Metagenomics has been successfully used in the aquaculture sector to identify novel and potential pathogens, antibiotic resistance genes, microbial roles in microcosms, microbial communities forming biofloc, probiotics etc. In the current review, we discussed application of high-throughput technologies (NGS) in the aquaculture sector.
Collapse
Affiliation(s)
- Jitendra Kumar Sundaray
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Sangita Dixit
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Ashraf Rather
- Division of Fish Genetics and Biotechnology, College of Fisheries, Sher-e- Kashmir University of Agricultural Science and Technology, Rangil-Ganderbal 190006, Jammu and Kashmir, India
| | - Kiran D Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400 061, Maharastra, India
| | - Lakshman Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, Odisha, India.
| |
Collapse
|
7
|
Kitada S, Kishino H. Population structure of chum salmon and selection on the markers collected for stock identification. Ecol Evol 2021; 11:13972-13985. [PMID: 34707832 PMCID: PMC8525185 DOI: 10.1002/ece3.8102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Genetic stock identification (GSI) is a major management tool of Pacific salmon (Oncorhynchus Spp.) that has provided rich genetic baseline data of allozymes, microsatellites, and single-nucleotide polymorphisms (SNPs) across the Pacific Rim. Here, we analyzed published data sets for adult chum salmon (Oncorhynchus keta), namely 10 microsatellites, 53 SNPs, and a mitochondrial DNA locus (mtDNA3, control region, and NADH-3 combined) in samples from 495 locations in the same distribution range (n = 61,813). TreeMix analysis of the microsatellite loci identified the greatest convergence toward Japanese/Korean populations and suggested two admixture events from Japan/Korea to Russia and the Alaskan Peninsula. The SNPs had been purposively collected from rapidly evolving genes to increase the power of GSI. The largest expected heterozygosity was observed in Japanese/Korean populations for microsatellites, whereas it was largest in Western Alaskan populations for SNPs, reflecting the SNP discovery process. A regression of SNP population structures on those of microsatellites indicated the selection of the SNP loci according to deviations from the predicted structures. Specifically, we matched the sampling locations of the SNPs with those of the microsatellites and performed regression analyses of SNP allele frequencies on a 2-dimensional scaling (MDS) of matched locations obtained from microsatellite pairwise F ST values. The MDS first axis indicated a latitudinal cline in American and Russian populations, whereas the second axis showed differentiation of Japanese/Korean populations. The top five outlier SNPs included mtDNA3, U502241 (unknown), GnRH373, ras1362, and TCP178, which were identified by principal component analysis. We summarized the functions of 53 nuclear genes surrounding SNPs and the mtDNA3 locus by referring to a gene database system and propose how they may influence the fitness of chum salmon.
Collapse
Affiliation(s)
- Shuichi Kitada
- Tokyo University of Marine Science and TechnologyTokyoJapan
| | - Hirohisa Kishino
- Graduate School of Agriculture and Life SciencesThe University of TokyoTokyoJapan
- Present address:
The Research Institute of Evolutionary BiologyTokyoJapan
| |
Collapse
|
8
|
Jackson T, Ishengoma E, Rhode C. Cross-species Exon Capture and Whole Exome Sequencing: Application, Utility and Challenges for Genomic Resource Development in Non-model Species. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:560-575. [PMID: 34241713 DOI: 10.1007/s10126-021-10046-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Comprehending the genetic architecture of complex traits has many applications in evolution, ecology, conservation biology and plant and animal production systems. Underlying research questions in these fields are diverse species that often have limited genetic information available. In aquaculture, for example, genetic progress has been slow in many species due to a lack in such genetic information. In this study, zebrafish (as a well-studied model species) was used in cross-species transfer to develop genomic resources and identify candidate genes underling growth differentials in dusky kob. Dusky kob is a Sciaenid finfish and an emerging aquaculture species. The zebrafish All Exon Predesigned Probe-set capture protocol was used to enrich fractionated DNA samples from kob, classified as either large or small, before massive parallel sequencing on the Ion Torrent platform. Although vast quantities of sequence data were generated, only about 30% of contigs could be identified as zebrafish homologues. There were numerous species-specific sequences and inconsistent coverage of sequencing products across samples, likely due to non-specific binding of the probe-set as a result of the evolutionary divergence between zebrafish and kob. Nonetheless, more than 55,000 SNPs could be reliably identified and genotyped to the individual level. Using SNP genotypic divergence estimates, between large and small cohorts, a number of candidate genes associated with growth was also identified for future investigation. These findings contribute to the growing body of evidence demonstrating the utility of a cross-species capture approach in the development of important genomic resources for understanding traits of interest in species without reference genomes.
Collapse
Affiliation(s)
- T Jackson
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - E Ishengoma
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- Department of Biological Sciences, Mkwawa University College of Education, University of Dar Es Salaam, P.O. Box 2329, Dar es Salaam, Tanzania
| | - C Rhode
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
9
|
Signatures of Selection and Genomic Diversity of Muskellunge ( Esox masquinongy) from Two Populations in North America. Genes (Basel) 2021; 12:genes12071021. [PMID: 34209092 PMCID: PMC8303616 DOI: 10.3390/genes12071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
Muskellunge (Esox masquinongy) is the largest and most prized game fish in North America. However, little is known about Muskellunge genetic diversity in Iowa’s propagation program. We used Whole-Genome Sequencing of 12 brooding individuals from Iowa and publicly available RAD-seq of 625 individuals from the St. Lawrence River in Canada to study the genetic differences between populations, analyze signatures of selection, and evaluate the levels of genetic diversity in both populations. Given that there is no reference genome available, reads were aligned to the genome of Pike (Esox lucius). Variant calling produced 7,886,471 biallelic variants for the Iowa population and 16,867 high-quality SNPs that overlap with the Canadian samples. Principal component analysis (PCA) and Admixture analyses showed a large genetic difference between Canadian and Iowan populations. Window-based pooled heterozygosity found 6 highly heterozygous windows in the Iowa population and Fst between populations found 14 windows with fixation statistic (Fst) values larger than 0.9. Canadian inbreeding rate (Froh = 0.32) appears to be higher due to the inbreeding of Iowa population (Froh = 0.03), presumably due to isolation of subpopulations. Although inbreeding does not seem to be an immediate concern for Muskellunge in Iowa, the Canadian population seems to have a high rate of inbreeding. Finally, this approach can be used to assess the long-term viability of the current management practices of Muskellunge populations across North America.
Collapse
|
10
|
Hernandez M, Perry GH. Scanning the human genome for "signatures" of positive selection: Transformative opportunities and ethical obligations. Evol Anthropol 2021; 30:113-121. [PMID: 33788352 DOI: 10.1002/evan.21893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/25/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
The relationship history of evolutionary anthropology and genetics is complex. At best, genetics is a beautifully integrative part of the discipline. Yet this integration has also been fraught, with punctuated, disruptive challenges to dogma, periodic reluctance by some members of the field to embrace results from analyses of genetic data, and occasional over-assertions of genetic definitiveness by geneticists. At worst, evolutionary genetics has been a tool for reinforcing racism and colonialism. While a number of genetics/genomics papers have disproportionately impacted evolutionary anthropology, here we highlight the 2002 presentation of an elegantly powerful approach for identifying "signatures" of past positive selection from haplotype-based patterns of genetic variation. Together with technological advances in genotyping methods, this article transformed our field by facilitating genome-wide "scans" for signatures of past positive selection in human populations. This approach helped researchers test longstanding evolutionary anthropology hypotheses while simultaneously providing opportunities to develop entirely new ones. Genome-wide scans for signatures of positive selection have since been conducted in diverse worldwide populations, with striking findings of local adaptation and convergent evolution. Yet there are ethical considerations with respect to the ubiquity of these studies and the cross-application of the genome-wide scan approach to existing datasets, which we also discuss.
