1
|
Ko I, Kranse OP, Senatori B, Eves-van den Akker S. A Critical Appraisal of DNA Transfer from Plants to Parasitic Cyst Nematodes. Mol Biol Evol 2024; 41:msae030. [PMID: 38366574 PMCID: PMC10899095 DOI: 10.1093/molbev/msae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 02/18/2024] Open
Abstract
Plant-parasitic nematodes are one of the most economically important pests of crops. It is widely accepted that horizontal gene transfer-the natural acquisition of foreign genes in parasitic nematodes-contributes to parasitism. However, an apparent paradox has emerged from horizontal gene transfer analyses: On the one hand, distantly related organisms with very dissimilar genetic structures (i.e. bacteria), and only transient interactions with nematodes as far as we know, dominate the list of putative donors, while on the other hand, considerably more closely related organisms (i.e. the host plant), with similar genetic structure (i.e. introns) and documented long-term associations with nematodes, are rare among the list of putative donors. Given that these nematodes ingest cytoplasm from a living plant cell for several weeks, there seems to be a conspicuous absence of plant-derived cases. Here, we used comparative genomic approaches to evaluate possible plant-derived horizontal gene transfer events in plant parasitic nematodes. Our evidence supports a cautionary message for plant-derived horizontal gene transfer cases in the sugar beet cyst nematode, Heterodera schachtii. We propose a 4-step model for horizontal gene transfer from plant to parasite in order to evaluate why the absence of plant-derived horizontal gene transfer cases is observed. We find that the plant genome is mobilized by the nematode during infection, but that uptake of the said "mobilome" is the first major barrier to horizontal gene transfer from host to nematode. These results provide new insight into our understanding of the prevalence/role of nucleic acid exchange in the arms race between plants and plant parasites.
Collapse
Affiliation(s)
- Itsuhiro Ko
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB2 3EA, UK
- Present address: Department of Plant Pathology, Washington State University, Pullman 99163, USA
| | - Olaf Prosper Kranse
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB2 3EA, UK
| | - Beatrice Senatori
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB2 3EA, UK
| | | |
Collapse
|
2
|
van Steenbrugge JJM, van den Elsen S, Holterman M, Lozano‐Torres J, Putker V, Thorpe P, Goverse A, Sterken M, Smant G, Helder J. Comparative genomics among cyst nematodes reveals distinct evolutionary histories among effector families and an irregular distribution of effector-associated promoter motifs. Mol Ecol 2023; 32:1515-1529. [PMID: 35560992 PMCID: PMC10946958 DOI: 10.1111/mec.16505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
Potato cyst nematodes (PCNs), an umbrella term used for two species, Globodera pallida and G. rostochiensis, belong worldwide to the most harmful pathogens of potato. Pathotype-specific host plant resistances are essential for PCN control. However, the poor delineation of G. pallida pathotypes has hampered the efficient use of available host plant resistances. Long-read sequencing technology allowed us to generate a new reference genome of G. pallida population D383 and, as compared to the current reference, the new genome assembly is 42 times less fragmented. For comparison of diversification patterns of six effector families between G. pallida and G. rostochiensis, an additional reference genome was generated for an outgroup, the beet cyst nematode Heterodera schachtii (IRS population). Large evolutionary contrasts in effector family topologies were observed. While VAPs (venom allergen-like proteins) diversified before the split between the three cyst nematode species, the families GLAND5 and GLAND13 only expanded in PCNs after their separation from the genus Heterodera. Although DNA motifs in the promoter regions thought to be involved in the orchestration of effector expression ("DOG boxes") were present in all three cyst nematode species, their presence is not a necessity for dorsal gland-produced effectors. Notably, DOG box dosage was only loosely correlated with the expression level of individual effector variants. Comparison of the G. pallida genome with those of two other cyst nematodes underlined the fundamental differences in evolutionary history between effector families. Resequencing of PCN populations with different virulence characteristics will allow for the linking of these characteristics to the composition of the effector repertoire as well as for the mapping of PCN diversification patterns resulting from extreme anthropogenic range expansion.
Collapse
Affiliation(s)
| | - Sven van den Elsen
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Martijn Holterman
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
- SolyntaWageningenThe Netherlands
| | | | - Vera Putker
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Peter Thorpe
- School of Medicine, Medical & Biological SciencesUniversity of St. AndrewsSt AndrewsUK
| | - Aska Goverse
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Geert Smant
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Johannes Helder
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
3
|
Frantz AC, Lippert S, Heddergott M. Microsatellite profiling of hosts from parasite-extracted DNA illustrated with raccoons (Procyon lotor) and their Baylisascaris procyonis roundworms. Parasit Vectors 2023; 16:76. [PMID: 36841791 PMCID: PMC9960475 DOI: 10.1186/s13071-023-05703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Important information on movement pathways and introduction routes of invasive parasites can be obtained by comparing the genetic makeup of an invader with its spatial genetic structure in other distribution areas. Sometimes, the population genetic structure of the host might be more informative than that of the parasite itself, and it is important to collect tissue samples of both host and parasite. However, host tissue samples are frequently not available for analysis. We aimed to test whether it is possible to generate reliable microsatellite profiles of host individuals by amplifying DNA extracted from a nematode parasite, using the raccoon (Procyon lotor) and the raccoon roundworm (Baylisascaris procyonis) as a test case. METHODS Between 2020 and 2021, we collected tissue as well as a single roundworm each from 12 raccoons from central Germany. Both the raccoon and the roundworm DNA extracts were genotyped using 17 raccoon-specific microsatellite loci. For each roundworm DNA extract, we performed at least eight amplification reactions per microsatellite locus. RESULTS We extracted amplifiable raccoon DNA from all 12 roundworms. We obtained at least two amplification products for 186 of the 204 possible genotypes. Altogether 1077 of the 1106 genotypes (97.4%) matched the host-DNA derived reference genotypes and thus did not contain genotyping errors. Nine of the 12 roundworm-derived genetic profiles matched the reference profiles from the raccoon hosts, with one additional genetic profile containing genotyping errors at a single locus. The remaining two genetic profiles were deemed unsuitable for downstream analysis because of genotyping errors and/or a high proportion of missing data. CONCLUSIONS We showed that reliable microsatellite-based genetic profiles of host individuals can be obtained by amplifying DNA extracted from a parasitic nematode. Specifically, the approach can be applied to reconstruct invasion pathways of roundworms when samples of the raccoon hosts are lacking. Further research should assess whether this method can be replicated in smaller species of parasitic nematodes and other phyla of parasites more generally.
Collapse
Affiliation(s)
- Alain C. Frantz
- grid.507500.7Musée National d’Histoire Naturelle, Luxembourg, Luxembourg
| | - Stéphanie Lippert
- grid.507500.7Musée National d’Histoire Naturelle, Luxembourg, Luxembourg
| | - Mike Heddergott
- grid.507500.7Musée National d’Histoire Naturelle, Luxembourg, Luxembourg
| |
Collapse
|
4
|
He Y, Wang R, Zhao H, Ren Y, Agarwal M, Zheng D, Gao S, McKirdy SJ, Chu D. Predicting potential global distribution and risk regions for potato cyst nematodes (Globodera rostochiensis and Globodera pallida). Sci Rep 2022; 12:21843. [PMID: 36528656 PMCID: PMC9759053 DOI: 10.1038/s41598-022-26443-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Potato cyst nematodes (PCNs), golden (yellow) cyst nematode (Globodera rostochiensis, gPCN) and pale (white) cyst nematode (G. pallida, pPCN), are important invasive pests in many countries and regions where they can cause significant yield and economic loss for agriculture. Prediction and identification of habitats suitable for PCNs are critical for developing biosecurity strategies, both pre and post border, to maximise the potential for early elimination should an incursion occur. To date, the potential global distribution of PCNs has not been thoroughly studied. Therefore, this study conducted a species distribution model to illustrate the potential global distribution of PCNs and risk regions. In this study, the Maximum Entropy Model (Maxent) associated with the Geographic Information System (GIS) was employed to reveal the potential distribution of the gPCN and pPCN. In addition to bioclimate, soil quality was also included in the model. The global cultivated lands, whether the susceptible hosts were present or not, were used to assess the maximum potential risk regions. The limitation factors for PCNs distribution were also assessed. Results showed that 66% of the global land surface was suitable for gPCN or pPCN or both, and both species can colonise more than 75% of the global cultivated lands. The coldest quarter's mean temperature and precipitation were critical limitations in unsuitable regions. In summary, the global risk maps of PCNs contribute valuable additional information that complements previous national/regional distribution predictions. The results of this distribution research will contribute practical support for decision-makers and practitioners to implement biosecurity strategies from a global perspective, that incorporate prevention or promptly enforce control practices to limit the damage caused by future incursions.
Collapse
Affiliation(s)
- Yitong He
- grid.412608.90000 0000 9526 6338Shandong Engineering Research Centre for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China ,grid.1025.60000 0004 0436 6763Harry Butler Institute, Murdoch University, Perth, WA 6150 Australia
| | - Rui Wang
- grid.410727.70000 0001 0526 1937State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Honghai Zhao
- grid.412608.90000 0000 9526 6338Shandong Engineering Research Centre for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Yonglin Ren
- grid.1025.60000 0004 0436 6763Harry Butler Institute, Murdoch University, Perth, WA 6150 Australia
| | - Manjree Agarwal
- grid.1025.60000 0004 0436 6763Harry Butler Institute, Murdoch University, Perth, WA 6150 Australia
| | - Dan Zheng
- grid.412608.90000 0000 9526 6338College of Economics, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Shan Gao
- Hebei Dahaituo National Nature Reserve Management Centre, Chicheng, 075500 People’s Republic of China
| | - Simon J. McKirdy
- grid.1025.60000 0004 0436 6763Harry Butler Institute, Murdoch University, Perth, WA 6150 Australia
| | - Dong Chu
- grid.412608.90000 0000 9526 6338Shandong Engineering Research Centre for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| |
Collapse
|
5
|
Pridannikov MV, Zinovieva SV, Khudyakova EA, Limantseva LA, Osipov FA, Dergunova NN, Petrosyan VG. Range Dynamics of Potato Cyst Nematode Globodera rostochiensis (Wollenweber, 1923) (Nematoda, Heteroderidae) under Conditions of Global Climate Change in Russia. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2022. [DOI: 10.1134/s2075111722040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
RANGE DYNAMICS OF POTATO NEMATODE <i>GLOBODERA ROSTOCHIENSIS</i> (WOLLENWEBER, 1923) SKARBILOVICH, 1959 UNDER CONDITIONS OF GLOBAL CLIMATE CHANGE IN RUSSIA. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2022. [DOI: 10.35885/1996-1499-15-3-135-159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Globodera rostochiensis is one of the 100 most dangerous invasive species in Russia, causing significant damage to agriculture. In Russia, this nematode was first founded in Kaliningrad Region in 1949. In this study, we used ensemble modeling (ESDM) methods to predict the potential distribution of G. rostochiensis in Russia and found that with changes in global climate and land use in the future, there would be a tendency to expand the range in two directions - from the south to the north and from the west to the east. The history of the distribution of the species on the territory of Russia, the current and potential ranges of the species from 2020 to 2100 with a step of 20 years in the implementation of various models and scenarios of climate change and land use are presented. Information on native range, features of biology, signs of host plant damage and injuriousness of G. rostochiensis , methods of pathotypes identification, invasion vectors, and control measures are shown. The predicted ranges of the species are important for the development of measures to minimize future invasion of G. rostochiensis and their negative consequences
Collapse
|
7
|
Mhatre PH, Divya KL, Venkatasalam EP, Watpade S, Bairwa A, Patil J. Management of potato cyst nematodes with special focus on biological control and trap cropping strategies. PEST MANAGEMENT SCIENCE 2022; 78:3746-3759. [PMID: 35638382 DOI: 10.1002/ps.7022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Potato cyst nematodes (PCNs; Globodera spp.) are one of the most difficult pests of potato to manage worldwide. Indiscriminate use of pesticides and their hazardous effects discourage the use of many chemicals for the management of PCNs. As a result, biological control agents and trap crops have received more attention from growers as safer ways to manage PCNs. The biological control agents such as Pochonia chlamydosporia, Purpureocillium lilacinum, Trichoderma spp., Pseudomonas fluorescens, Bacillus spp., Pasteuria spp., and others are recognized as potential candidates for the management of PCNs. Moreover recently, the use of trap crop Solanum sisymbriifolium also showed promise by drastically reducing soil populations of PCNs. Integration of these management strategies along with other practices including identification, conservation, and multiplication of native antagonists, will facilitate efficient management of the PCNs in potato cropping system. Some of the promising research approaches that are being used against PCNs are addressed in this review. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Priyank Hanuman Mhatre
- Division of Plant Protection, ICAR - Central Potato Research Institute, The Nilgiris, India
| | - K L Divya
- Division of Plant Protection, ICAR - Central Potato Research Institute, The Nilgiris, India
| | - E P Venkatasalam
- Division of Plant Protection, ICAR - Central Potato Research Institute, The Nilgiris, India
| | - Santosh Watpade
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, Shimla, India
| | - Aarti Bairwa
- Division of Plant Protection, ICAR - Central Potato Research Institute, Shimla, India
| | - Jagadeesh Patil
- Division of Germplasm Collection and Characterisation, ICAR - National Bureau of Agricultural Insect Resources, Bengaluru, India
| |
Collapse
|
8
|
Ruthes AC, Dahlin P. The Impact of Management Strategies on the Development and Status of Potato Cyst Nematode Populations in Switzerland: An Overview from 1958 to Present. PLANT DISEASE 2022; 106:1096-1104. [PMID: 34689584 DOI: 10.1094/pdis-04-21-0800-sr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Globodera rostochiensis and G. pallida are some of the most successful and highly specialized plant parasitic nematodes and among the most regulated quarantine pests globally. In Switzerland, they have been monitored by annual surveys since their first detection in Swiss soil in 1958. The dataset created was reviewed to produce an overview of the development and actual status of potato cyst nematodes (PCNs) in Switzerland. Positive fields represent 0.2% of all the samples analyzed, and their distribution is limited to central-west and western Switzerland, suggesting that new introduction of PCNs and the spread of the initial introduced PCN populations did not occur. In this way, the integrated management used in Switzerland appears to be effective. However, the increasing availability of potato varieties with resistance to G. rostochiensis and the limited availability of varieties with resistance to G. pallida, together with other biotic and abiotic factors, have promoted changes in the dominance of either species. Consequently, an extended monitoring program is of interest to Swiss farmers, to avoid favoring virulent traits that could be present in Swiss Globodera populations.
