1
|
Tsuchiya K, Zayasu Y, Nakajima Y, Arakaki N, Suzuki G, Satoh N, Shinzato C. Genomic analysis of a reef-building coral, Acropora digitifera, reveals complex population structure and a migration network in the Nansei Islands, Japan. Mol Ecol 2022; 31:5270-5284. [PMID: 36082782 DOI: 10.1111/mec.16665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/04/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022]
Abstract
Understanding the structure and connectivity of coral populations is fundamental for developing marine conservation policies, especially in patchy environments such as archipelagos. The Nansei Islands, extending more than 1000 km in southwestern Japan, are characterized by high levels of biodiversity and endemism, supported by coral reefs, which make this region ideal for assessing genetic attributes of coral populations. In this study, we conducted population genomic analyses based on genome-wide, single-nucleotide polymorphisms (SNPs) of Acropora digitifera, a common species in the Nansei Islands. By merging newly obtained genome resequencing data with previously published data, we identified more than 4 million genome-wide SNPs in 303 colonies collected at 22 locations, with sequencing coverage ranging from 3.91× to 27.41×. While population structure analyses revealed genetic similarities between the southernmost and northernmost locations, separated by >1000 km, several subpopulations in intermediate locations suggested limited genetic admixture, indicating conflicting migration tendencies in the Nansei Islands. Although migration networks revealed a general tendency of northward migration along the Kuroshio Current, a substantial amount of southward migration was also detected, indicating important contributions of minor ocean currents to coral larval dispersal. Moreover, heterogeneity in the transition of effective population sizes among locations suggests different histories for individual subpopulations. The unexpected complexity of both past and present population dynamics in the Nansei Islands implies that heterogeneity of ocean currents and local environments, past and present, have influenced the population structure of this species, and similar unexpected population complexities may be expected for other marine species with similar reproductive modes.
Collapse
Affiliation(s)
- Kojin Tsuchiya
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Yuichi Nakajima
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
| | - Nana Arakaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Go Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
2
|
Brown KT, Southgate PC, Hewavitharane CA, Lal MM. Saving the sea cucumbers: Using population genomic tools to inform fishery and conservation management of the Fijian sandfish Holothuria (Metriatyla) scabra. PLoS One 2022; 17:e0274245. [PMID: 36084062 PMCID: PMC9462726 DOI: 10.1371/journal.pone.0274245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
The sea cucumber Holothuria (Metriatyla) scabra, known as sandfish, is a high-value tropical echinoderm central to the global bêche-de-mer (BDM) trade. This species has been heavily exploited across its natural range, with overharvesting and ineffective fishery management leaving stocks in the Pacific region heavily depleted. In Fiji, sandfish stocks have not recovered since a 1988 harvest ban, with surveys reporting declining populations and recruitment failure. Therefore, to inform fishery management policy for the wild sandfish resource and to guide hatchery-based restocking efforts, a high-resolution genomic audit of Fijian populations was carried out. A total of 6,896 selectively-neutral and 186 putatively-adaptive genome-wide SNPs (DArTseq) together with an independent oceanographic particle dispersal model were used to investigate genetic structure, diversity, signatures of selection, relatedness and connectivity in six wild populations. Three genetically distinct populations were identified with shallow but significant differentiation (average Fst = 0.034, p≤0.05), comprising (1) Lakeba island (Lau archipelago), (2) Macuata (Vanua Levu), and (3) individuals from Yasawa, Ra, Serua island and Kadavu comprising the final unit. Small reductions in allelic diversity were observed in marginal populations in eastern Fiji (overall mean A = 1.956 vs. Lau, A = 1.912 and Macuata, A = 1.939). Signatures of putative local adaptation were also discovered in individuals from Lakeba island, suggesting that they be managed as a discrete unit. An isolation-by-distance model of genetic structure for Fijian sandfish is apparent, with population fragmentation occurring towards the east. Hatchery-based production of juveniles is promising for stock replenishment, however great care is required during broodstock source population selection and juvenile releases into source areas only. The successful use of genomic data here has the potential to be applied to other sea cucumber species in Fiji, and other regions involved in the global BDM trade. While preliminary insights into the genetic structure and connectivity of sandfish in Fiji have been obtained, further local, regional and distribution-wide investigations are required to better inform conservation efforts, wild stock management and hatchery-based restocking interventions for this valuable invertebrate.