Collapse
Affiliation(s)
- Margarita Hernandez
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - George H Perry
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Comparative Analysis of the Transcriptome and Distribution of Putative SNPs in Two Rainbow Trout ( Oncorhynchus mykiss) Breeding Strains by Using Next-Generation Sequencing. Genes (Basel) 2020; 11:genes11080841. [PMID: 32722051 PMCID: PMC7464081 DOI: 10.3390/genes11080841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/24/2022] Open
Abstract
Selective breeding can significantly improve the establishment of sustainable and profitable aquaculture fish farming. For rainbow trout (Oncorhynchus mykiss), one of the main aquaculture coldwater species in Europe, a variety of selected hatchery strains are commercially available. In this study, we investigated the genetic variation between the local Born strain, selected for survival, and the commercially available Silver Steelhead strain, selected for growth. We sequenced the transcriptome of six tissues (gills, head kidney, heart, liver, spleen, and white muscle) from eight healthy individuals per strain, using RNA-seq technology to identify strain-specific gene-expression patterns and single nucleotide polymorphisms (SNPs). In total, 1760 annotated genes were differentially expressed across all tissues. Pathway analysis assigned them to different gene networks. We also identified a set of SNPs, which are heterozygous for one of the two breeding strains: 1229 of which represent polymorphisms over all tissues and individuals. Our data indicate a strong genetic differentiation between Born and Silver Steelhead trout, despite the relatively short time of evolutionary separation of the two breeding strains. The results most likely reflect their specifically adapted genotypes and might contribute to the understanding of differences regarding their robustness toward high stress and pathogenic challenge described in former studies.
Collapse
|
12
|
Bertolini F, Ribani A, Capoccioni F, Buttazzoni L, Utzeri VJ, Bovo S, Schiavo G, Caggiano M, Fontanesi L, Rothschild MF. Identification of a major locus determining a pigmentation defect in cultivated gilthead seabream (Sparus aurata). Anim Genet 2020; 51:319-323. [PMID: 31900984 DOI: 10.1111/age.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2019] [Indexed: 12/30/2022]
Abstract
The gilthead seabream (Sparus aurata) is an important cultivated species in the Mediterranean area. A major problem for the gilthead seabream aquaculture sector derives from the high frequency of phenotypic abnormalities, including discolorations. In this study, we applied a whole-genome resequencing approach to identify a genomic region affecting a pigmentation defect that occurred in a cultivated S. aurata population. Two equimolar DNA pools were constructed using DNA extracted from 30 normally coloured and 21 non-pigmented fish collected among the offspring of the same broodstock nucleus. Whole-genome resequencing reads from the two DNA pools were aligned to the S. aurata draft genome and variant calling was performed. A whole-genome heterozygosity scan from single pool sequencing data highlighted a peak of reduced heterozygosity of approximately 5 Mbp on chromosome 6 in the non-pigmented pool that was not present in the normally coloured pool. The comparison of the non-pigmented with the normally coloured fish using a whole-genome FST analysis detected three main regions within the coordinates previously detected with the heterozygosity analysis. The results support the presence of a major locus affecting this discoloration defect in this fish population. The results of this study have practical applications, including the possibility of eliminating this defect from the breeding stock, with direct economic advantages derived from the reduction of discarded fry. Other studies are needed to identify the candidate gene and the causative mutation, which could add information to understand the complex biology of fish pigmentation.
Collapse
Affiliation(s)
- F Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.,Department of Animal Science, Iowa State University, Ames, IA, 50011-3150, USA
| | - A Ribani
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, Bologna, 40127, Italy
| | - F Capoccioni
- Centro di ricerca di Zootecnia e Acquacoltura, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Rome, 00198, Italy
| | - L Buttazzoni
- Centro di ricerca di Zootecnia e Acquacoltura, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Rome, 00198, Italy
| | - V J Utzeri
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, Bologna, 40127, Italy
| | - S Bovo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, Bologna, 40127, Italy
| | - G Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, Bologna, 40127, Italy
| | - M Caggiano
- Panittica Italia Società Agricola Srl, Torre Canne di Fasano, Brindisi, 72016, Italy
| | - L Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, Bologna, 40127, Italy
| | - M F Rothschild
- Department of Animal Science, Iowa State University, Ames, IA, 50011-3150, USA
| |
Collapse
|
13
|
Majolo B. Warfare in an evolutionary perspective. Evol Anthropol 2019; 28:321-331. [PMID: 31691443 DOI: 10.1002/evan.21806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/07/2019] [Accepted: 09/18/2019] [Indexed: 11/11/2022]
Abstract
The importance of warfare for human evolution is hotly debated in anthropology. Some authors hypothesize that warfare emerged at least 200,000-100,000 years BP, was frequent, and significantly shaped human social evolution. Other authors claim that warfare is a recent phenomenon, linked to the emergence of agriculture, and mostly explained by cultural rather than evolutionary forces. Here I highlight and critically evaluate six controversial points on the evolutionary bases of warfare. I argue that cultural and evolutionary explanations on the emergence of warfare are not alternative but analyze biological diversity at two distinct levels. An evolved propensity to act aggressively toward outgroup individuals may emerge irrespective of whether warfare appeared early/late during human evolution. Finally, I argue that lethal violence and aggression toward outgroup individuals are two linked but distinct phenomena, and that war and peace are complementary and should not always be treated as two mutually exclusive behavioral responses.
Collapse
Affiliation(s)
- Bonaventura Majolo
- School of Psychology, University of Lincoln, Sarah Swift Building, Lincoln, UK
| |
Collapse
|
14
|
Mastrangelo S, Ben Jemaa S, Sottile G, Casu S, Portolano B, Ciani E, Pilla F. Combined approaches to identify genomic regions involved in phenotypic differentiation between low divergent breeds: Application in Sardinian sheep populations. J Anim Breed Genet 2019; 136:526-534. [PMID: 31206848 DOI: 10.1111/jbg.12422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Selective breeding has led to modifications in the genome of many livestock breeds. In this study, we identified the genomic regions that may explain some of the phenotypic differences between two closely related breeds from Sardinia. A total of 44 animals, 20 Sardinian Ancestral Black (SAB) and 24 Sardinian White (SW), were genotyped using the Illumina Ovine 50K array. A total of 68, 38 and 15 significant markers were identified using the case-control genome-wide association study (GWAS), the Bayesian population differentiation analysis (FST ) and the Rsb metric, respectively. Comparisons among the approaches revealed a total of 22 overlapping markers between GWAS and FST and one marker between GWAS and Rsb. Three markers detected by Rsb were also located near (<2 Mb) to highly significant regions identified by GWAS and FST analyses. Moreover, one candidate marker identified by GWAS and FST approaches was located in a run of homozygosity island that was shared by both breeds. We identified several genes involved in many phenotypic differences (such as stature and growth, reproduction, ear size, coat colour, behaviour) between the two analysed breeds. This study shows that combining several genome-wide approaches could improve discovery of regions involved in the variability of breeding traits and responsible for the phenotypic diversity even between closely related breeds. Overall, the combination of such genome-wide methods can be extended to other livestock breeds that share between them a similar genetic background, to understand the process that shapes the patterns of genetic variability between closely related populations.