Collapse
Affiliation(s)
- Andrea Caroline Ruthes
- Agroscope, Research Division Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, 8820 Wädenswil, Switzerland
| | - Paul Dahlin
- Agroscope, Research Division Plant Protection, Phytopathology and Zoology in Fruit and Vegetable Production, 8820 Wädenswil, Switzerland
| |
Collapse
|
9
|
Shift from morphological to recent advanced molecular approaches for the identification of nematodes. Genomics 2022; 114:110295. [DOI: 10.1016/j.ygeno.2022.110295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
|
10
|
van Steenbrugge JJM, van den Elsen S, Holterman M, Sterken MG, Thorpe P, Goverse A, Smant G, Helder J. Comparative genomics of two inbred lines of the potato cyst nematode Globodera rostochiensis reveals disparate effector family-specific diversification patterns. BMC Genomics 2021; 22:611. [PMID: 34380421 PMCID: PMC8359618 DOI: 10.1186/s12864-021-07914-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Potato cyst nematodes belong to the most harmful pathogens in potato, and durable management of these parasites largely depends on host-plant resistances. These resistances are pathotype specific. The current Globodera rostochiensis pathotype scheme that defines five pathotypes (Ro1 - Ro5) is both fundamentally and practically of limited value. Hence, resistant potato varieties are used worldwide in a poorly informed manner. RESULTS We generated two novel reference genomes of G. rostochiensis inbred lines derived from a Ro1 and a Ro5 population. These genome sequences comprise 173 and 189 scaffolds respectively, marking a ≈ 24-fold reduction in fragmentation as compared to the current reference genome. We provide copy number variations for 19 effector families. Four dorsal gland effector families were investigated in more detail. SPRYSECs, known to be implicated in plant defence suppression, constitute by far the most diversified family studied herein with 60 and 99 variants in Ro1 and Ro5 distributed over 18 and 26 scaffolds. In contrast, CLEs, effectors involved in feeding site induction, show strong physical clustering. The 10 and 16 variants cluster on respectively 2 and 1 scaffolds. Given that pathotypes are defined by their effectoromes, we pinpoint the disparate nature of the contributing effector families in terms of sequence diversification and loss and gain of variants. CONCLUSIONS Two novel reference genomes allow for nearly complete inventories of effector diversification and physical organisation within and between pathotypes. Combined with insights we provide on effector family-specific diversification patterns, this constitutes a basis for an effectorome-based virulence scheme for this notorious pathogen.
Collapse
Affiliation(s)
| | - Sven van den Elsen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martijn Holterman
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands.,Solynta, Dreijenlaan 2, 6703 HA, Wageningen, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter Thorpe
- School of Medicine, Medical & Biological Sciences, University of St. Andrews, North Haugh, St Andrews, United Kingdom
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
11
|
Vallejo D, Rojas DA, Martinez JA, Marchant S, Holguin CM, Pérez OY. Occurrence and molecular characterization of cyst nematode species (Globodera spp.) associated with potato crops in Colombia. PLoS One 2021; 16:e0241256. [PMID: 34260582 PMCID: PMC8279412 DOI: 10.1371/journal.pone.0241256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
Potato cyst nematodes (PCN) from the genus Globodera spp. cause major losses in the potato (Solanum tuberosum) industry worldwide. Despite their importance, at present little is known about the status of this plant pathogen in cultivated potatoes in Colombia. In this study, a total of 589 samples collected from 75 geographic localities in nine potato producing regions of Colombia (Cundinamarca, Boyacá, Antioquia, Nariño, Santander, Norte de Santander, Tolima, Caldas and Cauca) were assayed for the presence of potato cyst nematodes. Fifty-seven percent of samples tested positive for PCN. Based on phylogenetic analysis of the internal transcribed spacer region (ITS1-5.8S-ITS2) of the rRNA gene and D2-D3 expansion segments of the 28S rRNA gene, all populations but one were identified as Globodera pallida. Sequences of G. pallida from Colombia formed a monophyletic group closely related to Peruvian populations, with the lowest average number of nucleotide substitutions per site (Dxy = 0.002) and net nucleotide substitutions per site (Da = 0.001), when compared to G. pallida populations from Europe, South and North America. A single sample formed a well-supported subclade along with G. rostochiensis and G. tabacum from Japan, USA and Argentina. To our knowledge this is the first comprehensive survey of Globodera populations from Colombia that includes genetic data. Our findings on species diversity and phylogenetic relationships of Globodera populations from Colombia may help elucidate the status and distribution of Globodera species, and lead to the development of accurate management strategies for the potato cyst nematodes.
Collapse
Affiliation(s)
- Daniela Vallejo
- Sede Medellín, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Diego A. Rojas
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, Mosquera, Cundinamarca, Colombia
| | - John A. Martinez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, Mosquera, Cundinamarca, Colombia
| | - Sergio Marchant
- Escuela de biología, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Claudia M. Holguin
- Centro de Investigación La Selva, Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, Rionegro, Antioquia, Colombia
| | - Olga Y. Pérez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, Mosquera, Cundinamarca, Colombia
| |
Collapse
|
12
|
Price JA, Coyne D, Blok VC, Jones JT. Potato cyst nematodes Globodera rostochiensis and G. pallida. MOLECULAR PLANT PATHOLOGY 2021; 22:495-507. [PMID: 33709540 PMCID: PMC8035638 DOI: 10.1111/mpp.13047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 05/12/2023]
Abstract
TAXONOMY Phylum Nematoda; class Chromadorea; order Rhabditida; suborder Tylenchina; infraorder Tylenchomorpha; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; Genus Globodera. BIOLOGY Potato cyst nematodes (PCN) are biotrophic, sedentary endoparasitic nematodes. Invasive (second) stage juveniles (J2) hatch from eggs in response to the presence of host root exudates and subsequently locate and invade the host. The nematodes induce the formation of a large, multinucleate syncytium in host roots, formed by fusion of up to 300 root cell protoplasts. The nematodes rely on this single syncytium for the nutrients required to develop through a further three moults to the adult male or female stage. This extended period of biotrophy-between 4 and 6 weeks in total-is almost unparalleled in plant-pathogen interactions. Females remain at the root while adult males revert to the vermiform body plan of the J2 and leave the root to locate and fertilize the female nematodes. The female body forms a cyst that contains the next generation of eggs. HOST RANGE The host range of PCN is limited to plants of the Solanaceae family. While the most economically important hosts are potato (Solanum tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena), over 170 species of Solanaceae are thought to be potential hosts for PCN (Sullivan et al., 2007). DISEASE SYMPTOMS Symptoms are similar to those associated with nutrient deficiency, such as stunted growth, yellowing of leaves and reduced yields. This absence of specific symptoms reduces awareness of the disease among growers. DISEASE CONTROL Resistance genes (where available in suitable cultivars), application of nematicides, crop rotation. Great effort is put into reducing the spread of PCN through quarantine measures and use of certified seed stocks. USEFUL WEBSITES Genomic information for PCN is accessible through WormBase ParaSite.
Collapse
Affiliation(s)
- James A. Price
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - Danny Coyne
- International Institute of Tropical Agriculture (IITA)NairobiKenya
| | - Vivian C. Blok
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| | - John T. Jones
- School of BiologyBiomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
- Cell & Molecular Sciences DepartmentThe James Hutton InstituteDundeeUK
| |
Collapse
|
13
|
Genomic Analyses of Globodera pallida, A Quarantine Agricultural Pathogen in Idaho. Pathogens 2021; 10:pathogens10030363. [PMID: 33803698 PMCID: PMC8002896 DOI: 10.3390/pathogens10030363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 11/18/2022] Open
Abstract
Globodera pallida is among the most significant plant-parasitic nematodes worldwide, causing major damage to potato production. Since it was discovered in Idaho in 2006, eradication efforts have aimed to contain and eradicate G. pallida through phytosanitary action and soil fumigation. In this study, we investigated genome-wide patterns of G. pallida genetic variation across Idaho fields to evaluate whether the infestation resulted from a single or multiple introduction(s) and to investigate potential evolutionary responses since the time of infestation. A total of 53 G. pallida samples (~1,042,000 individuals) were collected and analyzed, representing five different fields in Idaho, a greenhouse population, and a field in Scotland that was used for external comparison. According to genome-wide allele frequency and fixation index (Fst) analyses, most of the genetic variation was shared among the G. pallida populations in Idaho fields pre-fumigation, indicating that the infestation likely resulted from a single introduction. Temporal patterns of genome-wide polymorphisms involving (1) pre-fumigation field samples collected in 2007 and 2014 and (2) pre- and post-fumigation samples revealed nucleotide variants (SNPs, single-nucleotide polymorphisms) with significantly differentiated allele frequencies indicating genetic differentiation. This study provides insights into the genetic origins and adaptive potential of G. pallida invading new environments.
Collapse
|
14
|
Taxonomy, Morphological and Molecular Identification of the Potato Cyst Nematodes, Globodera pallida and G. rostochiensis. PLANTS 2021; 10:plants10010184. [PMID: 33478144 PMCID: PMC7835876 DOI: 10.3390/plants10010184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022]
Abstract
The scope of this paper is limited to the taxonomy, detection, and reliable morphological and molecular identification of the potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis. It describes the nomenclature, hosts, life cycle, pathotypes, and symptoms of the two species. It also provides detailed instructions for soil sampling and extraction of cysts from soil. The primary focus of the paper is the presentation of accurate and effective methods to identify the two principal PCN species.