Collapse
Affiliation(s)
- Kelly T Brown
- Discipline of Marine Studies, School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, Suva, Fiji
| | - Paul C Southgate
- Discipline of Marine Studies, School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, Suva, Fiji
- School of Science, Technology and Engineering, and Australian Centre for Pacific Islands Research, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Chinthaka A Hewavitharane
- Discipline of Marine Studies, School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, Suva, Fiji
| | - Monal M Lal
- Discipline of Marine Studies, School of Agriculture, Geography, Environment, Ocean and Natural Sciences, The University of the South Pacific, Suva, Fiji
- School of Science, Technology and Engineering, and Australian Centre for Pacific Islands Research, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| |
Collapse
|
3
|
Thomas L, Miller KJ. High gene flow in the silverlip pearl oyster Pinctada maxima between inshore and offshore sites near Eighty Mile Beach in Western Australia. PeerJ 2022; 10:e13323. [PMID: 35669950 PMCID: PMC9165592 DOI: 10.7717/peerj.13323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/01/2022] [Indexed: 01/13/2023] Open
Abstract
An understanding of stock recruitment dynamics in fisheries is fundamental to successful management. Pinctada maxima is a bivalve mollusc widely distributed throughout the Indo-Pacific and is the main species targeted for cultured pearl and pearl shell production in Australia. Pearl production in Australia relies heavily on wild-caught individuals, the majority of which come from the Eighty Mile Beach region near Broome in Western Australia. In this study, we used a genotyping by sequencing approach to explore fine-scale patterns of genetic connectivity among inshore shallow and offshore deep populations of P. maxima near Eighty Mile Beach. Our results revealed high-levels of gene flow among inshore and offshore sites and no differences in genetic diversity between depths. Global estimates of genetic differentiation were low (F ST = 0.006) but significantly different from zero, and pairwise estimates of genetic differentiation among sites were significant in only 3% of comparisons. Moreover, Bayesian clustering detected no separation of inshore and offshore sample sites, and instead showed all samples to be admixed among sites, locations and depths. Despite an absence of any clear spatial clustering among sites, we identified a significant pattern of isolation by distance. In a dynamic environment like Eighty Mile Beach, genetic structure can change from year-to-year and successive dispersal and recruitment events over generations likely act to homogenize the population. Although we cannot rule out the null hypothesis of panmixia, our data indicate high levels of dispersal and connectivity among inshore and offshore fishing grounds.
Collapse
Affiliation(s)
- Luke Thomas
- Oceans Institute, Oceans Graduate School, The University of Western Australia, Crawley, Australia
- Indian Ocean Marine Research Centre, Australian Institute of Marine Science, Crawley, Australia
| | - Karen J. Miller
- Indian Ocean Marine Research Centre, Australian Institute of Marine Science, Crawley, Australia
| |
Collapse
|
4
|
Sousa R, Vasconcelos J, Vera-Escalona I, Pinto AR, Hawkins SJ, Freitas M, Delgado J, González JA, Riera R. Pleistocene expansion, anthropogenic pressure and ocean currents: Disentangling the past and ongoing evolutionary history of Patella aspera Röding, 1798 in the archipelago of Madeira. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105485. [PMID: 34715642 DOI: 10.1016/j.marenvres.2021.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
AIMS Rising sea-level following the Last Glacial Maximum lead to fragmentation of coastal limpet populations between islands of the Archipelago of Madeira. This fragmentation is reinforced by recent heavy exploitation reducing effective population size on Madeira Island. We use the limpet P. aspera to understand how the role of processes at different time scales (i.e. changes in the sea level and overexploitation) can influence the genetic composition of an extant species, relating these processes to reproductive phenology and seasonal shifts in ocean currents. LOCATION Madeira Island, Porto Santo and Desertas (Archipelago of Madeira, NE Atlantic Ocean). TAXON The limpet Patella aspera. METHODS Twelve microsatellite genetic markers were used. A power analysis was used to evaluate the power of the microsatellite markers to detect a signal of population differentiation. Long-term past migrations were assessed using a Bayesian Markov Montecarlo approach in the software MIGRATE-n to estimate mutation-scaled migration rates (M = m/μ; m, probability of a lineage immigrating per generation; μ, mutation rate). Two scenarios were evaluated using an Approximate Bayesian Computation (ABC) in the software DIYABC 2.1 (i) Scenario 1: considered a population scenario from a reduced Ne at time t3 to a higher Ne at time t2; and (ii) Scenario 2 considering a reduction of Ne from a time t3 to a time t2. RESULTS Colonization of the archipelago by Portuguese settlers six centuries ago probably led to an important decrease in the genetic diversity of the species (Ne). Contemporary gene flow strongly support a pattern of high asymmetric connectivity explained by the reproductive phenology of the species and spatio-temporal seasonal changes in the ocean currents. Spatio-temporal reconstructions using Bayesian methods, including coalescent and Approximate Bayesian Computation (ABC) approaches, suggest changes in the migration patterns from highly symmetric to highly asymmetric connectivity with subtle population differentiation as consequence of post-glacial maximum sea level rise during the Holocene. MAIN CONCLUSIONS Our results suggest that anthropogenic activity could have had serious effects on the genetic diversity of heavily exploited littoral species since the end of the Pleistocene, probably accelerating in recent years.