Collapse
Affiliation(s)
- Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Slim Ben Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Ariana, Tunisia
| | - Gianluca Sottile
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Sara Casu
- Unità di Ricerca di Genetica e Biotecnologie, Agris Sardegna, Sassari, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Elena Ciani
- Dipartimento di Bioscienze Biotecnologie e Biofarmaceutica, University of Bari, Bari, Italy
| | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, Italy
| |
Collapse
|
15
|
Szpak M, Xue Y, Ayub Q, Tyler‐Smith C. How well do we understand the basis of classic selective sweeps in humans? FEBS Lett 2019; 593:1431-1448. [DOI: 10.1002/1873-3468.13447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Yali Xue
- The Wellcome Sanger Institute Hinxton UK
| | - Qasim Ayub
- School of Science Monash University Malaysia Bandar Sunway Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform Monash University Malaysia Genomics Facility Bandar Sunway Malaysia
| | | |
Collapse
|
16
|
Rodrigues JV, Ogbunugafor CB, Hartl DL, Shakhnovich EI. Chimeric dihydrofolate reductases display properties of modularity and biophysical diversity. Protein Sci 2019; 28:1359-1367. [PMID: 31095809 DOI: 10.1002/pro.3646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023]
Abstract
While reverse genetics and functional genomics have long affirmed the role of individual mutations in determining protein function, there have been fewer studies addressing how large-scale changes in protein sequences, such as in entire modular segments, influence protein function and evolution. Given how recombination can reassort protein sequences, these types of changes may play an underappreciated role in how novel protein functions evolve in nature. Such studies could aid our understanding of whether certain organismal phenotypes related to protein function-such as growth in the presence or absence of an antibiotic-are robust with respect to the identity of certain modular segments. In this study, we combine molecular genetics with biochemical and biophysical methods to gain a better understanding of protein modularity in dihydrofolate reductase (DHFR), an enzyme target of antibiotics also widely used as a model for protein evolution. We replace an integral α-helical segment of Escherichia coli DHFR with segments from a number of different organisms (many nonmicrobial) and examine how these chimeric enzymes affect organismal phenotypes (e.g., resistance to an antibiotic) as well as biophysical properties of the enzyme (e.g., thermostability). We find that organismal phenotypes and enzyme properties are highly sensitive to the identity of DHFR modules, and that this chimeric approach can create enzymes with diverse biophysical characteristics.
Collapse
Affiliation(s)
- João V Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
17
|
Uricchio LH, Kitano HC, Gusev A, Zaitlen NA. An evolutionary compass for detecting signals of polygenic selection and mutational bias. Evol Lett 2019; 3:69-79. [PMID: 30788143 PMCID: PMC6369964 DOI: 10.1002/evl3.97] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Selection and mutation shape the genetic variation underlying human traits, but the specific evolutionary mechanisms driving complex trait variation are largely unknown. We developed a statistical method that uses polarized genome-wide association study (GWAS) summary statistics from a single population to detect signals of mutational bias and selection. We found evidence for nonneutral signals on variation underlying several traits (body mass index [BMI], schizophrenia, Crohn's disease, educational attainment, and height). We then used simulations that incorporate simultaneous negative and positive selection to show that these signals are consistent with mutational bias and shifts in the fitness-phenotype relationship, but not stabilizing selection or mutational bias alone. We additionally replicate two of our top three signals (BMI and educational attainment) in an external cohort, and show that population stratification may have confounded GWAS summary statistics for height in the GIANT cohort. Our results provide a flexible and powerful framework for evolutionary analysis of complex phenotypes in humans and other species, and offer insights into the evolutionary mechanisms driving variation in human polygenic traits.
Collapse
Affiliation(s)
| | - Hugo C. Kitano
- Department of Computer ScienceStanford UniversityStanfordCA
| | | | - Noah A. Zaitlen
- Department of MedicineUniversity of CaliforniaSan FranciscoCA
- Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoCA
| |
Collapse
|
18
|
Pitt D, Bruford MW, Barbato M, Orozco‐terWengel P, Martínez R, Sevane N. Demography and rapid local adaptation shape Creole cattle genome diversity in the tropics. Evol Appl 2019; 12:105-122. [PMID: 30622639 PMCID: PMC6304683 DOI: 10.1111/eva.12641] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 02/06/2023] Open
Abstract
The introduction of Iberian cattle in the Americas after Columbus' arrival imposed high selection pressures on a limited number of animals over a brief period of time. Knowledge of the genomic regions selected during this process may help in enhancing climatic resilience and sustainable animal production. We first determined taurine and indicine contributions to the genomic structure of modern Creole cattle. Second, we inferred their demographic history using approximate Bayesian computation (ABC), linkage disequilibrium (LD) and N e Slope (NeS) analysis. Third, we performed whole genome scans for selection signatures based on cross-population extended haplotype homozygosity (XP-EHH) and population differentiation (F ST) to disentangle the genetic mechanisms involved in adaptation and phenotypic change by a rapid and major environmental transition. To tackle these questions, we combined SNP array data (~54,000 SNPs) in Creole breeds with their modern putative Iberian ancestors. Reconstruction of the population history of Creoles from the end of the 15th century indicated a major demographic expansion until the introduction of zebu and commercial breeds into the Americas ~180 years ago, coinciding with a drastic N e contraction. NeS analysis provided insights into short-term complexity in population change and depicted a decrease/expansion episode at the end of the ABC-inferred expansion, as well as several additional fluctuations in N e with the attainment of the current small N e only towards the end of the 20th century. Selection signatures for tropical adaptation pinpointed the thermoregulatory slick hair coat region, identifying a new candidate gene (GDNF), as well as novel candidate regions involved in immune function, behavioural processes, iron metabolism and adaptation to new feeding conditions. The outcomes from this study will help in future-proofing farm animal genetic resources (FAnGR) by providing molecular tools that allow selection for improved cattle performance, resilience and welfare under climate change.
Collapse
Affiliation(s)
- Daniel Pitt
- School of BiosciencesCardiff UniversityCardiffUK
| | - Michael W. Bruford
- School of BiosciencesCardiff UniversityCardiffUK
- Sustainable Places Research InstituteCardiff UniversityCardiffUK
| | - Mario Barbato
- Institute of ZootechnicsUniversità Cattolica del Sacro CuorePiacenzaItaly
| | | | - Rodrigo Martínez
- Centro de investigaciones TibaitatáCorporación Colombiana De Investigación Agropecuaria (Corpoica)BogotáColombia
| | | |
Collapse
|
19
|
Tournebize R, Poncet V, Jakobsson M, Vigouroux Y, Manel S. McSwan: A joint site frequency spectrum method to detect and date selective sweeps across multiple population genomes. Mol Ecol Resour 2018; 19:283-295. [PMID: 30358170 DOI: 10.1111/1755-0998.12957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 01/01/2023]
Abstract
Inferring the mode and tempo of natural selection helps further our understanding of adaptation to past environmental changes. Here, we introduce McSwan, a method to detect and date past and recent natural selection events in the case of a hard sweep. The method is based on the comparison of site frequency spectra obtained under various demographic models that include selection. McSwan demonstrated high power (high sensitivity and specificity) in capturing hard selective sweep events without requiring haplotype phasing. It performed slightly better than SweeD when the recent effective population size was low and the genomic region was small. We then applied our method to a European (CEU) and an African (LWK) human re-sequencing data set. Most hard sweeps were detected in the CEU population (96%). Moreover, hard sweeps in the African population were estimated to have occurred further back in time (mode: 43,625 years BP) compared to those of Europeans (mode: 24,850 years BP). Most of the estimated ages of hard sweeps in Europeans were associated with the Last Glacial Maximum and were enriched in immunity-associated genes.