Collapse
|
15
|
Gartner U, Hein I, Brown LH, Chen X, Mantelin S, Sharma SK, Dandurand LM, Kuhl JC, Jones JT, Bryan GJ, Blok VC. Resisting Potato Cyst Nematodes With Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:661194. [PMID: 33841485 PMCID: PMC8027921 DOI: 10.3389/fpls.2021.661194] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/03/2021] [Indexed: 05/17/2023]
Abstract
Potato cyst nematodes (PCN) are economically important pests with a worldwide distribution in all temperate regions where potatoes are grown. Because above ground symptoms are non-specific, and detection of cysts in the soil is determined by the intensity of sampling, infestations are frequently spread before they are recognised. PCN cysts are resilient and persistent; their cargo of eggs can remain viable for over two decades, and thus once introduced PCN are very difficult to eradicate. Various control methods have been proposed, with resistant varieties being a key environmentally friendly and effective component of an integrated management programme. Wild and landrace relatives of cultivated potato have provided a source of PCN resistance genes that have been used in breeding programmes with varying levels of success. Producing a PCN resistant variety requires concerted effort over many years before it reaches what can be the biggest hurdle-commercial acceptance. Recent advances in potato genomics have provided tools to rapidly map resistance genes and to develop molecular markers to aid selection during breeding. This review will focus on the translation of these opportunities into durably PCN resistant varieties.
Collapse
Affiliation(s)
- Ulrike Gartner
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lynn H. Brown
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Xinwei Chen
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Sophie Mantelin
- INRAE UMR Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Sanjeev K. Sharma
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Louise-Marie Dandurand
- Entomology, Plant Pathology and Nematology Department, University of Idaho, Moscow, ID, United States
| | - Joseph C. Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States
| | - John T. Jones
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Glenn J. Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Vivian C. Blok
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Vivian C. Blok,
| |
Collapse
|
16
|
Mironenko NV, Gavrilenko TA, Khiutti AV, Afanasenko OS. [Quarantine nematode species and pathotypes potentially dangerous for domestic potato production: populations diversity and the genetics of potato resistance]. Vavilovskii Zhurnal Genet Selektsii 2020; 24:705-721. [PMID: 33738388 PMCID: PMC7960448 DOI: 10.18699/vj20.665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Обзор посвящен проблеме потенциально опасных для отечественного картофелеводства каран-
тинных видов и патотипов нематод. Картофель поражают более 30 видов паразитических нематод, однако в
статье основное внимание уделено самым вредоносным, приносящим большой ущерб картофелеводству пред-
ставителям родов Globodera, Ditylenchus, Nacobbus и Meloidogyne. Проанализированы фитопатологические и
молекулярные методы идентификации видов и патотипов и основные достижения в изучении изменчивости
популяций паразитических нематод картофеля. Показано, что, благодаря особенностям жизненного цикла не-
матод и лабильности их геномов, генетическая изменчивость этих организмов очень велика, что создает угрозу
образования новых патогенных генотипов паразита. Сведения о внутри- и межпопуляционной изменчивости
нематод важны для изучения путей интродукции и распространения отдельных видов, а также поиска корреля-
ций молекулярных маркеров с определенным патотипом. Филогенетические исследования, основанные на со-
временных данных по генетической изменчивости популяций, позволили выявить комплексы видов у Globodera
pallida (Stone) Behrens и Nacobbus aberrans (Thorne) Thorne & Allen (sensu lato), включающие криптические виды.
К основным составляющим успешной защиты, предотвращающей массовое распространение паразитических
нематод, относятся карантинные мероприятия, агротехнические приемы, биологические способы защиты и
возделывание устойчивых сортов. Особое внимание в обзоре уделено вопросам селекции сортов картофеля с
длительной устойчивостью к различным видам нематод, поскольку возделывание таких сортов – экологически
наиболее безопасный и экономически выгодный способ предотвращения эпифитотий. В настоящее время до-
стигнуты значительные успехи в генетической защите сортов картофеля, особенно в отношении цистообразую-
щих нематод. Приведены сведения об источниках устойчивости картофеля к паразитическим нематодам, выде-
ленных в коллекциях диких и культурных видов. Проанализированы данные об идентифицированных R-генах и
QTL устойчивости, которые были интрогрессированы в селекционный материал с помощью различных методов
и подходов. Представлены результаты изучения структурной и функциональной
организации генов устойчиво-
сти к цистообразующим нематодам картофеля. Рассмотрены результаты исследований по использованию моле-
кулярных маркеров определенных генов в маркер-опосредованной селекции для создания новых устойчивых
сортов, в том числе с групповой устойчивостью.
Collapse
Affiliation(s)
- N V Mironenko
- All-Russian Research Institute of Plant Protection, Pushkin, St. Petersburg, Russia Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T A Gavrilenko
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A V Khiutti
- All-Russian Research Institute of Plant Protection, Pushkin, St. Petersburg, Russia Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O S Afanasenko
- All-Russian Research Institute of Plant Protection, Pushkin, St. Petersburg, Russia Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
The Genomic Impact of Selection for Virulence against Resistance in the Potato Cyst Nematode, Globodera pallida. Genes (Basel) 2020; 11:genes11121429. [PMID: 33260722 PMCID: PMC7760817 DOI: 10.3390/genes11121429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
Although the use of natural resistance is the most effective management approach against the potato cyst nematode (PCN) Globodera pallida, the existence of pathotypes with different virulence characteristics constitutes a constraint towards this goal. Two resistance sources, GpaV (from Solanum vernei) and H3 from S. tuberosum ssp. andigena CPC2802 (from the Commonwealth Potato Collection) are widely used in potato breeding programmes in European potato industry. However, the use of resistant cultivars may drive strong selection towards virulence, which allows the increase in frequency of virulent alleles in the population and therefore, the emergence of highly virulent nematode lineages. This study aimed to identify Avirulence (Avr) genes in G. pallida populations selected for virulence on the above resistance sources, and the genomic impact of selection processes on the nematode. The selection drive in the populations was found to be specific to their genetic background. At the genomic level, 11 genes were found that represent candidate Avr genes. Most of the variant calls determining selection were associated with H3-selected populations, while many of them seem to be organised in genomic islands facilitating selection evolution. These phenotypic and genomic findings combined with histological studies performed revealed potential mechanisms underlying selection in G. pallida.
Collapse
|
18
|
Grenier E, Kiewnick S, Smant G, Fournet S, Montarry J, Holterman M, Helder J, Goverse A. Monitoring and tackling genetic selection in the potato cyst nematode Globodera pallida. EFSA SUPPORTING PUBLICATIONS 2020; 17. [PMID: 0 DOI: 10.2903/sp.efsa.2020.en-1874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- E. Grenier
- INRAE UMR IGEPP ‐ Institute of Genetic, Environment and Plant Protection – Domaine de la Motte France
| | | | - G. Smant
- Wageningen University Laboratory of Nematology The Netherlands
| | - S. Fournet
- INRAE UMR IGEPP ‐ Institute of Genetic, Environment and Plant Protection – Domaine de la Motte France
| | - J. Montarry
- INRAE UMR IGEPP ‐ Institute of Genetic, Environment and Plant Protection – Domaine de la Motte France
| | - M. Holterman
- Wageningen University Laboratory of Nematology The Netherlands
| | - J. Helder
- Wageningen University Laboratory of Nematology The Netherlands
| | - A. Goverse
- Wageningen University Laboratory of Nematology The Netherlands
| |
Collapse
|
19
|
Shao H, Zhang P, You C, Li C, Feng Y, Xie Z. Genetic Diversity of the root-knot nematode Meloidogyne enterolobii in Mulberry Based on the Mitochondrial COI Gene. Ecol Evol 2020; 10:5391-5401. [PMID: 32607161 PMCID: PMC7319126 DOI: 10.1002/ece3.6282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/06/2022] Open
Abstract
This study explores the genetic diversity and structure of Meloidogyne enterolobii in mulberry in China. The COI mitochondrial gene (mtCOI) in M.enterolobii populations in Guangdong, Guangxi, and Hunan Provinces was PCR-amplified, sequenced, and analyzed for genetic diversity. The total number of variations, haplotypes (Hap), the average number of nucleotide differences (k), haplotype diversity (H), and nucleotide diversity (π) of mtCOI were 25, 11, 4.248, 0.900, and 0.00596, respectively. Insignificant differences in Fst value (0.0169) and a high level of gene flow (7.02) were detected among the 19-mulberry root-knot nematode populations, and high genetic variation within each population and a small genetic distance among populations were observed. Both phylogenetic analyses and network mapping of the 11 haplotypes revealed a dispersed distribution pattern of 19 mulberry root-knot nematode populations and an absence of branches strictly corresponding to the 19 range sampling sites. The neutrality test and mismatch analysis indicated that mulberry root-knot nematode populations experienced a population expansion in the past. The analysis of molecular variance (AMOVA) revealed that the genetic differentiation of M. enterolobii was mainly contributed by the variation within each group. No significant correlation was found between the genetic distance and geographical distance of M. enterolobii populations. The findings of this study provide a profound understanding of the M. enterolobii population and will inform the development of strategies to combat and manage root-knot nematodes in mulberry.
Collapse
Affiliation(s)
- Hudie Shao
- College of AgricultureYangtze UniversityJingzhouChina
- The innovative Institute for plant healthZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Pan Zhang
- The innovative Institute for plant healthZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Chunping You
- The innovative Institute for plant healthZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Chuanren Li
- College of AgricultureYangtze UniversityJingzhouChina
| | - Yan Feng
- The innovative Institute for plant healthZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Zhenwen Xie
- The innovative Institute for plant healthZhongkai University of Agriculture and EngineeringGuangzhouChina
| |
Collapse
|
20
|
Gautier C, Fournet S, Piriou C, Renault L, Yvin J, Nguema‐Ona E, Grenier E, Montarry J. Plant-parasite coevolution: A weak signature of local adaptation between Peruvian Globodera pallida populations and wild potatoes. Ecol Evol 2020; 10:4156-4163. [PMID: 32489638 PMCID: PMC7244796 DOI: 10.1002/ece3.6248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 11/07/2022] Open
Abstract
Plant-parasite coevolution has generated much interest and studies to understand and manage diseases in agriculture. Such a reciprocal evolutionary process could lead to a pattern of local adaptation between plants and parasites. Based on the phylogeography of each partner, the present study tested the hypothesis of local adaptation between the potato cyst nematode Globodera pallida and wild potatoes in Peru. The measured fitness trait was the hatching of cysts which is induced by host root exudates. Using a cross-hatching assay between 13 populations of G. pallida and root exudates from 12 wild potatoes, our results did not show a strong pattern of local adaptation of the parasite but the sympatric combinations induced better hatching of cysts than allopatric combinations, and there was a negative relationship between the hatching percentage and the geographical distance between nematode populations and wild potatoes. Moreover, a strong effect of the geographic origin of root exudates was found, with root exudates from south of Peru inducing better hatching than root exudates from north of Peru. These results could be useful to develop new biocontrol products or potato cultivars to limit damages caused by G. pallida.