Collapse
Affiliation(s)
- Ricardo Sousa
- Observatório Oceânico da Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (OOM/ARDITI) - Edifício Madeira Tecnopolo, Funchal, Madeira, Portugal; Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal; MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105, Funchal, Madeira, Portugal
| | - Joana Vasconcelos
- MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105, Funchal, Madeira, Portugal; Faculdade de Ciências de Vida, Universidade da Madeira, Campus Universitário da Madeira, Caminho da Penteada, 9020-020, Funchal, Madeira, Portugal; Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | - Iván Vera-Escalona
- CIBAS, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile; IU-ECOAQUA, Group of Biodiversity and Conservation (BIOCON), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Ana Rita Pinto
- Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal
| | - S J Hawkins
- Marine Biological Association of the UK, Plymouth, PL1 2PB, UK; School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK
| | - Mafalda Freitas
- Observatório Oceânico da Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (OOM/ARDITI) - Edifício Madeira Tecnopolo, Funchal, Madeira, Portugal; Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal; MARE - Marine and Environmental Sciences Centre, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Edifício Madeira Tecnopolo Piso 0, Caminho da Penteada, 9020-105, Funchal, Madeira, Portugal
| | - João Delgado
- Direção Regional do Mar (DRM)/ Direção de Serviços de Monitorização, Estudos e Investigação do Mar (DSEIMar), 9004-562, Funchal, Madeira, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Porto, Portugal
| | - José A González
- Ecología Marina Aplicada y Pesquerías (i-UNAT), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Rodrigo Riera
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile; IU-ECOAQUA, Group of Biodiversity and Conservation (BIOCON), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
5
|
Xu Y, Zhang Y, Liang J, He G, Liu X, Zheng Z, Le DQ, Deng Y, Zhao L. Impacts of marine heatwaves on pearl oysters are alleviated following repeated exposure. MARINE POLLUTION BULLETIN 2021; 173:112932. [PMID: 34534933 DOI: 10.1016/j.marpolbul.2021.112932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Marine heatwaves (MHWs) have occurred with increasing duration, frequency and intensity in the past decade in the South China Sea, posing serious threats to marine ecosystems and fisheries. However, the impact of MHWs on marine bivalves - one of the most ecologically and economically important fauna in coastal ecosystems - remains largely unknown. Here, we investigated physiological responses of the pearl oyster, Pinctada maxima inhabiting a newly identified climate change hotspot (Beibu Gulf, South China Sea) to short-lasting and repeatedly-occurring MHWs scenarios. Following 3-day exposure to short-lasting MHWs scenarios with water temperature rapidly arising from 24 °C to 28 °C, 32 °C and 36 °C, respectively, mortality rates of pearl oysters increased, and especially they suffered 100% mortality at 36 °C. Activities of enzymes including acid phosphatase (ACP), alkaline phosphatase (AKP), glutathione (GSH) and level of malondialdehyde (MDA) increased significantly with increasing intensity and duration of MHWs, indicating thermal stress responses. When exposed to repeatedly-occurring MHWs scenarios, mortality rates of pearl oysters increased slightly, and thermal stress responses were alleviated, as exemplified by significant decreases in ACP, AKP, GSH and MDA activities compared with those during short-lasting MHWs scenarios, demonstrating the potential of P. maxima to acclimate rapidly to MHWs. These findings advance our understanding of how marine bivalves respond to MHWs scenarios varying in duration, frequency, and intensity.
Collapse
Affiliation(s)
- Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China.
| | - Jian Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Department of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Guixiang He
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaolong Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Dung Quang Le
- Institute for Circular Economy Development, Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
6
|
Population genetic signatures of a climate change driven marine range extension. Sci Rep 2018; 8:9558. [PMID: 29934542 PMCID: PMC6015011 DOI: 10.1038/s41598-018-27351-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/20/2018] [Indexed: 11/08/2022] Open
Abstract
Shifts in species distribution, or 'range shifts', are one of the most commonly documented responses to ocean warming, with important consequences for the function and structure of ecosystems, and for socio-economic activities. Understanding the genetic signatures of range shifts can help build our knowledge of the capacity of species to establish and persist in colonised areas. Here, seven microsatellite loci were used to examine the population connectivity, genetic structure and diversity of Octopus tetricus, which has extended its distribution several hundred kilometres polewards associated with the southwards extension of the warm East Australian Current along south-eastern Australia. The historical distribution and the range extension zones had significant genetic differences but levels of genetic diversity were comparable. The population in the range extension zone was sub-structured, contained relatively high levels of self-recruitment and was sourced by migrants from along the entire geographic distribution. Genetic bottlenecks and changes in population size were detected throughout the range extension axis. Persistent gene flow from throughout the historical zone and moderate genetic diversity may buffer the genetic bottlenecks and favour the range extension of O. tetricus. These characteristics may aid adaptation, establishment, and long-term persistence of the population in the range extension zone.