Collapse
Affiliation(s)
- Rémi Tournebize
- IRD, University of Montpellier, UMR DIADE BP 64501, Montpellier Cedex 5, France
| | - Valérie Poncet
- IRD, University of Montpellier, UMR DIADE BP 64501, Montpellier Cedex 5, France
| | - Mattias Jakobsson
- Department of Organismal Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Centre for Anthropological Research, Department of Anthropology and Development Studies, University of Johannesburg, Auckland Park, South Africa
| | - Yves Vigouroux
- IRD, University of Montpellier, UMR DIADE BP 64501, Montpellier Cedex 5, France
| | - Stéphanie Manel
- EPHE, PSL Research University, CNRS, University of Montpellier, Montpellier SupAgro, IRD, INRA, UMR:5175 CEFE, Montpellier, France
| |
Collapse
|
20
|
Khrustaleva AM, Klovach NV, Seeb JE. Genetic variability and population structure of sockeye salmon from the Asian Coast of Pacific Ocean. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Villanueva‐Cañas JL, Rech GE, Cara MAR, González J. Beyond
SNP
s: how to detect selection on transposable element insertions. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12781] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Gabriel E. Rech
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| | - Maria Angeles Rodriguez Cara
- Ecoanthropology and Ethnobiology Laboratory, UMR 7206, CNRS/MNHN/Universite Paris 7 Museum National d'HistoireNaturelle F‐75116 Paris France
| | - Josefa González
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra) Barcelona Spain
| |
Collapse
|
22
|
Status and future perspectives of single nucleotide polymorphisms (SNPs) markers in farmed fishes: Way ahead using next generation sequencing. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Shultz AJ, Baker AJ, Hill GE, Nolan PM, Edwards SV. SNPs across time and space: population genomic signatures of founder events and epizootics in the House Finch ( Haemorhous mexicanus). Ecol Evol 2016; 6:7475-7489. [PMID: 28725414 PMCID: PMC5513257 DOI: 10.1002/ece3.2444] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 12/27/2022] Open
Abstract
Identifying genomic signatures of natural selection can be challenging against a background of demographic changes such as bottlenecks and population expansions. Here, we disentangle the effects of demography from selection in the House Finch (Haemorhous mexicanus) using samples collected before and after a pathogen‐induced selection event. Using ddRADseq, we genotyped over 18,000 SNPs across the genome in native pre‐epizootic western US birds, introduced birds from Hawaii and the eastern United States, post‐epizootic eastern birds, and western birds sampled across a similar time span. We found 14% and 7% reductions in nucleotide diversity, respectively, in Hawaiian and pre‐epizootic eastern birds relative to pre‐epizootic western birds, as well as elevated levels of linkage disequilibrium and other signatures of founder events. Despite finding numerous significant frequency shifts (outlier loci) between pre‐epizootic native and introduced populations, we found no signal of reduced genetic diversity, elevated linkage disequilibrium, or outlier loci as a result of the epizootic. Simulations demonstrate that the proportion of outliers associated with founder events could be explained by genetic drift. This rare view of genetic evolution across time in an invasive species provides direct evidence that demographic shifts like founder events have genetic consequences more widespread across the genome than natural selection.
Collapse
Affiliation(s)
- Allison J Shultz
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| | - Allan J Baker
- Department of Natural History, Royal Ontario Museum Department of Ecology and Evolutionary Biology University of Toronto Toronto ON Canada
| | - Geoffrey E Hill
- Department of Biological Sciences Auburn University Auburn AL USA
| | - Paul M Nolan
- Department of Biology The Citadel Charleston SC USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| |
Collapse
|
24
|
Bertolini F, Geraci C, Schiavo G, Sardina MT, Chiofalo V, Fontanesi L. Whole genome semiconductor based sequencing of farmed European sea bass (Dicentrarchus labrax) Mediterranean genetic stocks using a DNA pooling approach. Mar Genomics 2016; 28:63-70. [DOI: 10.1016/j.margen.2016.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 12/30/2022]
|
25
|
Larson WA, McKinney GJ, Seeb JE, Seeb LW. Identification and Characterization of Sex-Associated Loci in Sockeye Salmon Using Genotyping-by-Sequencing and Comparison with a Sex-Determining Assay Based on thesdYGene. J Hered 2016; 107:559-66. [DOI: 10.1093/jhered/esw043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 07/07/2016] [Indexed: 11/12/2022] Open
|
26
|
Robledo D, Fernández C, Hermida M, Sciara A, Álvarez-Dios JA, Cabaleiro S, Caamaño R, Martínez P, Bouza C. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot. Int J Mol Sci 2016; 17:243. [PMID: 26901189 PMCID: PMC4783974 DOI: 10.3390/ijms17020243] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 12/30/2022] Open
Abstract
Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species.
Collapse
Affiliation(s)
- Diego Robledo
- Departamento de Xenética, Facultade de Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Carlos Fernández
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Miguel Hermida
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Andrés Sciara
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario S2002LRK, Argentina.
| | - José Antonio Álvarez-Dios
- Departamento de Matemática Aplicada, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Santiago Cabaleiro
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira 15695, Spain.
| | - Rubén Caamaño
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira 15695, Spain.
| | - Paulino Martínez
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| | - Carmen Bouza
- Departamento de Xenética, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo 27002, Spain.
| |
Collapse
|
27
|
Humble E, Martinez-Barrio A, Forcada J, Trathan PN, Thorne MAS, Hoffmann M, Wolf JBW, Hoffman JI. A draft fur seal genome provides insights into factors affecting SNP validation and how to mitigate them. Mol Ecol Resour 2016; 16:909-21. [DOI: 10.1111/1755-0998.12502] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 12/01/2015] [Accepted: 12/15/2015] [Indexed: 01/19/2023]
Affiliation(s)
- E. Humble
- Department of Animal Behaviour; University of Bielefeld; Postfach 100131 33501 Bielefeld Germany
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - A. Martinez-Barrio
- Science of Life Laboratories and Department of Cell and Molecular Biology; Uppsala University; Husargatan 3 75124 Uppsala Sweden
| | - J. Forcada
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - P. N. Trathan
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - M. A. S. Thorne
- British Antarctic Survey; High Cross, Madingley Road Cambridge CB3 OET UK
| | - M. Hoffmann
- Max Planck Institute for Developmental Biology; Spemannstrasse 35 72076 Tübingen Germany
| | - J. B. W. Wolf
- Science of Life Laboratories and Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 75236 Uppsala Sweden
| | - J. I. Hoffman
- Department of Animal Behaviour; University of Bielefeld; Postfach 100131 33501 Bielefeld Germany
| |
Collapse
|
28
|
Khrustaleva AM, Klovach NV, Vedischeva EV, Seeb JE. Genetic differentiation of sockeye salmon Oncorhynchus nerka from Kamchatka River basin and the lake–river systems of the west coast of the bering sea as inferred from data on single nucleotide polymorphism. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415090057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Huber CD, DeGiorgio M, Hellmann I, Nielsen R. Detecting recent selective sweeps while controlling for mutation rate and background selection. Mol Ecol 2015; 25:142-56. [PMID: 26290347 PMCID: PMC5082542 DOI: 10.1111/mec.13351] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/31/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022]
Abstract
A composite likelihood ratio test implemented in the program sweepfinder is a commonly used method for scanning a genome for recent selective sweeps. sweepfinder uses information on the spatial pattern (along the chromosome) of the site frequency spectrum around the selected locus. To avoid confounding effects of background selection and variation in the mutation process along the genome, the method is typically applied only to sites that are variable within species. However, the power to detect and localize selective sweeps can be greatly improved if invariable sites are also included in the analysis. In the spirit of a Hudson–Kreitman–Aguadé test, we suggest adding fixed differences relative to an out‐group to account for variation in mutation rate, thereby facilitating more robust and powerful analyses. We also develop a method for including background selection, modelled as a local reduction in the effective population size. Using simulations, we show that these advances lead to a gain in power while maintaining robustness to mutation rate variation. Furthermore, the new method also provides more precise localization of the causative mutation than methods using the spatial pattern of segregating sites alone.