Collapse
Affiliation(s)
- Camille Gautier
- IGEPPINRAEAgrocampus‐OuestUniversité de Rennes 1Le RheuFrance
- Centre Mondial de l'Innovation‐Laboratoire de Nutrition Végétale Pôle BiocontrôleGroupe RoullierSaint‐MaloFrance
| | - Sylvain Fournet
- IGEPPINRAEAgrocampus‐OuestUniversité de Rennes 1Le RheuFrance
| | | | - Lionel Renault
- IGEPPINRAEAgrocampus‐OuestUniversité de Rennes 1Le RheuFrance
| | - Jean‐Claude Yvin
- Centre Mondial de l'Innovation‐Laboratoire de Nutrition Végétale Pôle BiocontrôleGroupe RoullierSaint‐MaloFrance
| | - Eric Nguema‐Ona
- Centre Mondial de l'Innovation‐Laboratoire de Nutrition Végétale Pôle BiocontrôleGroupe RoullierSaint‐MaloFrance
| | - Eric Grenier
- IGEPPINRAEAgrocampus‐OuestUniversité de Rennes 1Le RheuFrance
| | | |
Collapse
|
21
|
Thevenoux R, Folcher L, Esquibet M, Fouville D, Montarry J, Grenier E. The hidden diversity of the potato cyst nematode Globodera pallida in the south of Peru. Evol Appl 2020; 13:727-737. [PMID: 32211063 PMCID: PMC7086051 DOI: 10.1111/eva.12896] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 02/03/2023] Open
Abstract
Our knowledge of the diversity of potato cyst nematodes in their native areas still remains patchy and should be improved. A previous study based on 42 Peruvian Globodera pallida populations revealed a clear south to north phylogeographic pattern, with five well-supported clades and maximum diversity observed in the south of Peru. In order to investigate this phylogeographic pattern more closely, we genotyped a larger collection of Peruvian populations using both cathepsin L gene sequence data and a new set of 13 microsatellite loci. Using different genetic analyses (STRUCTURE, DAPC), we consistently obtained the same results that led to similar conclusions: the presence of a larger genetic diversity than previously known suggesting the presence of cryptic species in the south of Peru. These investigations also allowed us to clarify the geographic borders of the previously described G. pallida genetic clades and to update our knowledge of the genetic structure of this species in its native area, with the presence of additional clades. A distance-based redundancy analysis (dbRDA) was also carried to understand whether there was a correlation between the population genetic differentiation and environmental conditions. This analysis showed that genetic distances observed between G. pallida populations are explained firstly by geographic distances, but also by climatic and soil conditions. This work could lead to a revision of the taxonomy that may have strong implications for risk assessment and management, especially on a quarantine species.
Collapse
Affiliation(s)
- Romain Thevenoux
- IGEPPINRAAgrocampus OuestUniversité de Rennes 1Le RheuFrance
- Laboratoire de la santé des végétaux ‐ Unité de nématologieANSES – Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travailLe RheuFrance
| | - Laurent Folcher
- Laboratoire de la santé des végétaux ‐ Unité de nématologieANSES – Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travailLe RheuFrance
| | - Magali Esquibet
- IGEPPINRAAgrocampus OuestUniversité de Rennes 1Le RheuFrance
| | - Didier Fouville
- IGEPPINRAAgrocampus OuestUniversité de Rennes 1Le RheuFrance
| | | | - Eric Grenier
- IGEPPINRAAgrocampus OuestUniversité de Rennes 1Le RheuFrance
| |
Collapse
|
22
|
Butler KJ, Chen S, Smith JM, Wang X, Bent AF. Soybean Resistance Locus Rhg1 Confers Resistance to Multiple Cyst Nematodes in Diverse Plant Species. PHYTOPATHOLOGY 2019; 109:2107-2115. [PMID: 31403912 DOI: 10.1094/phyto-07-19-0225-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cyst nematodes consistently threaten agricultural production, causing billions of dollars in losses globally. The Rhg1 (resistance to Heterodera glycines 1) locus of soybean (Glycine max) is the most popular resistance source used against soybean cyst nematodes (H. glycines). Rhg1 is a complex locus that has multiple repeats of an ≈30-kilobase segment carrying three genes that contribute to resistance. We investigated whether soybean Rhg1 could function in different plant families, conferring resistance to their respective cyst nematode parasites. Transgenic Arabidopsis thaliana and potato (Solanum tuberosum) plants expressing the three soybean Rhg1 genes were generated. The recipient Brassicaceae and Solanaceae plant species exhibited elevated resistance to H. schachtii and Globodera rostochiensis and to G. pallida, respectively. However, some negative consequences including reduced root growth and tuber biomass were observed upon Rhg1 expression in heterologous species. One of the genes at Rhg1 encodes a toxic version of an alpha-SNAP protein that has been demonstrated to interfere with vesicle trafficking. Using a transient expression assay for Nicotiana benthamiana, native Arabidopsis and potato alpha-SNAPs (soluble NSF [N-ethylamine sensitive factor] attachment protein) were found to compensate for the toxicity of soybean Rhg1 alpha-SNAP proteins. Hence, future manipulation of the balance between Rhg1 alpha-SNAP and the endogenous wild-type alpha-SNAPs (as well as the recently discovered soybean NSF-RAN07) may mitigate impacts of Rhg1 on plant productivity. The multispecies efficacy of soybean Rhg1 demonstrates that the encoded mechanisms can function across plant and cyst nematode species and offers a possible avenue for engineered resistance in diverse crop species.
Collapse
Affiliation(s)
- Katelyn J Butler
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biology, Anderson University, Anderson, IN 46012
| | - Shiyan Chen
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - John M Smith
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Xiaohong Wang
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
- Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
23
|
Dandurand LM, Zasada IA, Wang X, Mimee B, De Jong W, Novy R, Whitworth J, Kuhl JC. Current Status of Potato Cyst Nematodes in North America. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:117-133. [PMID: 31100997 DOI: 10.1146/annurev-phyto-082718-100254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potato cyst nematodes (PCNs) Globodera rostochiensis and Globodera pallida are internationally recognized quarantine pests. Although not widely distributed in either the United States or Canada, both are present and are regulated by the national plant protection organizations (NPPOs) of each country. G. rostochiensis was first discovered in New York in the 1940s, and G. pallida was first detected in a limited area of Idaho in 2006. In Canada, G. rostochiensis and G. pallida were first detected in Newfoundland in 1962 and 1977, respectively, and further detections of G. rostochiensis occurred in British Columbia and Québec, most recently in 2006. Adherence to a stringent NPPO-agreed-upon phytosanitary program has prevented the spread of PCNs to other potato-growing areas in both countries. The successful research and regulatory PCN programs in both countries rely on a network of state, federal, university, and private industry cooperatorspursuing a common goal of containment, management/eradication, and regulation. The regulatory and research efforts of these collaborative groups spanning from the 1940s to the present are highlighted in this review.
Collapse
Affiliation(s)
- Louise-Marie Dandurand
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho 83844, USA
| | - Inga A Zasada
- Horticultural Crops Research Laboratory, USDA-ARS, Corvallis, Oregon 97330, USA;
| | - Xiaohong Wang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, New York 14853, USA
| | - Benjamin Mimee
- St-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, Québec J3B 3E6, Canada
| | - Walter De Jong
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Richard Novy
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, Idaho 83210, USA
| | - Jonathan Whitworth
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, Idaho 83210, USA
| | - Joseph C Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, Idaho 83844, USA
| |
Collapse
|
24
|
Jones LM, Eves-van den Akker S, van-Oosten Hawle P, Atkinson HJ, Urwin PE. Duplication of hsp-110 Is Implicated in Differential Success of Globodera Species under Climate Change. Mol Biol Evol 2019; 35:2401-2413. [PMID: 29955862 PMCID: PMC6188557 DOI: 10.1093/molbev/msy132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Managing the emergence and spread of crop pests and pathogens is essential for global food security. Understanding how organisms have adapted to their native climate is key to predicting the impact of climate change. The potato cyst nematodes Globodera pallida and G. rostochiensis are economically important plant pathogens that cause yield losses of up to 50% in potato. The two species have different thermal optima that may relate to differences in the altitude of their regions of origin in the Andes. Here, we demonstrate that juveniles of G. pallida are less able to recover from heat stress than those of G. rostochiensis. Genome-wide analysis revealed that while both Globodera species respond to heat stress by induction of various protective heat-inducible genes, G. pallida experiences heat stress at lower temperatures. We use C. elegans as a model to demonstrate the dependence of the heat stress response on expression of Heat Shock Factor-1 (HSF-1). Moreover, we show that hsp-110 is induced by heat stress in G. rostochiensis, but not in the less thermotolerant G. pallida. Sequence analysis revealed that this gene and its promoter was duplicated in G. rostochiensis and acquired thermoregulatory properties. We show that hsp-110 is required for recovery from acute thermal stress in both C. elegans and in G. rostochiensis. Our findings point towards an underlying molecular mechanism that allows the differential expansion of one species relative to another closely related species under current climate change scenarios. Similar mechanisms may be true of other invertebrate species with pest status.
Collapse
Affiliation(s)
- Laura M Jones
- Center for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | - Patricija van-Oosten Hawle
- School of Molecular and Cell Biology and Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Howard J Atkinson
- Center for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter E Urwin
- Center for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
25
|
Nguyen VC, Villate L, Gutierrez-Gutierrez C, Castillo P, Van Ghelder C, Plantard O, Esmenjaud D. Phylogeography of the soil-borne vector nematode Xiphinema index highly suggests Eastern origin and dissemination with domesticated grapevine. Sci Rep 2019; 9:7313. [PMID: 31086246 PMCID: PMC6513855 DOI: 10.1038/s41598-019-43812-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/27/2019] [Indexed: 11/10/2022] Open
Abstract
The soil-borne nematode Xiphinema index is closely linked to its main host, the grapevine, and presents a major threat to vineyards worldwide due to its ability to transmit Grapevine fanleaf virus (GFLV). The phylogeography of X. index has been studied using mitochondrial and microsatellite markers in samples from most regions of its worldwide distribution to reveal its genetic diversity. We first used the mitochondrial marker CytB and illustrated the low intraspecific divergence of this mainly meiotic parthenogenetic species. To generate a higher polymorphism level, we then concatenated the sequences of CytB and three mitochondrial markers, ATP6, CO1 and ND4, to obtain a 3044-bp fragment. We differentiated two clades, which each contained two well-supported subclades. Samples from the eastern Mediterranean and the Near and Middle East were grouped into three of these subclades, whereas the samples from the western Mediterranean, Europe and the Americas all belonged to the fourth subclade. The highest polymorphism level was found in the samples of one of the Middle and Near East subclades, strongly suggesting that this region contained the native area of the nematode. An east-to-west nematode dissemination hypothesis appeared to match the routes of the domesticated grapevine during Antiquity, presumably mainly dispersed by the Greeks and the Romans. Surprisingly, the samples of the western subclade comprised only two highly similar mitochondrial haplotypes. The first haplotype, from southern Iberian Peninsula, Bordeaux and Provence vineyards, exhibited a high microsatellite polymorphism level that suggests introductions dating from Antiquity. The second haplotype contained a highly predominant microsatellite genotype widespread in distant western countries that may be a consequence of the massive grapevine replanting following the 19th-century phylloxera crisis. Finally, our study enabled us to draw a first scaffold of X. index diversity at the global scale.
Collapse
Affiliation(s)
- Van Chung Nguyen
- INRA, Université Nice Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France. .,Plant Protection Research Institute (PPRI), Hanoi, Vietnam.
| | - Laure Villate
- UMR1202 BIOGECO, INRA, University of Bordeaux, Pessac, 33615, France
| | - Carlos Gutierrez-Gutierrez
- NemaLab/ICAAM, Instituto de Ciencias Agrarias e Ambientais Mediterranicas & Dept. de Biologia, Universidade de Evora, Evora, 7002-554, Portugal
| | - Pablo Castillo
- Institute for Sustainable Agriculture (IAS), CSIC, Cordoba, 14004, Spain
| | - Cyril Van Ghelder
- INRA, Université Nice Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France
| | | | - Daniel Esmenjaud
- INRA, Université Nice Côte d'Azur, CNRS, ISA, Sophia Antipolis, 06903, France.
| |
Collapse
|
26
|
Gautier C, Esquibet M, Fournet S, Piriou C, Yvin JC, Nguema-Ona E, Grenier E, Montarry J. Microsatellite markers reveal two genetic groups in European populations of the carrot cyst nematode Heterodera carotae. INFECTION GENETICS AND EVOLUTION 2019; 73:81-92. [PMID: 31003010 DOI: 10.1016/j.meegid.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
The cyst nematode Heterodera carotae, which parasitizes carrot roots, has been recorded in many countries in Europe (Italy, The Netherlands, Switzerland, France, Denmark, …), in South Africa and in North America (Canada, USA). To date, there is a lack of knowledge about the genetic structure of the populations of this economically important nematode. The aim of this work was to study the structuration of the genetic diversity of the carrot cyst nematode at the European scale. We have developed a set of thirteen polymorphic microsatellite markers and used it to genotype seventeen European populations of H. carotae coming from France, Switzerland, Italy, Denmark and one non-European population from Canada. As previously showed for other cyst nematode species, the H. carotae populations were characterised by a strong heterozygote deficit. A Bayesian clustering analysis revealed two distinct genetic clusters, with one group located in the north of Europe and a second one located in the south of Europe. Moreover, our results highlighted rather limited gene flow at small spatial scale and some events of long distance migration. This first investigation of the genetic diversity of H. carotae populations would be useful to develop sustainable control strategies.