Collapse
|
7
|
Strugnell JM, Allcock AL, Watts PC. Closely related octopus species show different spatial genetic structures in response to the Antarctic seascape. Ecol Evol 2017; 7:8087-8099. [PMID: 29043058 PMCID: PMC5632630 DOI: 10.1002/ece3.3327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/18/2017] [Accepted: 07/23/2017] [Indexed: 01/28/2023] Open
Abstract
Determining whether comparable processes drive genetic divergence among marine species is relevant to molecular ecologists and managers alike. Sympatric species with similar life histories might be expected to show comparable patterns of genetic differentiation and a consistent influence of environmental factors in shaping divergence. We used microsatellite loci to quantify genetic differentiation across the Scotia Arc in three species of closely related benthic octopods, Pareledone turqueti, P. charcoti, and Adelieledone polymorpha. The relative importance of environmental factors (latitude, longitude, depth, and temperature) in shaping genetic structure was investigated when significant spatial genetic structure was uncovered. Isolated populations of P. turqueti and A. polymorpha at these species' range margins were genetically different to samples close to mainland Antarctica; however, these species showed different genetic structures at a regional scale. Samples of P. turqueti from the Antarctic Peninsula, Elephant Island, and Signy Island were genetically different, and this divergence was associated primarily with sample collection depth. By contrast, weak or nonsignificant spatial genetic structure was evident across the Antarctic Peninsula, Elephant Island, and Signy Island region for A. polymorpha, and slight associations between population divergence and temperature or depth (and/or longitude) were detected. Pareledone charcoti has a limited geographic range, but exhibited no genetic differentiation between samples from a small region of the Scotia Arc (Elephant Island and the Antarctic Peninsula). Thus, closely related species with similar life history strategies can display contrasting patterns of genetic differentiation depending on spatial scale; moreover, depth may drive genetic divergence in Southern Ocean benthos.
Collapse
Affiliation(s)
- Jan M. Strugnell
- Centre for Sustainable Tropical Fisheries and AquacultureMarine Biology and Aquaculture James Cook UniversityTownsvilleQldAustralia
- Department of Ecology, Environment and EvolutionSchool of Life SciencesLa Trobe UniversityMelbourneVic.Australia
| | - A. Louise Allcock
- Ryan Institute and School of Natural SciencesNational University of Ireland GalwayGalwayIreland
| | | |
Collapse
|
8
|
Hernawan UE, van Dijk KJ, Kendrick GA, Feng M, Biffin E, Lavery PS, McMahon K. Historical processes and contemporary ocean currents drive genetic structure in the seagrassThalassia hemprichiiin the Indo-Australian Archipelago. Mol Ecol 2017; 26:1008-1021. [DOI: 10.1111/mec.13966] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Udhi E. Hernawan
- School of Science and Centre for Marine Ecosystems Research; Edith Cowan University; Joondalup WA 6027 Australia
- UPT. LKBL-Tual; Research Centre for Oceanography (P2O); Indonesian Institute of Sciences (LIPI); Ancol Timur Jakarta 14430 Indonesia
| | - Kor-jent van Dijk
- School of Biological Sciences; The University of Adelaide; Adelaide SA 5005 Australia
| | - Gary A. Kendrick
- School of Plant Biology and The Ocean Institute; The University of Western Australia; Crawley WA 6009 Australia
| | - Ming Feng
- CSIRO Ocean and Atmosphere; Centre for Environment and Life Sciences; Floreat WA 6014 Australia
| | - Edward Biffin
- School of Biological Sciences; The University of Adelaide; Adelaide SA 5005 Australia
| | - Paul S. Lavery
- School of Science and Centre for Marine Ecosystems Research; Edith Cowan University; Joondalup WA 6027 Australia
| | - Kathryn McMahon
- School of Science and Centre for Marine Ecosystems Research; Edith Cowan University; Joondalup WA 6027 Australia
| |
Collapse
|
9
|
Lal MM, Southgate PC, Jerry DR, Bosserelle C, Zenger KR. Swept away: ocean currents and seascape features influence genetic structure across the 18,000 Km Indo-Pacific distribution of a marine invertebrate, the black-lip pearl oyster Pinctada margaritifera. BMC Genomics 2017; 18:66. [PMID: 28073363 PMCID: PMC5225542 DOI: 10.1186/s12864-016-3410-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic structure in many widely-distributed broadcast spawning marine invertebrates remains poorly understood, posing substantial challenges for their fishery management, conservation and aquaculture. Under the Core-Periphery Hypothesis (CPH), genetic diversity is expected to be highest at the centre of a species' distribution, progressively decreasing with increased differentiation towards outer range limits, as populations become increasingly isolated, fragmented and locally adapted. The unique life history characteristics of many marine invertebrates such as high dispersal rates, stochastic survival and variable recruitment are also likely to influence how populations are organised. To examine the microevolutionary forces influencing population structure, connectivity and adaptive variation in a highly-dispersive bivalve, populations of the black-lip pearl oyster Pinctada margaritifera were examined