Collapse
Affiliation(s)
- Christian D Huber
- Max F. Perutz Laboratory, University of Vienna, Vienna, Austria.,Vienna Graduate School of Population Genetics, University of Veterinary Medicine, Vienna, Austria.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA, 90095-1606, USA
| | - Michael DeGiorgio
- Departments of Biology and Statistics, Pennsylvania State University, University Park, PA, USA.,Institute for CyberScience, Pennsylvania State University, University Park, PA, USA
| | - Ines Hellmann
- Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Rasmus Nielsen
- Departments of Integrative Biology and Statistics, University of California, Berkeley, CA, USA
| |
Collapse
|
30
|
Abstract
Humans are unique in many respects including being furless, striding bipeds that excel at walking and running long distances in hot conditions. This review summarizes what we do and do not know about the evolution of these characteristics, and how they are related. Although many details remain poorly known, the first hominins (species more closely related to humans than to chimpanzees) apparently diverged from the chimpanzee lineage because of selection for bipedal walking, probably because it improved their ability to forage efficiently. However, because bipedal hominins are necessarily slow runners, early hominins in open habitats likely benefited from improved abilities to dump heat in order to forage safely during times of peak heat when predators were unable to hunt them. Endurance running capabilities evolved later, probably as adaptations for scavenging and then hunting. If so, then there would have been strong selection for heat-loss mechanisms, especially sweating, to persistence hunt, in which hunters combine endurance running and tracking to drive their prey into hyperthermia. As modern humans dispersed into a wide range of habitats over the last few hundred thousand years, recent selection has helped populations cope better with a broader range of locomotor and thermoregulatory challenges, but all humans remain essentially adapted for long distance locomotion rather than speed, and to dump rather than retain heat.
Collapse
Affiliation(s)
- Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
31
|
Starks HA, Clemento AJ, Garza JC. Discovery and characterization of single nucleotide polymorphisms in coho salmon, Oncorhynchus kisutch. Mol Ecol Resour 2015; 16:277-87. [PMID: 25965351 DOI: 10.1111/1755-0998.12430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 11/30/2022]
Abstract
Molecular population genetic analyses have become an integral part of ecological investigation and population monitoring for conservation and management. Microsatellites have been the molecular marker of choice for such applications over the last several decades, but single nucleotide polymorphism (SNP) markers are rapidly expanding beyond model organisms. Coho salmon (Oncorhynchus kisutch) is native to the north Pacific Ocean and its tributaries, where it is the focus of intensive fishery and conservation activities. As it is an anadromous species, coho salmon typically migrate across multiple jurisdictional boundaries, complicating management and requiring shared data collection methods. Here, we describe the discovery and validation of a suite of novel SNPs and associated genotyping assays which can be used in the genetic analyses of this species. These assays include 91 that are polymorphic in the species and one that discriminates it from a sister species, Chinook salmon. We demonstrate the utility of these SNPs for population assignment and phylogeographic analyses, and map them against the draft trout genome. The markers constitute a large majority of all SNP markers described for coho salmon and will enable both population- and pedigree-based analyses across the southern part of the species native range.
Collapse
Affiliation(s)
- Hilary A Starks
- Southwest Fisheries Science Center, National Marine Fisheries Service and University of California, Santa Cruz, 110 Shaffer Rd, Santa Cruz, CA, 95060, USA
| | - Anthony J Clemento
- Southwest Fisheries Science Center, National Marine Fisheries Service and University of California, Santa Cruz, 110 Shaffer Rd, Santa Cruz, CA, 95060, USA
| | - John Carlos Garza
- Southwest Fisheries Science Center, National Marine Fisheries Service and University of California, Santa Cruz, 110 Shaffer Rd, Santa Cruz, CA, 95060, USA
| |
Collapse
|
32
|
Allendorf FW, Bassham S, Cresko WA, Limborg MT, Seeb LW, Seeb JE. Effects of crossovers between homeologs on inheritance and population genomics in polyploid-derived salmonid fishes. J Hered 2015; 106:217-27. [PMID: 25838153 DOI: 10.1093/jhered/esv015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 02/19/2015] [Indexed: 01/24/2023] Open
Abstract
A whole genome duplication occurred in the ancestor of all salmonid fishes some 50-100 million years ago. Early inheritance studies with allozymes indicated that loci in the salmonid genome are inherited disomically in females. However, some pairs of duplicated loci showed patterns of inheritance in males indicating pairing and recombination between homeologous chromosomes. Nearly 20% of loci in the salmonid genome are duplicated and share the same alleles (isoloci), apparently due to homeologous recombination. Half-tetrad analysis revealed that isoloci tend to be telomeric. These results suggested that residual tetrasomic inheritance of isoloci results from homeologous recombination near chromosome ends and that continued disomic inheritance resulted from homologous pairing of centromeric regions. Many current genetic maps of salmonids are based on single nucleotide polymorphisms and microsatellites that are no longer duplicated. Therefore, long sections of chromosomes on these maps are poorly represented, especially telomeric regions. In addition, preferential multivalent pairing of homeologs from the same species in F1 hybrids results in an excess of nonparental gametes (so-called pseudolinkage). We consider how not including duplicated loci has affected our understanding of population and evolutionary genetics of salmonids, and we discuss how incorporating these loci will benefit our understanding of population genomics.
Collapse
Affiliation(s)
- Fred W Allendorf
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb).