Collapse
Affiliation(s)
- Camille Gautier
- IGEPP, INRA, Agrocampus-Ouest, Université de Rennes 1, 35650, Le Rheu, France; Centre Mondial de l'Innovation-Laboratoire de Nutrition Végétale Pôle Biocontrôle, Groupe Roullier, Saint Malo, France.
| | - Magali Esquibet
- IGEPP, INRA, Agrocampus-Ouest, Université de Rennes 1, 35650, Le Rheu, France
| | - Sylvain Fournet
- IGEPP, INRA, Agrocampus-Ouest, Université de Rennes 1, 35650, Le Rheu, France
| | - Christophe Piriou
- IGEPP, INRA, Agrocampus-Ouest, Université de Rennes 1, 35650, Le Rheu, France
| | - Jean-Claude Yvin
- Centre Mondial de l'Innovation-Laboratoire de Nutrition Végétale Pôle Biocontrôle, Groupe Roullier, Saint Malo, France
| | - Eric Nguema-Ona
- Centre Mondial de l'Innovation-Laboratoire de Nutrition Végétale Pôle Biocontrôle, Groupe Roullier, Saint Malo, France
| | - Eric Grenier
- IGEPP, INRA, Agrocampus-Ouest, Université de Rennes 1, 35650, Le Rheu, France
| | - Josselin Montarry
- IGEPP, INRA, Agrocampus-Ouest, Université de Rennes 1, 35650, Le Rheu, France
| |
Collapse
|
27
|
Blacket MJ, Agarwal A, Wainer J, Triska MD, Renton M, Edwards J. Molecular Assessment of the Introduction and Spread of Potato Cyst Nematode, Globodera rostochiensis, in Victoria, Australia. PHYTOPATHOLOGY 2019; 109:659-669. [PMID: 30256186 DOI: 10.1094/phyto-06-18-0206-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Potato cyst nematodes (PCN) are damaging soilborne quarantine pests of potato in many parts of the world. There are two recognized species, Globodera pallida and G. rostochiensis, with only the latter species-the golden cyst nematode-present in Australia. PCN was first discovered in Australia in 1986 in Western Australia, where it was subsequently eradicated and area freedom for market access was reinstated. In Victoria, PCN was first detected in 1991 east of Melbourne. Since then, it has been found in a small number of localized regions to the south and east. Strict quarantine controls have been in place since each new detection. It has previously been speculated that there were multiple separate introductions of PCN into Victoria. Our study utilized a historic (years 2001 to 2014) PCN cyst reference collection to examine genetic variability of Victorian PCN populations to investigate potential historical origins and subsequent changes in the populations that might inform patterns of spread. DNA was extracted from single larvae dissected from eggs within cysts and screened using nine previously described polymorphic microsatellite markers in two multiplex polymerase chain reaction assays. Sequence variation of the internal transcribed spacer region of the DNA was also assessed and compared with previously published data. A hierarchical sampling strategy was used, comparing variability of larvae within cysts, within paddocks, and between local regions. This sampling revealed very little differentiation between Victorian populations, which share the same microsatellite allelic variation, with differences between local regions probably reflecting changes in allele frequencies over time. Our molecular assessment supports a probable single localized introduction into Victoria followed by limited spread to nearby areas. The Australian PCN examined appear genetically distinct from populations previously sampled worldwide; thus, any new exotic incursions, potentially bringing in additional PCN pathotypes, should be easily differentiated from existing established local PCN populations.
Collapse
Affiliation(s)
- Mark J Blacket
- 1 Plant Biosecurity Cooperative Research Centre, Canberra, ACT, Australia
- 2 Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Arati Agarwal
- 2 Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - John Wainer
- 1 Plant Biosecurity Cooperative Research Centre, Canberra, ACT, Australia
- 2 Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Maggie D Triska
- 1 Plant Biosecurity Cooperative Research Centre, Canberra, ACT, Australia
- 3 The University of Western Australia, Crawley, WA, Australia; and
| | - Michael Renton
- 1 Plant Biosecurity Cooperative Research Centre, Canberra, ACT, Australia
- 3 The University of Western Australia, Crawley, WA, Australia; and
| | - Jacqueline Edwards
- 1 Plant Biosecurity Cooperative Research Centre, Canberra, ACT, Australia
- 2 Agriculture Victoria, AgriBio, 5 Ring Road, Bundoora, Victoria 3083, Australia
- 4 La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
28
|
Zhang H, Okii E, Gotoh E, Shiraishi S. High Mitochondrial Genome Diversity and Intricate Population Structure of Bursaphelenchus xylophilus in Kyushu, Japan. J Nematol 2018; 50:281-302. [PMID: 30451415 DOI: 10.21307/jofnem-2018-034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mitogenomic diversity and genetic population structure of the pinewood nematode (PWN) Bursaphelenchus xylophilus inhabiting Kyushu, Japan were analyzed. A method for performing long PCR using single nematodes and sequencing nematode mitochondrial genomes individually is presented here. About 8 kb (∼55%) of the complete mitochondrial genome was successfully obtained from 285 individuals collected from 12 populations. The 158 single nucleotide polymorphisms detected corresponded to 30 haplotypes, clearly classified into two clades. Haplotype diversity was 0.83, evidencing a remarkable high diversity within Kyushu. The high genetic differentiation among the 12 populations (0.331) might be due to past invasion and expansion routes of PWN in northeastern and southeastern Kyushu. The distinct genetic composition of populations within the northwestern, central western, and southwestern Kyushu seems to be mostly related to the extinction of pine forests and long-range migration of PWN due to human activity. Overall, direct long PCR and sequencing of single nematode individuals are effective methods for investigating mitochondrial polymorphisms, and these are effective tools for PWN population genetics and other intraspecific studies.
Collapse
Affiliation(s)
- Hanyong Zhang
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Erika Okii
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Eiji Gotoh
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Susumu Shiraishi
- Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
29
|
Gendron St-Marseille AF, Lord E, Véronneau PY, Brodeur J, Mimee B. Genome Scans Reveal Homogenization and Local Adaptations in Populations of the Soybean Cyst Nematode. FRONTIERS IN PLANT SCIENCE 2018; 9:987. [PMID: 30065735 PMCID: PMC6056837 DOI: 10.3389/fpls.2018.00987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Determining the adaptive potential of alien invasive species in a new environment is a key concern for risk assessment. As climate change is affecting local climatic conditions, widespread modifications in species distribution are expected. Therefore, the genetic mechanisms underlying local adaptations must be understood in order to predict future species distribution. The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a major pathogen of soybean that was accidentally introduced in most soybean-producing countries. In this study, we explored patterns of genetic exchange between North American populations of SCN and the effect of isolation by geographical distance. Genotyping-by-sequencing was used to sequence and compare 64 SCN populations from the United States and Canada. At large scale, only a weak correlation was found between genetic distance (Wright's fixation index, FST) and geographic distance, but local effects were strong in recently infested states. Our results also showed a high level of genetic differentiation within some populations, allowing them to adapt to new environments and become established in new soybean-producing areas. Bayesian genome scan methods identified 15 loci under selection for climatic or geographic co-variables. Among these loci, two non-synonymous mutations were detected in SMAD-4 (mothers against decapentaplegic homolog 4) and DOP-3 (dopamine receptor 3). High-impact variants linked to these loci by genetic hitchhiking were also highlighted as putatively involved in local adaptation of SCN populations to new environments. Overall, it appears that strong selective pressure by resistant cultivars is causing a large scale homogenization with virulent populations.
Collapse
Affiliation(s)
- Anne-Frédérique Gendron St-Marseille
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, QC, Canada
| | - Etienne Lord
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Pierre-Yves Véronneau
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| | - Jacques Brodeur
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, Montréal, QC, Canada
| | - Benjamin Mimee
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| |
Collapse
|
30
|
Meloidogyne daklakensis n. sp. (Nematoda: Meloidogynidae), a new root-knot nematode associated with Robusta coffee (Coffea canephora Pierre ex A. Froehner) in the Western Highlands, Vietnam. J Helminthol 2018; 93:242-254. [PMID: 29619918 DOI: 10.1017/s0022149x18000202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The root-knot nematode species Meloidogyne daklakensis n. sp. was discovered on the roots of Robusta coffee (Coffea canephora Pierre ex A. Froehner) in Dak Lak Province, Vietnam. This species is characterized by the females having rounded or oval perineal patterns, smooth, regular, continuous striae, and reduced lateral lines. The dorsal arch is low, rounded and encloses a quite distinct vulva and tail tip. The stylet is normally straight with well-developed and posteriorly sloped knobs. The males have a rounded cap that extends posteriorly into the lip region. The procorpus is outlined distinctly, and is three times longer than the metacorpus. The metacorpus is ovoid, with a strong valve apparatus. The species closely resembles M. marylandi, M. naasi, M. ovalis, M. panyuensis, M. lopezi, M. mali and M. baetica in the perineal pattern of the females, and the morphology of the males and the second-stage juveniles. Nonetheless, it can be differentiated from other species by a combination of morphometric, morphological and molecular characteristics. Phylogenetic analysis was conducted based on the internal transcribed spacer (ITS) and 28S rDNA as well as the region between the cytochrome c oxidase I (COI) and cytochrome c oxidase II (COII) mitochondrial genes. Herein, this nematode is described, illustrated, and designated as a new species, Meloidogyne daklakensis sp. n., based on morphometric, morphological and molecular analyses.
Collapse
|
31
|
Osten-Sacken N, Heddergott M, Schleimer A, Anheyer-Behmenburg HE, Runge M, Horsburgh GJ, Camp L, Nadler SA, Frantz AC. Similar yet different: co-analysis of the genetic diversity and structure of an invasive nematode parasite and its invasive mammalian host. Int J Parasitol 2017; 48:233-243. [PMID: 29102623 DOI: 10.1016/j.ijpara.2017.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 01/13/2023]
Abstract
Animal parasitic nematodes can cause serious diseases and their emergence in new areas can be an issue of major concern for biodiversity conservation and human health. Their ability to adapt to new environments and hosts is likely to be affected by their degree of genetic diversity, with gene flow between distinct populations counteracting genetic drift and increasing effective population size. The raccoon roundworm (Baylisascaris procyonis), a gastrointestinal parasite of the raccoon (Procyon lotor), has increased its global geographic range after being translocated with its host. The raccoon has been introduced multiple times to Germany, but not all its populations are infected with the parasite. While fewer introduced individuals may have led to reduced diversity in the parasite, admixture between different founder populations may have counteracted genetic drift and bottlenecks. Here, we analyse the population genetic structure of the roundworm and its raccoon host at the intersection of distinct raccoon populations infected with B. procyonis. We found evidence for two parasite clusters resulting from independent introductions. Both clusters exhibited an extremely low genetic diversity, suggesting small founding populations subjected to inbreeding and genetic drift with no, or very limited, genetic influx from population admixture. Comparison of the population genetic structures of both host and parasite suggested that the parasite spread to an uninfected raccoon founder population. On the other hand, an almost perfect match between cluster boundaries also suggested that the population genetic structure of B. procyonis has remained stable since its introduction, mirroring that of its raccoon host.