across its ~18,000 km Indo-Pacific distribution. RESULTS Analyses utilising 9,624 genome-wide SNPs and 580 oysters, discovered differing patterns of significant and substantial broad-scale genetic structure between the Indian and Pacific Ocean basins. Indian Ocean populations were markedly divergent (F st = 0.2534-0.4177, p < 0.001), compared to Pacific Ocean oysters, where basin-wide gene flow was much higher (F st = 0.0007-0.1090, p < 0.001). Partitioning of genetic diversity (hierarchical AMOVA) attributed 18.1% of variance between ocean basins, whereas greater proportions were resolved within samples and populations (45.8% and 35.7% respectively). Visualisation of population structure at selectively neutral loci resolved three and five discrete genetic clusters for the Indian and Pacific Oceans respectively. Evaluation of genetic structure at adaptive loci for Pacific populations (89 SNPs under directional selection; F st = 0.1012-0.4371, FDR = 0.05), revealed five clusters identical to those detected at neutral SNPs, suggesting environmental heterogeneity within the Pacific. Patterns of structure and connectivity were supported by Mantel tests of isolation by distance (IBD) and independent hydrodynamic particle dispersal simulations. CONCLUSIONS It is evident that genetic structure and connectivity across the natural range of P. margaritifera is highly complex, and produced by the interaction of ocean currents, IBD and seascape features at a broad scale, together with habitat geomorphology and local adaptation at regional levels. Overall population organisation is far more elaborate than generalised CPH predictions, however valuable insights for regional fishery management, and a greater understanding of range-wide genetic structure in a highly-dispersive marine invertebrate have been gained.
Collapse
Affiliation(s)
- Monal M. Lal
- Centre for Sustainable Tropical Fisheries and Aquaculture, and College of Science and Engineering, James Cook University, Townsville, QLD 4811 QLD Australia
| | - Paul C. Southgate
- Centre for Sustainable Tropical Fisheries and Aquaculture, and College of Science and Engineering, James Cook University, Townsville, QLD 4811 QLD Australia
- Australian Centre for Pacific Islands Research, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558 QLD Australia
| | - Dean R. Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture, and College of Science and Engineering, James Cook University, Townsville, QLD 4811 QLD Australia
| | - Cyprien Bosserelle
- Geoscience Division, Secretariat of the Pacific Community, 241 Mead Road, Nabua, Suva Fiji Islands
| | - Kyall R. Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, and College of Science and Engineering, James Cook University, Townsville, QLD 4811 QLD Australia
| |
Collapse
|
10
|
Nayfa MG, Zenger KR. Unravelling the effects of gene flow and selection in highly connected populations of the silver-lip pearl oyster (Pinctada maxima). Mar Genomics 2016; 28:99-106. [PMID: 26934995 DOI: 10.1016/j.margen.2016.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 11/19/2022]
Abstract
Many marine organisms often display weak levels of population genetic structuring as a result of both environmental characteristics (e.g., ocean currents) and life history traits (e.g., widely dispersed planktonic larval stages) maintaining high levels of gene flow. This can lead to the assumption that these organisms can be managed as a single stock based on high levels of population connectivity. However, this neglects to account for other micro-evolutionary forces such as selection, which also shape these populations. This study utilizes 1130 genome-wide SNP loci to unravel the effects of gene flow and selection shaping three highly connected populations of the silver-lip pearl oyster (Pinctada maxima) in the ecologically and economically important Indo-Pacific region (Aru, Bali, and West Papua). Twenty-two loci under directional selection were identified amongst the populations, providing further supporting evidence of strong local adaptation (i.e., G×E effects) among populations in this region. Global Fst values for directional outliers (0.348) were up to eight times greater than for neutral markers (0.043). Pairwise Fst comparisons between Aru and Bali revealed the largest directional differences (0.488), while Bali and West Papua had the least (0.062). Unrooted neighbour-joining (NJ) distance trees and genetic diversity indices of directional outliers revealed that individuals from Bali and West Papua had reduced allelic variation (MAFavg=0.144, Ho=0.238 and MAFavg=0.232, Ho=0.369, respectively) compared to Aru (MAFavg=0.292, Ho=0.412). This indicates that directional selection is most likely acting upon genetic variation within the Bali and West Papua populations. NJ distance trees, discriminant analysis of principal components, and Fst analyses of directional outliers revealed two divergent groups ("Bali/West Papua"; "Aru") that had previously gone unrecognized. This study not only illustrates that relatively strong local adaptive forces are occurring despite high gene flow, but identifies the populations that are most likely experiencing selection. Additionally, this study highlights the need to understand all micro-evolutionary forces acting on populations when resolving stock structure.