| | - Susan Bassham
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| | - William A Cresko
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| | - Morten T Limborg
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| | - Lisa W Seeb
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| | - James E Seeb
- From the University of Montana, Division of Biological Sciences, Missoula, MT 59812 (Allendorf); University of Oregon, Institute of Ecology and Evolution, Eugene, OR (Bassham and Cresko); and University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA (Limborg, L. Seeb, and J. Seeb)
| |
Collapse
|
33
|
Salem M, Paneru B, Al-Tobasei R, Abdouni F, Thorgaard GH, Rexroad CE, Yao J. Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout. PLoS One 2015; 10:e0121778. [PMID: 25793877 PMCID: PMC4368115 DOI: 10.1371/journal.pone.0121778] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 02/04/2015] [Indexed: 11/25/2022] Open
Abstract
Efforts to obtain a comprehensive genome sequence for rainbow trout are ongoing and will be complemented by transcriptome information that will enhance genome assembly and annotation. Previously, transcriptome reference sequences were reported using data from different sources. Although the previous work added a great wealth of sequences, a complete and well-annotated transcriptome is still needed. In addition, gene expression in different tissues was not completely addressed in the previous studies. In this study, non-normalized cDNA libraries were sequenced from 13 different tissues of a single doubled haploid rainbow trout from the same source used for the rainbow trout genome sequence. A total of ~1.167 billion paired-end reads were de novo assembled using the Trinity RNA-Seq assembler yielding 474,524 contigs > 500 base-pairs. Of them, 287,593 had homologies to the NCBI non-redundant protein database. The longest contig of each cluster was selected as a reference, yielding 44,990 representative contigs. A total of 4,146 contigs (9.2%), including 710 full-length sequences, did not match any mRNA sequences in the current rainbow trout genome reference. Mapping reads to the reference genome identified an additional 11,843 transcripts not annotated in the genome. A digital gene expression atlas revealed 7,678 housekeeping and 4,021 tissue-specific genes. Expression of about 16,000–32,000 genes (35–71% of the identified genes) accounted for basic and specialized functions of each tissue. White muscle and stomach had the least complex transcriptomes, with high percentages of their total mRNA contributed by a small number of genes. Brain, testis and intestine, in contrast, had complex transcriptomes, with a large numbers of genes involved in their expression patterns. This study provides comprehensive de novo transcriptome information that is suitable for functional and comparative genomics studies in rainbow trout, including annotation of the genome.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
- * E-mail:
| | - Bam Paneru
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
| | - Rafet Al-Tobasei
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
| | - Fatima Abdouni
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
| | - Gary H. Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, United States of America
| | - Caird E. Rexroad
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Leetown, West Virginia 25430, United States of America
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, 26506, United States of America
| |
Collapse
|
34
|
Khrustaleva AM, Klovach NV, Gritsenko OF, Seeb JE. Intra- and interpopulation variability of southwestern Kamchatka sockeye salmon Oncorhynchus nerka inferred from the data on single nucleotide polymorphism. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414070096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
A dense linkage map for Chinook salmon (Oncorhynchus tshawytscha) reveals variable chromosomal divergence after an ancestral whole genome duplication event. G3-GENES GENOMES GENETICS 2014; 4:447-60. [PMID: 24381192 PMCID: PMC3962484 DOI: 10.1534/g3.113.009316] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Comparisons between the genomes of salmon species reveal that they underwent extensive chromosomal rearrangements following whole genome duplication that occurred in their lineage 58−63 million years ago. Extant salmonids are diploid, but occasional pairing between homeologous chromosomes exists in males. The consequences of re-diploidization can be characterized by mapping the position of duplicated loci in such species. Linkage maps are also a valuable tool for genome-wide applications such as genome-wide association studies, quantitative trait loci mapping or genome scans. Here, we investigated chromosomal evolution in Chinook salmon (Oncorhynchus tshawytscha) after genome duplication by mapping 7146 restriction-site associated DNA loci in gynogenetic haploid, gynogenetic diploid, and diploid crosses. In the process, we developed a reference database of restriction-site associated DNA loci for Chinook salmon comprising 48528 non-duplicated loci and 6409 known duplicated loci, which will facilitate locus identification and data sharing. We created a very dense linkage map anchored to all 34 chromosomes for the species, and all arms were identified through centromere mapping. The map positions of 799 duplicated loci revealed that homeologous pairs have diverged at different rates following whole genome duplication, and that degree of differentiation along arms was variable. Many of the homeologous pairs with high numbers of duplicated markers appear conserved with other salmon species, suggesting that retention of conserved homeologous pairing in some arms preceded species divergence. As chromosome arms are highly conserved across species, the major resources developed for Chinook salmon in this study are also relevant for other related species.
Collapse
|
36
|
Everett MV, Seeb JE. Detection and mapping of QTL for temperature tolerance and body size in Chinook salmon (Oncorhynchus tshawytscha) using genotyping by sequencing. Evol Appl 2014; 7:480-92. [PMID: 24822082 PMCID: PMC4001446 DOI: 10.1111/eva.12147] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/16/2013] [Indexed: 01/07/2023] Open
Abstract
Understanding how organisms interact with their environments is increasingly important for conservation efforts in many species, especially in light of highly anticipated climate changes. One method for understanding this relationship is to use genetic maps and QTL mapping to detect genomic regions linked to phenotypic traits of importance for adaptation. We used high-throughput genotyping by sequencing (GBS) to both detect and map thousands of SNPs in haploid Chinook salmon (Oncorhynchus tshawytscha). We next applied this map to detect QTL related to temperature tolerance and body size in families of diploid Chinook salmon. Using these techniques, we mapped 3534 SNPs in 34 linkage groups which is consistent with the haploid chromosome number for Chinook salmon. We successfully detected three QTL for temperature tolerance and one QTL for body size at the experiment-wide level, as well as additional QTL significant at the chromosome-wide level. The use of haploids coupled with GBS provides a robust pathway to rapidly develop genomic resources in nonmodel organisms; these QTL represent preliminary progress toward linking traits of conservation interest to regions in the Chinook salmon genome.
Collapse
Affiliation(s)
- Meredith V Everett
- School of Aquatic and Fishery Sciences, University of Washington Seattle, WA, USA
| | - James E Seeb
- School of Aquatic and Fishery Sciences, University of Washington Seattle, WA, USA
| |
Collapse
|
37
|
Jasper JR, Habicht C, Moffitt S, Brenner R, Marsh J, Lewis B, Creelman Fox E, Grauvogel Z, Rogers Olive SD, Grant WS. Source-sink estimates of genetic introgression show influence of hatchery strays on wild chum salmon populations in Prince William Sound, Alaska. PLoS One 2013; 8:e81916. [PMID: 24349150 PMCID: PMC3862497 DOI: 10.1371/journal.pone.0081916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 10/28/2013] [Indexed: 12/03/2022] Open
Abstract
The extent to which stray, hatchery-reared salmon affect wild populations is much debated. Although experiments show that artificial breeding and culture influence the genetics of hatchery salmon, little is known about the interaction between hatchery and wild salmon in a natural setting. Here, we estimated historical and contemporary genetic population structures of chum salmon (Oncorhynchus keta) in Prince William Sound (PWS), Alaska, with 135 single nucleotide polymorphism (SNP) markers. Historical population structure was inferred from the analysis of DNA from fish scales, which had been archived since the late 1960’s for several populations in PWS. Parallel analyses with microsatellites and a test based on Hardy-Weinberg proportions showed that about 50% of the fish-scale DNA was cross-contaminated with DNA from other fish. These samples were removed from the analysis. We used a novel application of the classical source-sink model to compare SNP allele frequencies in these archived fish-scales (1964–1982) with frequencies in contemporary samples (2008–2010) and found a temporal shift toward hatchery allele frequencies in some wild populations. Other populations showed markedly less introgression, despite moderate amounts of hatchery straying. The extent of introgression may reflect similarities in spawning time and life-history traits between hatchery and wild fish, or the degree that hybrids return to a natal spawning area. The source-sink model is a powerful means of detecting low levels of introgression over several generations.