Collapse
Affiliation(s)
- Natalia Osten-Sacken
- Musée National d, Histoire Naturelle, 25 rue Muenster, L-2160 Luxembourg, Luxembourg; Fondation Faune-Flore, 25 rue Muenster, L-2160 Luxembourg, Luxembourg
| | - Mike Heddergott
- Musée National d, Histoire Naturelle, 25 rue Muenster, L-2160 Luxembourg, Luxembourg
| | - Anna Schleimer
- Musée National d, Histoire Naturelle, 25 rue Muenster, L-2160 Luxembourg, Luxembourg
| | - Helena E Anheyer-Behmenburg
- Lower Saxony State Office for Consumer Protection and Food Safety, Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, D-30173 Hannover, Germany
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food Safety, Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, D-30173 Hannover, Germany
| | - Gavin J Horsburgh
- NERC Biomolecular Analysis Facility, Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Lauren Camp
- Department of Entomology and Nematology, University of California, One Shields Avenue, Davis, CA 95616-8668, USA
| | - Steven A Nadler
- Department of Entomology and Nematology, University of California, One Shields Avenue, Davis, CA 95616-8668, USA
| | - Alain C Frantz
- Musée National d, Histoire Naturelle, 25 rue Muenster, L-2160 Luxembourg, Luxembourg.
| |
Collapse
|
32
|
Jones LM, Koehler A, Trnka M, Balek J, Challinor AJ, Atkinson HJ, Urwin PE. Climate change is predicted to alter the current pest status of Globodera pallida and G. rostochiensis in the United Kingdom. GLOBAL CHANGE BIOLOGY 2017; 23:4497-4507. [PMID: 28261933 PMCID: PMC5655772 DOI: 10.1111/gcb.13676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/30/2017] [Indexed: 05/19/2023]
Abstract
The potato cyst nematodes Globodera pallida and G. rostochiensis are economically important plant pathogens causing losses to UK potato harvests estimated at £50 m/ year. Implications of climate change on their future pest status have not been fully considered. Here, we report growth of female G. pallida and G. rostochiensis over the range 15 to 25°C. Females per plant and their fecundity declined progressively with temperatures above 17.5°C for G. pallida, whilst females per plant were optimal between 17.5 and 22.5°C for G. rostochiensis. Relative reproductive success with temperature was confirmed on two potato cultivars infected with either species at 15, 22.5 and 25°C. The reduced reproductive success of G. pallida at 22.5°C relative to 15°C was also recorded for a further seven host cultivars studied. The differences in optimal temperatures for reproductive success may relate to known differences in the altitude of their regions of origin in the Andes. Exposure of G. pallida to a diurnal temperature stress for one week during female growth significantly suppressed subsequent growth for one week at 17.5°C but had no effect on G. rostochiensis. However, after two weeks of recovery, female size was not significantly different from that for the control treatment. Future soil temperatures were simulated for medium- and high-emission scenarios and combined with nematode growth data to project future implications of climate change for the two species. Increased soil temperatures associated with climate change may reduce the pest status of G. pallida but benefit G. rostochiensis especially in the southern United Kingdom. We conclude that plant breeders may be able to exploit the thermal limits of G. pallida by developing potato cultivars able to grow under future warm summer conditions. Existing widely deployed resistance to G. rostochiensis is an important characteristic to retain for new potato cultivars.
Collapse
Affiliation(s)
| | - Ann‐Kristin Koehler
- Institute of Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | - Mirek Trnka
- Global Change Research CentreCzech Academy of SciencesBrnoCzech Republic
- Department of Agrosystems and BioclimatologyMendel University BrnoBrnoCzech Republic
| | - Jan Balek
- Department of Climate Change Impacts on AgroecosystemsGlobal Change Research Institute CASCZECHGLOBEBrnoCzech Republic
| | - Andrew J. Challinor
- Institute of Climate and Atmospheric ScienceSchool of Earth and EnvironmentUniversity of LeedsLeedsUK
| | | | | |
Collapse
|
33
|
Janssen T, Karssen G, Orlando V, Subbotin SA, Bert W. Molecular characterization and species delimiting of plant-parasitic nematodes of the genus Pratylenchus from the penetrans group (Nematoda: Pratylenchidae). Mol Phylogenet Evol 2017; 117:30-48. [PMID: 28778818 DOI: 10.1016/j.ympev.2017.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 11/18/2022]
Abstract
Root-lesion nematodes of the genus Pratylenchus are an important pest parasitizing a wide range of vascular plants including several economically important crops. However, morphological diagnosis of the more than 100 species is problematic due to the low number of diagnostic features, high morphological plasticity and incomplete taxonomic descriptions. In order to employ barcoding based diagnostics, a link between morphology and species specific sequences has to be established. In this study, we reconstructed a multi-gene phylogeny of the Penetrans group using nuclear ribosomal and mitochondrial gene sequences. A combination of this phylogenetic framework with molecular species delineation analysis, population genetics, morphometric information and sequences from type location material allowed us to establish the species boundaries within the Penetrans group and as such clarify long-standing controversies about the taxonomic status of P. penetrans, P. fallax and P. convallariae. Our study also reveals a remarkable amount of cryptic biodiversity within the genus Pratylenchus confirming that identification on morphology alone can be inconclusive in this taxonomically confusing genus.
Collapse
Affiliation(s)
- Toon Janssen
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium; Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Gerrit Karssen
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium; National Plant Protection Organization, Wageningen Nematode Collection, P.O. Box 9102, 6700 HC Wageningen, The Netherlands
| | - Valeria Orlando
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Sergei A Subbotin
- Plant Pest Diagnostic Center, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832, USA; Center of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian, Academy of Sciences, Leninskii Prospect 33, Moscow 117071, Russia
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
34
|
Gamel S, Letort A, Fouville D, Folcher L, Grenier E. Development and validation of real-time PCR assays based on novel molecular markers for the simultaneous detection and identification of Globodera pallida, G. rostochiensis and Heterodera schachtii. NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Considering the growing trade of seed potato, reliable diagnostic protocols are required for the detection of regulated nematode species. In this study, a specific and sensitive multiplex Taqman-based real-time PCR method was developed in order to detect and identifyGlobodera pallida,G. rostochiensisandHeterodera schachtii. The newly designed primers and probes enabled the detection of all the target populations tested and with no cross-reaction for closely related non-target species (55 populations tested). The limit of detection (LOD) was one juvenile forG. rostochiensisandG. pallidaand five juveniles forH. schachtii. For monitoring potato cyst nematodes, this analytical tool would extend the number of cyst investigated as five juveniles can be detected among 50 cysts in a sample. Furthermore, this multiplex assay detects DNA of the three targeted species in template DNA obtained directly from float material after nematode extraction from soil.
Collapse
Affiliation(s)
- Sylvie Gamel
- Anses, Plant Health Laboratory, Nematology unit, Domaine de la Motte au Vicomte, BP35327, 35653 Le Rheu, France
| | - Aude Letort
- Anses, Plant Health Laboratory, Nematology unit, Domaine de la Motte au Vicomte, BP35327, 35653 Le Rheu, France
| | - Didier Fouville
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection), Domaine de la Motte au Vicomte, BP35327, 35653 Le Rheu, France
| | - Laurent Folcher
- Anses, Plant Health Laboratory, Nematology unit, Domaine de la Motte au Vicomte, BP35327, 35653 Le Rheu, France
| | - Eric Grenier
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection), Domaine de la Motte au Vicomte, BP35327, 35653 Le Rheu, France
| |
Collapse
|
35
|
Gracianne C, Jan P, Fournet S, Olivier E, Arnaud J, Porte C, Bardou‐Valette S, Denis M, Petit EJ. Temporal sampling helps unravel the genetic structure of naturally occurring populations of a phytoparasitic nematode. 2. Separating the relative effects of gene flow and genetic drift. Evol Appl 2016; 9:1005-16. [PMID: 27606008 PMCID: PMC4999530 DOI: 10.1111/eva.12401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/06/2016] [Indexed: 11/29/2022] Open
Abstract
Studying wild pathogen populations in natural ecosystems offers the opportunity to better understand the evolutionary dynamics of biotic diseases in crops and to enhance pest control strategies. We used simulations and genetic markers to investigate the spatial and temporal population genetic structure of wild populations of the beet cyst nematode Heterodera schachtii on a wild host plant species, the sea beet (Beta vulgaris spp. maritima), the wild ancestor of cultivated beets. Our analysis of the variation of eight microsatellite loci across four study sites showed that (i) wild H. schachtii populations displayed fine-scaled genetic structure with no evidence of substantial levels of gene flow beyond the scale of the host plant, and comparisons with simulations indicated that (ii) genetic drift substantially affected the residual signals of isolation-by-distance processes, leading to departures from migration-drift equilibrium. In contrast to what can be suspected for (crop) field populations, this showed that wild cyst nematodes have very low dispersal capabilities and are strongly disconnected from each other. Our results provide some key elements for designing pest control strategies, such as decreasing passive dispersal events to limit the spread of virulence among field nematode populations.
Collapse
Affiliation(s)
- Cécile Gracianne
- IGEPPINRA, Agrocampus OuestUniversité Rennes 1Le RheuFrance
- VetAgro Sup, UMR 1095, GDECClermont UniversitéClermont‐FerrandFrance
| | - Pierre‐Loup Jan
- IGEPPINRA, Agrocampus OuestUniversité Rennes 1Le RheuFrance
- ESE, Ecology and Ecosystems HealthAgrocampus OuestINRARennesFrance
| | | | - Eric Olivier
- IGEPPINRA, Agrocampus OuestUniversité Rennes 1Le RheuFrance
| | - Jean‐François Arnaud
- UMR CNRS 8198 ÉvolutionÉcologie et PaléontologieUniversité Lille 1 ‐ Sciences et TechnologiesVilleneuve d'Ascq CedexFrance
| | | | | | | | - Eric J. Petit
- ESE, Ecology and Ecosystems HealthAgrocampus OuestINRARennesFrance
| |
Collapse
|
36
|
Eves-van den Akker S, Laetsch DR, Thorpe P, Lilley CJ, Danchin EGJ, Da Rocha M, Rancurel C, Holroyd NE, Cotton JA, Szitenberg A, Grenier E, Montarry J, Mimee B, Duceppe MO, Boyes I, Marvin JMC, Jones LM, Yusup HB, Lafond-Lapalme J, Esquibet M, Sabeh M, Rott M, Overmars H, Finkers-Tomczak A, Smant G, Koutsovoulos G, Blok V, Mantelin S, Cock PJA, Phillips W, Henrissat B, Urwin PE, Blaxter M, Jones JT. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biol 2016; 17:124. [PMID: 27286965 PMCID: PMC4901422 DOI: 10.1186/s13059-016-0985-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/12/2016] [Indexed: 11/23/2022] Open
Abstract
Background The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. Results We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative ‘effector islands’ in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. Conclusions These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0985-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Peter Thorpe
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK
| | | | - Etienne G J Danchin
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Martine Da Rocha
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Corinne Rancurel
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Nancy E Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | - James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | - Amir Szitenberg
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Eric Grenier
- INRA, UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection), 35653, Le Rheu, France
| | - Josselin Montarry
- INRA, UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection), 35653, Le Rheu, France
| | - Benjamin Mimee
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Marc-Olivier Duceppe
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Ian Boyes
- Sidney Laboratory, Canadian Food Inspection Agency (CFIA), 8801 East Saanich Rd, Sidney, BC, V8L 1H3, Canada
| | | | - Laura M Jones
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Hazijah B Yusup
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Joël Lafond-Lapalme
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Magali Esquibet
- INRA, UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection), 35653, Le Rheu, France
| | - Michael Sabeh
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Michael Rott
- Sidney Laboratory, Canadian Food Inspection Agency (CFIA), 8801 East Saanich Rd, Sidney, BC, V8L 1H3, Canada
| | - Hein Overmars
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Anna Finkers-Tomczak
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | | | - Vivian Blok
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Sophie Mantelin
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Peter J A Cock
- Information and Computational Sciences Group, James Hutton Institute, Dundee, UK
| | - Wendy Phillips
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Bernard Henrissat
- CNRS UMR 7257, INRA, USC 1408, Aix-Marseille University, AFMB, 13288, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK.,School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| |
Collapse
|
37
|
Eves-van den Akker S, Lilley CJ, Reid A, Pickup J, Anderson E, Cock PJA, Blaxter M, Urwin PE, Jones JT, Blok VC. A metagenetic approach to determine the diversity and distribution of cyst nematodes at the level of the country, the field and the individual. Mol Ecol 2016; 24:5842-51. [PMID: 26607216 PMCID: PMC4981918 DOI: 10.1111/mec.13434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 11/30/2022]
Abstract
Distinct populations of the potato cyst nematode (PCN) Globodera pallida exist in the UK that differ in their ability to overcome various sources of resistance. An efficient method for distinguishing between populations would enable pathogen‐informed cultivar choice in the field. Science and Advice for Scottish Agriculture (SASA) annually undertake national DNA diagnostic tests to determine the presence of PCN in potato seed and ware land by extracting DNA from soil floats. These DNA samples provide a unique resource for monitoring the distribution of PCN and further interrogation of the diversity within species. We identify a region of mitochondrial DNA descriptive of three main groups of G. pallida present in the UK and adopt a metagenetic approach to the sequencing and analysis of all SASA samples simultaneously. Using this approach, we describe the distribution of G. pallida mitotypes across Scotland with field‐scale resolution. Most fields contain a single mitotype, one‐fifth contain a mix of mitotypes, and less than 3% contain all three mitotypes. Within mixed fields, we were able to quantify the relative abundance of each mitotype across an order of magnitude. Local areas within mixed fields are dominated by certain mitotypes and indicate towards a complex underlying ‘pathoscape’. Finally, we assess mitotype distribution at the level of the individual cyst and provide evidence of ‘hybrids’. This study provides a method for accurate, quantitative and high‐throughput typing of up to one thousand fields simultaneously, while revealing novel insights into the national genetic variability of an economically important plant parasite.