Collapse
Affiliation(s)
- Maria G Nayfa
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, QLD, Australia.
| | - Kyall R Zenger
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, QLD, Australia.
| |
Collapse
|
11
|
Steinig EJ, Neuditschko M, Khatkar MS, Raadsma HW, Zenger KR. netview p: a network visualization tool to unravel complex population structure using genome-wide SNPs. Mol Ecol Resour 2015; 16:216-27. [PMID: 26129944 DOI: 10.1111/1755-0998.12442] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 11/29/2022]
Abstract
Network-based approaches are emerging as valuable tools for the analysis of complex genetic structure in wild and captive populations. netview p combines data quality control with the construction of population networks through mutual k-nearest neighbours thresholds applied to genome-wide SNPs. The program is cross-platform compatible, open-source and efficiently operates on data ranging from hundreds to hundreds of thousands of SNPs. The pipeline was used for the analysis of pedigree data from simulated (n = 750, SNPs = 1279) and captive silver-lipped pearl oysters (n = 415, SNPs = 1107), wild populations of the European hake from the Atlantic and Mediterranean (n = 834, SNPs = 380) and grey wolves from North America (n = 239, SNPs = 78 255). The population networks effectively visualize large- and fine-scale genetic structure within and between populations, including family-level structure and relationships. netview p comprises a network-based addition to other population analysis tools and provides user-friendly access to a complex network analysis pipeline through implementation in python.
Collapse
Affiliation(s)
- Eike J Steinig
- College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, Australia
| | - Markus Neuditschko
- Reprogen - Animal Bioscience, Faculty of Veterinary Science, University of Sydney, Camden, NSW, Australia
| | - Mehar S Khatkar
- Reprogen - Animal Bioscience, Faculty of Veterinary Science, University of Sydney, Camden, NSW, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, Townsville, Qld, Australia
| | - Herman W Raadsma
- College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, Australia.,Reprogen - Animal Bioscience, Faculty of Veterinary Science, University of Sydney, Camden, NSW, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, Townsville, Qld, Australia
| | - Kyall R Zenger
- College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, Townsville, Qld, Australia
| |
Collapse
|
12
|
Geraghty PT, Williamson JE, Macbeth WG, Blower DC, Morgan JAT, Johnson G, Ovenden JR, Gillings MR. Genetic structure and diversity of two highly vulnerable carcharhinids in Australian waters. ENDANGER SPECIES RES 2014. [DOI: 10.3354/esr00580] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Jones DB, Jerry DR, Forêt S, Konovalov DA, Zenger KR. Genome-wide SNP validation and mantle tissue transcriptome analysis in the silver-lipped pearl oyster, Pinctada maxima. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:647-658. [PMID: 23715808 DOI: 10.1007/s10126-013-9514-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/12/2013] [Indexed: 06/02/2023]
Abstract
Pearl oysters are not only farmed for their gemstone quality pearls worldwide, but they are also becoming important model organisms for investigating genetic mechanisms of biomineralisation. Despite their economic and scientific significance, limited genomic resources are available for this important group of bivalves, hampering investigations into identifying genes that regulate important pearl quality traits and unique biological characteristics (i.e. biomineralisation). The silver-lipped pearl oyster, Pinctada maxima, is one species where there is interest in understanding genes that regulate commercially important pearl traits, but presently, there is a dearth of genomic information. The objective of this study was to develop and validate a large number of type I genome-wide single nucleotide polymorphisms (SNPs) for P. maxima suitable for high-throughput genotyping. In addition, sequence annotations and Gene Ontology terms were assigned to a large mantle tissue 454 expressed sequence tag assembly (96,794 contigs) and information on known bivalve biomineralisation genes was incorporated into SNP discovery. The SNP discovery effort resulted in the de novo identification of 172,625 SNPs, of which 9,108 were identified as high value [minor allele frequency (MAF)≥ 0.15, read depth ≥ 8]. Validation of 2,782 of these SNPs using Illumina iSelect Infinium genotyping technology returned some of the highest assay conversion (86.6 %) and validation (59.9 %; mean MAF 0.28) rates observed in aquaculture species to date. Genomic resources presented here will be pivotal to future research investigating the biological mechanisms behind biomineralisation and will form a strong foundation for genetic selective breeding programs in the P. maxima pearling industry.