Collapse
Affiliation(s)
- James R. Jasper
- Commercial Fisheries Division, Alaska Department of Fish and Game, Anchorage, Alaska, United States of America
- * E-mail: (JJ); (WSG)
| | - Christopher Habicht
- Commercial Fisheries Division, Alaska Department of Fish and Game, Anchorage, Alaska, United States of America
| | - Steve Moffitt
- Commercial Fisheries Division, Alaska Department of Fish and Game, Cordova, Alaska, United States of America
| | - Rich Brenner
- Commercial Fisheries Division, Alaska Department of Fish and Game, Cordova, Alaska, United States of America
| | - Jennifer Marsh
- School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, United States of America
| | - Bert Lewis
- Commercial Fisheries Division, Alaska Department of Fish and Game, Anchorage, Alaska, United States of America
| | - Elisabeth Creelman Fox
- Commercial Fisheries Division, Alaska Department of Fish and Game, Anchorage, Alaska, United States of America
| | - Zac Grauvogel
- Commercial Fisheries Division, Alaska Department of Fish and Game, Anchorage, Alaska, United States of America
| | - Serena D. Rogers Olive
- Commercial Fisheries Division, Alaska Department of Fish and Game, Anchorage, Alaska, United States of America
| | - W. Stewart Grant
- Commercial Fisheries Division, Alaska Department of Fish and Game, Anchorage, Alaska, United States of America
- * E-mail: (JJ); (WSG)
| |
Collapse
|
38
|
Petrou EL, Hauser L, Waples RS, Seeb JE, Templin WD, Gomez-Uchida D, Seeb LW. Secondary contact and changes in coastal habitat availability influence the nonequilibrium population structure of a salmonid (Oncorhynchus keta). Mol Ecol 2013; 22:5848-60. [PMID: 24118255 PMCID: PMC4265302 DOI: 10.1111/mec.12543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 02/03/2023]
Abstract
Numerous empirical studies have reported lack of migration–drift equilibrium in wild populations. Determining the causes of nonequilibrium population structure is challenging because different evolutionary processes acting at a variety of spatiotemporal scales can produce similar patterns. Studies of contemporary populations in northern latitudes suggest that nonequilibrium population structure is probably caused by recent colonization of the region after the last Pleistocene ice age ended ∼13 000 years ago. The chum salmon's (Oncorhynchus keta) range was fragmented by dramatic environmental changes during the Pleistocene. We investigated the population structure of chum salmon on the North Alaska Peninsula (NAP) and, using both empirical data and simulations, evaluated the effects of colonization timing and founder population heterogeneity on patterns of genetic differentiation. We screened 161 single nucleotide polymorphisms and found evidence of nonequilibrium population structure when the slope of the isolation-by-distance relationship was examined at incremental spatial scales. In addition, simulations suggested that this pattern closely matched models of recent colonization of the NAP by secondary contact. Our results agree with geological and archaeological data indicating that the NAP was a dynamic landscape that may have been more recently colonized than during the last deglaciation because of dramatic changes in coastal hydrology over the last several thousand years.
Collapse
Affiliation(s)
- E L Petrou
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA, 98112, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Khrustaleva AM, Gritsenko OF, Klovach NV. Single-nucleotide polymorphism in populations of sockeye salmon Oncorhynchus nerka from Kamchatka Peninsula. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413110094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Petrou EL, Seeb JE, Hauser L, Witteveen MJ, Templin WD, Seeb LW. Fine-scale sampling reveals distinct isolation by distance patterns in chum salmon (Oncorhynchus keta) populations occupying a glacially dynamic environment. CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0534-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Garvin MR, Saitoh K, Gharrett AJ. Application of single nucleotide polymorphisms to non-model species: a technical review. Mol Ecol Resour 2013; 10:915-34. [PMID: 21565101 DOI: 10.1111/j.1755-0998.2010.02891.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Single nucleotide polymorphisms (SNPs) have gained wide use in humans and model species and are becoming the marker of choice for applications in other species. Technology that was developed for work in model species may provide useful tools for SNP discovery and genotyping in non-model organisms. However, SNP discovery can be expensive, labour intensive, and introduce ascertainment bias. In addition, the most efficient approaches to SNP discovery will depend on the research questions that the markers are to resolve as well as the focal species. We discuss advantages and disadvantages of several past and recent technologies for SNP discovery and genotyping and summarize a variety of SNP discovery and genotyping studies in ecology and evolution.
Collapse
Affiliation(s)
- M R Garvin
- Fisheries Division, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK 99801, USA National Research Institute of Fisheries Science, Fukuura, Kanazawa, Yokohama 236-8648 Japan
| | | | | |
Collapse
|
42
|
Albaina A, Iriondo M, Velado I, Laconcha U, Zarraonaindia I, Arrizabalaga H, Pardo MA, Lutcavage M, Grant WS, Estonba A. Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Anim Genet 2013; 44:678-92. [PMID: 23668670 DOI: 10.1111/age.12051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 10/26/2022]
Abstract
The optimal management of the commercially important, but mostly over-exploited, pelagic tunas, albacore (Thunnus alalunga Bonn., 1788) and Atlantic bluefin tuna (BFT; Thunnus thynnus L., 1758), requires a better understanding of population structure than has been provided by previous molecular methods. Despite numerous studies of both species, their population structures remain controversial. This study reports the development of single nucleotide polymorphisms (SNPs) in albacore and BFT and the application of these SNPs to survey genetic variability across the geographic ranges of these tunas. A total of 616 SNPs were discovered in 35 albacore tuna by comparing sequences of 54 nuclear DNA fragments. A panel of 53 SNPs yielded FST values ranging from 0.0 to 0.050 between samples after genotyping 460 albacore collected throughout the distribution of this species. No significant heterogeneity was detected within oceans, but between-ocean comparisons (Atlantic, Pacific and Indian oceans along with Mediterranean Sea) were significant. Additionally, a 17-SNP panel was developed in Atlantic BFT by cross-species amplification in 107 fish. This limited number of SNPs discriminated between samples from the two major spawning areas of Atlantic BFT (FST = 0.116). The SNP markers developed in this study can be used to genotype large numbers of fish without the need for standardizing alleles among laboratories.
Collapse
Affiliation(s)
- A Albaina
- Genetika, Antropologia Fisikoa eta Animalien Fisiologia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.O. Box 48940, Leioa, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lemay MA, Donnelly DJ, Russello MA. Transcriptome-wide comparison of sequence variation in divergent ecotypes of kokanee salmon. BMC Genomics 2013; 14:308. [PMID: 23651561 PMCID: PMC3653777 DOI: 10.1186/1471-2164-14-308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/01/2013] [Indexed: 12/13/2022] Open
Abstract
Background High throughput next-generation sequencing technology has enabled the collection of genome-wide sequence data and revolutionized single nucleotide polymorphism (SNP) discovery in a broad range of species. When analyzed within a population genomics framework, SNP-based genotypic data may be used to investigate questions of evolutionary, ecological, and conservation significance in natural populations of non-model organisms. Kokanee salmon are recently diverged freshwater populations of sockeye salmon (Oncorhynchus nerka) that exhibit reproductive ecotypes (stream-spawning and shore-spawning) in lakes throughout western North America and northeast Asia. Current conservation and management strategies may treat these ecotypes as discrete stocks, however their recent divergence and low levels of gene flow make in-season genetic stock identification a challenge. The development of genome-wide SNP markers is an essential step towards fine-scale stock identification, and may enable a direct investigation of the genetic basis of ecotype divergence. Results We used pooled cDNA samples from both ecotypes of kokanee to generate 750 million base pairs of transcriptome sequence data. These raw data were assembled into 11,074 high coverage contigs from which we identified 32,699 novel single nucleotide polymorphisms. A subset of these putative SNPs was validated using high-resolution melt analysis and Sanger resequencing to genotype independent samples of kokanee and anadromous sockeye salmon. We also identified a number of contigs that were composed entirely of reads from a single ecotype, which may indicate regions of differential gene expression between the two reproductive ecotypes. In addition, we found some evidence for greater pathogen load among the kokanee sampled in stream-spawning habitats, suggesting a possible evolutionary advantage to shore-spawning that warrants further study. Conclusions This study provides novel genomic resources to support population genetic and genomic studies of both kokanee and anadromous sockeye salmon, and has the potential to produce markers capable of fine-scale stock assessment. While this RNAseq approach was successful at identifying a large number of new SNP loci, we found that the frequency of alleles present in the pooled transcriptome data was not an accurate predictor of population allele frequencies.