Collapse
Affiliation(s)
- Sebastian Eves-van den Akker
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Alex Reid
- Science and Advice for Scottish Agriculture, Edinburgh, EH12 9FJ, UK
| | - Jon Pickup
- Science and Advice for Scottish Agriculture, Edinburgh, EH12 9FJ, UK
| | - Eric Anderson
- Scottish Agronomy Ltd, Arlary Farm, Milnathort, Kinross, KY13 9SJ, UK
| | - Peter J A Cock
- Information and Computational Sciences Group, Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.,School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| | - Vivian C Blok
- Cell and Molecular Sciences Group, Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
38
|
Mimee B, Duceppe MO, Véronneau PY, Lafond-Lapalme J, Jean M, Belzile F, Bélair G. A new method for studying population genetics of cyst nematodes based on Pool-Seq and genomewide allele frequency analysis. Mol Ecol Resour 2015; 15:1356-65. [PMID: 25846829 DOI: 10.1111/1755-0998.12412] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022]
Abstract
Cyst nematodes are important agricultural pests responsible for billions of dollars of losses each year. Plant resistance is the most effective management tool, but it requires a close monitoring of population genetics. Current technologies for pathotyping and genotyping cyst nematodes are time-consuming, expensive and imprecise. In this study, we capitalized on the reproduction mode of cyst nematodes to develop a simple population genetic analysis pipeline based on genotyping-by-sequencing and Pool-Seq. This method yielded thousands of SNPs and allowed us to study the relationships between populations of different origins or pathotypes. Validation of the method on well-characterized populations also demonstrated that it was a powerful and accurate tool for population genetics. The genomewide allele frequencies of 23 populations of golden nematode, from nine countries and representing the five known pathotypes, were compared. A clear separation of the pathotypes and fine genetic relationships between and among global populations were obtained using this method. In addition to being powerful, this tool has proven to be very time- and cost-efficient and could be applied to other cyst nematode species.
Collapse
Affiliation(s)
- Benjamin Mimee
- Agriculture and Agri-Food Canada, Horticulture Research and Development Centre, 430 boul. Gouin, St-Jean-sur-Richelieu, Québec, Canada, J3B 3E6
| | - Marc-Olivier Duceppe
- Agriculture and Agri-Food Canada, Horticulture Research and Development Centre, 430 boul. Gouin, St-Jean-sur-Richelieu, Québec, Canada, J3B 3E6
| | - Pierre-Yves Véronneau
- Agriculture and Agri-Food Canada, Horticulture Research and Development Centre, 430 boul. Gouin, St-Jean-sur-Richelieu, Québec, Canada, J3B 3E6
| | - Joël Lafond-Lapalme
- Agriculture and Agri-Food Canada, Horticulture Research and Development Centre, 430 boul. Gouin, St-Jean-sur-Richelieu, Québec, Canada, J3B 3E6
| | - Martine Jean
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, 2425 rue de l'Agriculture, Québec, Canada, G1V 0A6
| | - François Belzile
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, 2425 rue de l'Agriculture, Québec, Canada, G1V 0A6
| | - Guy Bélair
- Agriculture and Agri-Food Canada, Horticulture Research and Development Centre, 430 boul. Gouin, St-Jean-sur-Richelieu, Québec, Canada, J3B 3E6
| |
Collapse
|
39
|
Dharmarajan G. Inbreeding in stochastic subdivided mating systems: the genetic consequences of host spatial structure, aggregated transmission dynamics and life history characteristics in parasite populations. J Genet 2015; 94:43-53. [PMID: 25846876 DOI: 10.1007/s12041-015-0488-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Inbreeding in parasite populations can have important epidemiological and evolutionary implications. However, theoretical models have predominantly focussed on the evolution of parasite populations under strong selection or in epidemic situations, and our understanding of neutral gene dynamics in parasite populations at equilibrium has been limited to verbal arguments or conceptual models. This study focusses on how host-parasite population dynamics affects observed levels of inbreeding in a random sample of parasites from an infinite population of hosts by bridging traditional genetic and parasitological processes utilizing a backward-forward branching Markov process embedded within a flexible statistical framework, the logarithmic-poisson mixture model. My results indicate that levels of inbreeding in parasites are impacted by demographic and/or transmission dynamics (subdivided mating, aggregated transmission dynamics and host spatial structure), and that this inbreeding is poorly estimated by 'equilibrium' levels of inbreeding calculated assuming regular systems of mating. Specifically, the model reveals that at low levels of inbreeding (F ≤ 0.1), equilibrium levels of inbreeding are lower than those observed, while at high levels of inbreeding the opposite pattern occurs. The model also indicates that inbreeding could have important epidemiological implications (e.g., the spread of recessive drug resistance genes) by directly impacting the observed frequency of rare homozygotes in parasite populations. My results indicate that frequencies of rare homozygotes are affected by aggregated transmission dynamics and host spatial structure, and also that an increase in the frequency of rare homozygotes can be caused by a decrease in effective population size solely due to the presence of a subdivided breeding system.
Collapse
Affiliation(s)
- Guha Dharmarajan
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur 741 246, India.
| |
Collapse
|
40
|
Humphreys-Pereira DA, Elling AA. Mitochondrial genome plasticity among species of the nematode genus Meloidogyne (Nematoda: Tylenchina). Gene 2015; 560:173-83. [PMID: 25655462 DOI: 10.1016/j.gene.2015.01.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 11/30/2022]
Abstract
The mitochondrial (mt) genomes of the plant-parasitic root-knot nematodes Meloidogyne arenaria, Meloidogyne enterolobii and Meloidogyne javanica were sequenced and compared with those of three other root-knot nematode species in order to explore the mt genome plasticity within Meloidogyne. The mt genomes of M. arenaria, M. enterolobii and M. javanica are circular, with an estimated size of 18.8, 18.9 and 19.6 kb, respectively. Compared to other nematodes these mt genomes are larger, due to the presence of large non-coding regions. The mt genome architecture within the genus Meloidogyne varied in the position of trn genes and in the position, length and nucleotide composition of non-coding regions. These variations were observed independent of the species' natural environments or reproductive modes. M. enterolobii showed three main non-coding regions whereas Meloidogyne chitwoodi, Meloidogyne incognita, M. javanica and M. arenaria had two non-coding regions, and Meloidogyne graminicola had a unique large non-coding region interrupted by two trn genes. trn genes were positioned in different regions of the mt genomes in M. chitwoodi, M. enterolobii and M. graminicola, whereas the trn gene order was identical between M. arenaria, M. incognita and M. javanica. Importantly, M. graminicola had extra copies of trnV and trnS2. High divergence levels between the two copies of each trn might indicate duplication events followed by random loss and mutations in the anticodon. Tree-based methods based on amino acid sequences of 12 mt protein-coding genes support the monophyly for the tropical and mitotic parthenogenetic species, M. arenaria, M. enterolobii, M. incognita and M. javanica and for a clade that includes the meiotic parthenogenetic species, M. chitwoodi and M. graminicola. A comparison of the mt genome architecture in plant-parasitic nematodes and phylogenetic analyses support that Pratylenchus is the most recent ancestor of root-knot nematodes.
Collapse
Affiliation(s)
| | - Axel A Elling
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
41
|
Davies LJ, Elling AA. Resistance genes against plant-parasitic nematodes: a durable control strategy? NEMATOLOGY 2015. [DOI: 10.1163/15685411-00002877] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Plant-parasitic nematodes are a major pest of all agricultural systems, causing extensive economic losses. Natural resistance (R) genes offer an alternative to chemical control and have been shown effectively to limit nematode damage to crops in the field. Whilst a number of resistant cultivars have conferred resistance against root-knot and cyst nematodes for many decades, an increasing number of reports of resistance-breaking nematode pathotypes are beginning to emerge. The forces affecting the emergence of virulent nematodes are complex, multifactorial and involve both the host and parasite of the plant-nematode interaction. This review provides an overview of the root-knot and cyst nematodeRgenes characterised to date, in addition to examining the evolutionary forces influencing nematode populations and the emergence of virulence. Finally, potential strategies to improveRgene durability in the field are outlined, and areas that would benefit from further research efforts are highlighted.
Collapse
Affiliation(s)
- Laura J. Davies
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Axel A. Elling
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
42
|
Takeuchi T, Yamaguchi M, Tanaka R, Dayi M, Ogura N, Kikuchi T. Development and validation of SSR markers for the plant-parasitic nematode Subanguina moxae using genome assembly of Illumina pair-end reads. NEMATOLOGY 2015. [DOI: 10.1163/15685411-00002885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Subanguina moxae, belonging to the subfamily Anguininae, is an obligate parasite of Artemisia plants, which are widely used as cooking herbs and in traditional medicine in East Asia. Because the nematode is distributed throughout East Russia and East Asia, there is concern about the potential for significant damage to commercial farming; however, details about its biology remain unclear. To investigate the genetic diversity of S. moxae, we developed 2243 simple sequence repeat (SSR) markers using Illumina short reads of the genomic DNA. We validated 100 randomly selected markers indicating their robustness and examined polymorphisms among nematode populations sampled from four different locations in Japan. These SSR markers will be a useful tool for understanding the population structure and transmission patterns of this parasitic nematode.
Collapse
Affiliation(s)
- Tomoaki Takeuchi
- Laboratory of Plant Nematology, Department of Agriculture, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Madoka Yamaguchi
- Laboratory of Plant Nematology, Department of Agriculture, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Ryusei Tanaka
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Mehmet Dayi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Forest Entomology and Protection Unit, Faculty of Forestry, Duzce University, Duzce, 81620, Turkey
| | - Nobuo Ogura
- Laboratory of Plant Nematology, Department of Agriculture, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
43
|
Wang HM, Zhao HH, Chu D. Genetic structure analysis of populations of the soybean cyst nematode, Heterodera glycines, from north China. NEMATOLOGY 2015. [DOI: 10.1163/15685411-00002893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To elucidate the genetic differentiation of the host populations ofHeterodera glycines, 348 individuals from 13 populations of three host plants (Nicotiana tabacum,Glycine maxandRehmannia glutinosa) in north China were genotyped using eight microsatellite loci. A significant departure from Hardy-Weinberg equilibrium (Fis) was found in all populations. BOTTLENECK results showed that only three populations (ZT, CR, and MR) may have experienced a genetic bottleneck. The pairwiseFSTvalues among the three host populations ranged from 0.0503 to 0.2867. There was no significant relationship between the genetic distance and geographical distance. STRUCTURE analyses suggest thatR. glutinosamight have important influence on the genetic differentiation ofH. glycinesin north China. Our study demonstrates thatH. glycinesis an inbred species that is highly genetic differentiated.