Collapse
Affiliation(s)
- David B Jones
- Centre for Sustainable Tropical Fisheries and Aquaculture & School of Marine and Tropical Biology, James Cook University, Townsville, QLD, 4811, Australia,
| | | | | | | | | |
Collapse
|
14
|
Geraghty PT, Williamson JE, Macbeth WG, Wintner SP, Harry AV, Ovenden JR, Gillings MR. Population expansion and genetic structure in Carcharhinus brevipinna in the southern Indo-Pacific. PLoS One 2013; 8:e75169. [PMID: 24086462 PMCID: PMC3783459 DOI: 10.1371/journal.pone.0075169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/12/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna), a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa. METHODS AND FINDINGS Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025). While two metrics of genetic divergence (ΦST and F ST) revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717-0.03508, p values ≤ 0.0013; pairwise F ST South Africa vs New South Wales = 0.04056, p = 0.0008). Evidence for fine-scale genetic structuring was also detected along Australia's east coast (pairwise ΦST = 0.01328, p < 0.015), and between south-eastern and northern locations (pairwise ΦST = 0.00669, p < 0.04). CONCLUSIONS The Indian Ocean represents a robust barrier to contemporary gene flow in C. brevipinna between Australia and South Africa. Gene flow also appears restricted along a continuous continental margin in this species, with data tentatively suggesting the delineation of two management units within Australian waters. Further sampling, however, is required for a more robust evaluation of the latter finding. Evidence indicates that all sampled populations were shaped by a substantial demographic expansion event, with the resultant high genetic diversity being cause for optimism when considering conservation of this commercially-targeted species in the southern Indo-Pacific.
Collapse
Affiliation(s)
- Pascal T. Geraghty
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- Cronulla Fisheries Research Centre of Excellence, New South Wales Department of Primary Industries, Sydney, New South Wales, Australia
| | - Jane E. Williamson
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - William G. Macbeth
- Cronulla Fisheries Research Centre of Excellence, New South Wales Department of Primary Industries, Sydney, New South Wales, Australia
| | - Sabine P. Wintner
- KwaZulu-Natal Sharks Board, Umhlanga Rocks, KwaZulu-Natal, South Africa
| | - Alastair V. Harry
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
| | - Jennifer R. Ovenden
- Molecular Fisheries Laboratory, the University of Queensland, St. Lucia, Queensland, Australia
| | - Michael R. Gillings
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Fadhlaoui-Zid K, Knittweis L, Aurelle D, Nafkha C, Ezzeddine S, Fiorentino F, Ghmati H, Ceriola L, Jarboui O, Maltagliati F. Genetic structure of Octopus vulgaris (Cephalopoda, Octopodidae) in the central Mediterranean Sea inferred from the mitochondrial COIII gene. C R Biol 2012. [DOI: 10.1016/j.crvi.2012.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Lind CE, Evans BS, Elphinstone MS, Taylor JJU, Jerry DR. Phylogeography of a pearl oyster (Pinctada maxima) across the Indo-Australian Archipelago: evidence of strong regional structure and population expansions but no phylogenetic breaks. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01960.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Curtis E. Lind
- Aquaculture Genetics Research Group; School of Marine & Tropical Biology; James Cook University; Townsville Qld 4811 Australia
- Fish Breeding and Genetics Group; The WorldFish Center; PO Box 500 GPO 10670 Penang Malaysia
| | - Brad S. Evans
- Aquaculture Genetics Research Group; School of Marine & Tropical Biology; James Cook University; Townsville Qld 4811 Australia
| | - Martin S. Elphinstone
- Centre for Plant Conservation Genetics; Southern Cross University; Lismore NSW 2480 Australia
| | | | - Dean R. Jerry
- Aquaculture Genetics Research Group; School of Marine & Tropical Biology; James Cook University; Townsville Qld 4811 Australia
| |
Collapse
|
17
|
Ujiié Y, Asami T, de Garidel-Thoron T, Liu H, Ishitani Y, de Vargas C. Longitudinal differentiation among pelagic populations in a planktic foraminifer. Ecol Evol 2012; 2:1725-37. [PMID: 22957176 PMCID: PMC3434911 DOI: 10.1002/ece3.286] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/28/2012] [Accepted: 05/01/2012] [Indexed: 11/24/2022] Open
Abstract
Evolutionary processes in marine plankton have been assumed to be dependent on the oceanic circulation system, which transports plankton between populations in marine surface waters. Gene flow facilitated by oceanic currents along longitudinal gradients may efficiently impede genetic differentiation of pelagic populations in the absence of confounding marine environmental effects. However, how responsible oceanic currents are for the geographic distribution and dispersal of plankton is poorly understood. We examined the phylogeography of the planktic foraminifer Pulleniatina obliquiloculata in the Indo-Pacific Warm Pool (IPWP) by using partial small subunit ribosomal DNA (SSU rDNA) sequences. We found longitudinal clines in the frequencies of three distinct genetic types in the IPWP area. These frequencies were correlated with environmental factors that are characteristic of three water masses in the IPWP. Noteworthy, populations inhabiting longitudinally distant water masses at the Pacific and Indian sides of the IPWP were genetically different, despite transportation of individuals via oceanic currents. These results demonstrate that populations of pelagic plankton have diverged genetically among different water masses within a single climate zone. Changes of the oceanic circulation system could have impacted the geographic patterns of dispersal and divergence of pelagic plankton.