Collapse
Affiliation(s)
- Matthew A Lemay
- Department of Biology, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna BC, V1V 1V7, Canada.
| | | | | |
Collapse
|
44
|
Diopere E, Hellemans B, Volckaert FA, Maes GE. Identification and validation of single nucleotide polymorphisms in growth- and maturation-related candidate genes in sole (Solea solea L.). Mar Genomics 2013; 9:33-8. [DOI: 10.1016/j.margen.2012.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 11/29/2022]
|
45
|
Genotyping of two populations of Southern Baltic Sea trout Salmo trutta m. trutta using an Atlantic salmon derived SNP-array. Mar Genomics 2013; 9:25-32. [DOI: 10.1016/j.margen.2012.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 08/23/2012] [Accepted: 08/30/2012] [Indexed: 11/20/2022]
|
46
|
Vasseur E, Quintana-Murci L. The impact of natural selection on health and disease: uses of the population genetics approach in humans. Evol Appl 2013; 6:596-607. [PMID: 23789027 PMCID: PMC3684741 DOI: 10.1111/eva.12045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/13/2012] [Indexed: 01/09/2023] Open
Abstract
Investigations of the legacy of natural selection in the human genome have proved particularly informative, pinpointing functionally important regions that have participated in our genetic adaptation to the environment. Furthermore, genetic dissection of the intensity and type of selection acting on human genes can be used to predict involvement in different forms and severities of human diseases. We review here the progress made in population genetics studies toward understanding the effects of selection, in its different forms and intensities, on human genome diversity. We discuss some outstanding, robust examples of genes and biological functions subject to strong dietary, climatic and pathogen selection pressures. We also explore the possible relationship between cancer and natural selection, a topic that has been largely neglected because cancer is generally seen as a late-onset disease. Finally, we discuss how the present-day incidence of some diseases of modern societies may represent a by-product of past adaptation to other selective forces and changes in lifestyle. This perspective thus illustrates the value of adopting a population genetics approach in delineating the biological mechanisms that have played a major evolutionary role in the way humans have genetically adapted to different environments and lifestyles over time.
Collapse
Affiliation(s)
- Estelle Vasseur
- Institut Pasteur, Unit of Human Evolutionary Genetics 75015, Paris, France ; Centre National de la Recherche Scientifique, URA 3012 75015, Paris, France ; Centre National de la Recherche Scientifique, UMR 5174, Evolution et Diversité Biologique 31062, Toulouse, France ; Université de Toulouse 31062, Toulouse, France
| | | |
Collapse
|
47
|
Storer CG, Pascal CE, Roberts SB, Templin WD, Seeb LW, Seeb JE. Rank and order: evaluating the performance of SNPs for individual assignment in a non-model organism. PLoS One 2012; 7:e49018. [PMID: 23185290 PMCID: PMC3502385 DOI: 10.1371/journal.pone.0049018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 10/09/2012] [Indexed: 01/15/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) are valuable tools for ecological and evolutionary studies. In non-model species, the use of SNPs has been limited by the number of markers available. However, new technologies and decreasing technology costs have facilitated the discovery of a constantly increasing number of SNPs. With hundreds or thousands of SNPs potentially available, there is interest in comparing and developing methods for evaluating SNPs to create panels of high-throughput assays that are customized for performance, research questions, and resources. Here we use five different methods to rank 43 new SNPs and 71 previously published SNPs for sockeye salmon: F(ST), informativeness (I(n)), average contribution to principal components (LC), and the locus-ranking programs BELS and WHICHLOCI. We then tested the performance of these different ranking methods by creating 48- and 96-SNP panels of the top-ranked loci for each method and used empirical and simulated data to obtain the probability of assigning individuals to the correct population using each panel. All 96-SNP panels performed similarly and better than the 48-SNP panels except for the 96-SNP BELS panel. Among the 48-SNP panels, panels created from F(ST), I(n), and LC ranks performed better than panels formed using the top-ranked loci from the programs BELS and WHICHLOCI. The application of ranking methods to optimize panel performance will become more important as more high-throughput assays become available.
Collapse
Affiliation(s)
- Caroline G. Storer
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Carita E. Pascal
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Steven B. Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - William D. Templin
- Gene Conservation Laboratory, Alaska Department of Fish and Game, Anchorage, Alaska, United States of America
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - James E. Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
48
|
Everett MV, Miller MR, Seeb JE. Meiotic maps of sockeye salmon derived from massively parallel DNA sequencing. BMC Genomics 2012; 13:521. [PMID: 23031582 PMCID: PMC3563581 DOI: 10.1186/1471-2164-13-521] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 09/23/2012] [Indexed: 12/21/2022] Open
Abstract
Background Meiotic maps are a key tool for comparative genomics and association mapping studies. Next-generation sequencing and genotyping by sequencing are speeding the processes of SNP discovery and the development of new genetic tools, including meiotic maps for numerous species. Currently there are limited genetic resources for sockeye salmon, Oncorhynchus nerka. We develop the first dense meiotic map for sockeye salmon using a combination of novel SNPs found in restriction site associated DNA (RAD tags) and SNPs available from existing expressed sequence tag (EST) based assays. Results We discovered and genotyped putative SNPs in 3,430 RAD tags. We removed paralogous sequence variants leaving 1,672 SNPs; these were combined with 53 EST-based SNP genotypes for linkage mapping. The map contained 29 male and female linkage groups, consistent with the haploid chromosome number expected for sockeye salmon. The female map contains 1,057 loci spanning 4,896 cM, and the male map contains 1,118 loci spanning 4,220 cM. Regions of conservation with rainbow trout and synteny between the RAD based rainbow trout map and the sockeye salmon map were established. Conclusions Using RAD sequencing and EST-based SNP assays we successfully generated the first high density linkage map for sockeye salmon.
Collapse
Affiliation(s)
- Meredith V Everett
- School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195-5020, USA.
| | | | | |
Collapse
|
49
|
Ackerman MW, Templin WD, Seeb JE, Seeb LW. Landscape heterogeneity and local adaptation define the spatial genetic structure of Pacific salmon in a pristine environment. CONSERV GENET 2012. [DOI: 10.1007/s10592-012-0401-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Hoffman JI, Tucker R, Bridgett SJ, Clark MS, Forcada J, Slate J. Rates of assay success and genotyping error when single nucleotide polymorphism genotyping in non-model organisms: a case study in the Antarctic fur seal. Mol Ecol Resour 2012; 12:861-72. [PMID: 22727236 DOI: 10.1111/j.1755-0998.2012.03158.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although single nucleotide polymorphisms (SNPs) are increasingly being recognized as powerful molecular markers, their application to non-model organisms can bring significant challenges. Among these are imperfect conversion rates of assays designed from in silico resources and the enhanced potential for genotyping error relative to pre-validated, highly optimized human SNPs. To explore these issues, we used Illumina's GoldenGate assay to genotype 480 Antarctic fur seal (Arctocephalus gazella) individuals at 144 putative SNPs derived from a 454 transcriptome assembly. One hundred and thirty-five polymorphic SNPs (93.8%) were automatically validated by the program GenomeStudio, and the initial genotyping error rate, estimated from nine replicate samples, was 0.004 per reaction. However, an almost tenfold further reduction in the error rate was achieved by excluding 31 loci (21.5%) that exhibited unclear clustering patterns, manually editing clusters to allow rescoring of ambiguous or incorrect genotypes, and excluding 18 samples (3.8%) with unreliable genotypes. After stringent quality filtering, we also found a counter-intuitive negative relationship between in silico minor allele frequency and the conversion rate, suggesting that some of our assays may have been designed from paralogous loci. Nevertheless, we obtained over 45 000 individual SNP genotypes with a final error rate of 0.0005, indicating that the GoldenGate assay is eminently capable of generating large, high-quality data sets for non-model organisms. This has positive implications for future studies of the evolutionary, behavioural and conservation genetics of natural populations.
Collapse
Affiliation(s)
- J I Hoffman
- Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33501 Bielefeld, Germany.
| | | | | | | | | | | |
Collapse
|