Collapse
Affiliation(s)
- Yurika Ujiié
- Center for Advanced Marine Core Research, Kochi UniversityKochi 783-8502, Japan
| | - Takahiro Asami
- Department of Biology, Shinshu UniversityMatsumoto 390-8621, Japan
| | - Thibault de Garidel-Thoron
- CEREGE, CNRS, Aix-Marseille Université, IRD, Technopôle de l’Arbois-MéditerannéeBP80, 13545 Aix-en-Provence Cedex, France
| | - Hui Liu
- Institute of Marine and Coastal Sciences, Rutgers UniversityNew Brunswick, New Jersey 08901
| | - Yoshiyuki Ishitani
- Japan Agency for Marine-Earth Science and TechnologyYokosuka 237-0061, Japan
| | - Colomban de Vargas
- UMR CNRS 7144 Evolution du Plancton et PaleOceansStation Biologique, BP74, 29682 Roscoff, France
| |
Collapse
|
18
|
Crandall ED, Sbrocco EJ, DeBoer TS, Barber PH, Carpenter KE. Expansion Dating: Calibrating Molecular Clocks in Marine Species from Expansions onto the Sunda Shelf Following the Last Glacial Maximum. Mol Biol Evol 2011; 29:707-19. [DOI: 10.1093/molbev/msr227] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
19
|
Jones DB, Zenger KR, Jerry DR. In silico whole-genome EST analysis reveals 2322 novel microsatellites for the silver-lipped pearl oyster, Pinctada maxima. Mar Genomics 2011; 4:287-90. [PMID: 22118641 DOI: 10.1016/j.margen.2011.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 12/01/2022]
Abstract
Molecular stock improvement techniques such as marker assisted selection have great potential in accelerating selective breeding programmes for animal production industries. However, the discovery and application of trait/marker associations usually requires a large number of genome-wide polymorphic loci. Here, we present 2322 unique microsatellites for the silver-lipped pearl oyster, Pinctada maxima, a species of aquaculture importance throughout the Indo-Australian Archipelago for production of the highly valued South Sea pearl. More than 1.2 million Roche 454 expressed sequence tag (EST) reads were screened for microsatellite repeat motifs. A total of 12,604 sequences contained either a di, tri, tetra, penta or hexa microsatellite repeat motif (n ≥ 6), with 6435 of these sequences having sufficient flanking regions for primer development. All identified microsatellites with designed primers were condensed into 2322 unique clusters (i.e., unique loci) of which 360 were shown to be polymorphic based on multiple sequence reads with different repeat motifs. Genotyping of five microsatellite loci demonstrated that in silico evaluation of polymorphism levels was a very useful method for identification of polymorphic loci, with the variation uncovered being a lower bound. Gene Ontology annotations of sequences containing microsatellites suggest that most are derived from a diverse array of unique genes. This EST derived microsatellite database will be a valuable resource for future studies in genetic map construction, diversity analysis, quantitative trait loci analysis, association mapping and marker assisted selection, not only for P. maxima, but also closely related species within the genus Pinctada.
Collapse
Affiliation(s)
- D B Jones
- Aquaculture Genetics Research Program, School of Marine and Tropical Biology, James Cook University, Townsville, QLD 4811, Australia.
| | | | | |
Collapse
|
20
|
Abstract
More than 230,000 known species representing 31 metazoan phyla populate the world's oceans. Perhaps another 1,000,000 or more species remain to be discovered. There is reason for concern that species extinctions may out-pace discovery, especially in diverse and endangered marine habitats such as coral reefs. DNA barcodes (i.e., short DNA sequences for species recognition and discrimination) are useful tools to accelerate species-level analysis of marine biodiversity and to facilitate conservation efforts. This review focuses on the usual barcode region for metazoans: a approximately 648 base-pair region of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Barcodes have also been used for population genetic and phylogeographic analysis, identification of prey in gut contents, detection of invasive species, forensics, and seafood safety. More controversially, barcodes have been used to delimit species boundaries, reveal cryptic species, and discover new species. Emerging frontiers are the use of barcodes for rapid and increasingly automated biodiversity assessment by high-throughput sequencing, including environmental barcoding and the use of barcodes to detect species for which formal identification or scientific naming may never be possible.
Collapse
Affiliation(s)
- Ann Bucklin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, USA.
| | | | | |
Collapse
|
21
|
Current World Literature. Curr Opin Lipidol 2009; 20:135-42. [PMID: 19276892 DOI: 10.1097/mol.0b013e32832a7e09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|