Collapse
Affiliation(s)
- Hui-Min Wang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Hong-hai Zhao
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Dong Chu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, P.R. China
| |
Collapse
|
44
|
Alenda C, Montarry J, Grenier E. Human influence on the dispersal and genetic structure of French Globodera tabacum populations. INFECTION GENETICS AND EVOLUTION 2014; 27:309-17. [DOI: 10.1016/j.meegid.2014.07.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 07/04/2014] [Accepted: 07/23/2014] [Indexed: 11/28/2022]
|
45
|
Eves-van den Akker S, Lilley CJ, Jones JT, Urwin PE. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes. PLoS Pathog 2014; 10:e1004391. [PMID: 25255291 PMCID: PMC4177990 DOI: 10.1371/journal.ppat.1004391] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022] Open
Abstract
Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism. Sedentary plant parasitic nematodes are pathogens that invade plant roots and establish a feeding site. The feeding site is a specialist structure used by the nematode to support its development within the plant. The nematode secretes a suite of proteins, termed ‘effector proteins’ that are responsible for initiating and maintaining the feeding site. The nematode must also evade recognition by the plant defence systems throughout its lifecycle that can last for many weeks. We describe a diverse and variable effector gene family (HYP), the products of which are secreted into the plant by the nematode and are required for successful infection. The variability and modular structure of this gene family can lead to the production of a large array of effector proteins. This diversity may allow the nematodes to combat any resistance mechanisms developed by the plant. Each nematode tested within a population is genetically unique in terms of these effector genes. We found huge variation in the number, size and type of HYP effectors at the level of the individual. This may explain some of the difficulties in breeding nematode resistant plants and has profound implications for those working with other plant pathogens.
Collapse
Affiliation(s)
- Sebastian Eves-van den Akker
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | | | - John T. Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Peter E. Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Humphreys-Pereira DA, Humphreys-Pereira DA, Flores-Chaves L, Humphreys-Pereira DA, Flores-Chaves L, Gómez M, Humphreys-Pereira DA, Flores-Chaves L, Gómez M, Salazar L, Humphreys-Pereira DA, Flores-Chaves L, Gómez M, Salazar L, Gómez-Alpízar L, Humphreys-Pereira DA, Flores-Chaves L, Gómez M, Salazar L, Gómez-Alpízar L, Elling AA. Meloidogyne lopezi n. sp. (Nematoda: Meloidogynidae), a new root-knot nematode associated with coffee (Coffea arabica L.) in Costa Rica, its diagnosis and phylogenetic relationship with other coffee-parasitising Meloidogyne species. NEMATOLOGY 2014. [DOI: 10.1163/15685411-00002794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Coffee (Coffea arabica L. cv. Catuai) seedlings with abundant small root galls caused by an unknown root-knot nematode were found in southern Costa Rica. Morphology, esterase and malate dehydrogenase isozyme phenotypes and DNA markers differentiated this nematode from known Meloidogyne spp. A new species, M. lopezi n. sp., with common name Costa Rican root-knot nematode, is suggested. Meloidogyne lopezi n. sp. is distinguished from other coffee-associated Meloidogyne spp. by size of female lips and stylet, male body length and stylet and second-stage juvenile body and tail morphology. The region of the mitochondrial genome between COII and 16S rRNA showed a unique amplicon size of 1370 bp, and digestions with restriction enzymes HinfI, AluI, DraI and DraIII revealed characteristic PCR-RFLP patterns that differed from the tropical root-knot nematode species M. arabicida, M. incognita, M. izalcoensis, M. javanica and M. paranaensis. Characterisation of the protein-coding map-1 gene and phylogenetic analyses suggested that M. lopezi n. sp. might reproduce by mitotic parthenogenesis. Phylogenies estimated using Bayesian analyses based on the region between the COII and 16S rRNA mitochondrial genes, as well as the 18S and 28S ribosomal nuclear genes, indicated that M. lopezi n. sp. is closely related to other tropical Meloidogyne spp. that infect coffee, especially M. arabicida, M. izalcoensis and M. paranaensis from Central and South America. Isozyme analyses and PCR-RFLP of the COII-16S rRNA mitochondrial gene region enable a clear diagnostic differentiation between these species.
Collapse
Affiliation(s)
| | | | - Lorena Flores-Chaves
- Laboratory of Nematology-CIPROC, University of Costa Rica, 2060 San Pedro, Costa Rica
| | | | - Lorena Flores-Chaves
- Laboratory of Nematology-CIPROC, University of Costa Rica, 2060 San Pedro, Costa Rica
| | - Melissa Gómez
- Laboratory of Nematology-CIPROC, University of Costa Rica, 2060 San Pedro, Costa Rica
| | | | - Lorena Flores-Chaves
- Laboratory of Nematology-CIPROC, University of Costa Rica, 2060 San Pedro, Costa Rica
| | - Melissa Gómez
- Laboratory of Nematology-CIPROC, University of Costa Rica, 2060 San Pedro, Costa Rica
| | - Luis Salazar
- Laboratory of Nematology-CIPROC, University of Costa Rica, 2060 San Pedro, Costa Rica
| | | | - Lorena Flores-Chaves
- Laboratory of Nematology-CIPROC, University of Costa Rica, 2060 San Pedro, Costa Rica
| | - Melissa Gómez
- Laboratory of Nematology-CIPROC, University of Costa Rica, 2060 San Pedro, Costa Rica
| | - Luis Salazar
- Laboratory of Nematology-CIPROC, University of Costa Rica, 2060 San Pedro, Costa Rica
| | - Luis Gómez-Alpízar
- Plant Biotechnology Laboratory, Agronomy Research Center, University of Costa Rica, 2060 San Pedro, Costa Rica
| | | | - Lorena Flores-Chaves
- Laboratory of Nematology-CIPROC, University of Costa Rica, 2060 San Pedro, Costa Rica
| | - Melissa Gómez
- Laboratory of Nematology-CIPROC, University of Costa Rica, 2060 San Pedro, Costa Rica
| | - Luis Salazar
- Laboratory of Nematology-CIPROC, University of Costa Rica, 2060 San Pedro, Costa Rica
| | - Luis Gómez-Alpízar
- Plant Biotechnology Laboratory, Agronomy Research Center, University of Costa Rica, 2060 San Pedro, Costa Rica
| | - Axel A. Elling
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
47
|
Gilabert A, Wasmuth JD. Unravelling parasitic nematode natural history using population genetics. Trends Parasitol 2013; 29:438-48. [PMID: 23948430 DOI: 10.1016/j.pt.2013.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/01/2023]
Abstract
The health and economic importance of parasitic nematodes cannot be overstated. Moreover, they offer a complex and diverse array of life strategies, raising a multitude of evolutionary questions. Researchers are applying population genetics to parasitic nematodes in order to disentangle some aspects of their life strategies, improve our knowledge about disease epidemiology, and design control strategies. However, population genetics studies of nematodes have been constrained due to the difficulty in sampling nematodes and developing molecular markers. In this context, new computational and sequencing technologies represent promising tools to investigate population genomics of parasitic, non-model, nematode species in an epidemiological context.
Collapse
Affiliation(s)
- Aude Gilabert
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada
| | | |
Collapse
|
48
|
Analysis of the genetic diversity of the nematode parasite Baylisascaris schroederi from wild giant pandas in different mountain ranges in China. Parasit Vectors 2013; 6:233. [PMID: 23924705 PMCID: PMC3750503 DOI: 10.1186/1756-3305-6-233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/06/2013] [Indexed: 11/17/2022] Open
Abstract
Background Baylisascaris schroederi is one of the most common nematodes of the giant panda, and can cause severe baylisascarosis in both wild and captive giant pandas. Previous studies of the giant pandas indicated that this population is genetically distinct, implying the presence of a new subspecies. Based on the co-evolution between the parasite and the host, the aim of this study was to investigate the genetic differentiation in the B. schroederi population collected from giant pandas inhabiting different mountain ranges, and further to identify whether the evolution of this parasite correlates with the evolution of giant pandas. Methods In this study, 48 B. schroederi were collected from 28 wild giant pandas inhabiting the Qinling, Minshan and Qionglai mountain ranges in China. The complete sequence of the mitochondrial cytochrome b (mtCytb) gene was amplified by PCR, and the corresponding population genetic diversity of the three mountain populations was determined. In addition, we discussed the evolutionary relationship between B. schroederi and its host giant panda. Results For the DNA dataset, insignificant Fst values and a significant, high level of gene flow were detected among the three mountain populations of B. schroederi, and high genetic variation within populations and a low genetic distance were observed. Both phylogenetic analyses and network mapping of the 16 haplotypes revealed a dispersed pattern and an absence of branches strictly corresponding to the three mountain range sampling sites. Neutrality tests and mismatch analysis indicated that B. schroederi experienced a population expansion in the past. Conclusions Taken together, the dispersed haplotype map, extremely high gene flow among the three populations of B. schroederi, low genetic structure and rapid evolutionary rate suggest that the B. schroederi populations did not follow a pattern of isolation by distance, indicating the existence of physical connections before these populations became geographically separated.
Collapse
|
49
|
Boucher AC, Mimee B, Montarry J, Bardou-Valette S, Bélair G, Moffett P, Grenier E. Genetic diversity of the golden potato cyst nematode Globodera rostochiensis and determination of the origin of populations in Quebec, Canada. Mol Phylogenet Evol 2013; 69:75-82. [PMID: 23742887 DOI: 10.1016/j.ympev.2013.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/22/2013] [Accepted: 05/26/2013] [Indexed: 11/28/2022]
Abstract
The golden cyst nematode (Globodera rostochiensis), native to South America, has been introduced in many parts of the world, including Europe and North America. Recently, it was found for the first time in the province of Quebec, Canada in the locality of St. Amable near Montreal. To date, very few studies have examined the population genetics of this pest. Consequently, there is a lack of knowledge about the genetic structure and evolution of this nematode. In this study, twelve new microsatellite markers were developed in order to explore these questions. These markers were used to genotype fifteen populations originating from different regions of the world, including five from Canada. Within populations, the highest genetic diversity was consistently observed in the populations from Bolivia, the postulated region of origin of the golden nematode, and the lowest in populations from British Columbia (Canada) and New York (USA). The two Quebec populations were very similar to each other and to the population found in Newfoundland, but surprisingly, they were significantly different from three other North American populations including those from New York and British Columbia. Based on our results, we conclude that the golden cyst nematode has been introduced in North America at least twice from distinct regions of the world.
Collapse
|
50
|
Molecular characterization of Portuguese populations of the pinewood nematode Bursaphelenchus xylophilus using cytochrome b and cellulase genes. J Helminthol 2012; 87:457-66. [DOI: 10.1017/s0022149x12000673] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBursaphelenchus xylophilus is the causal agent of pine wilt disease and a worldwide pest with high economic impact. Since its first diagnosis in Portugal in 1999, it has been subjected to quarantine measures with impact on forest health and ecosystem stability, significantly affecting international trade of wood products. The disease was detected in the north and centre of continental Portugal and, since 2008, the whole country has been considered an affected area. Recently, it was detected in Madeira Island. In order to avoid new outbreaks, it has become of major importance to understand the patterns of spread, introduction points and to characterize the new populations from continental Portugal and Madeira Island. Mitochondrial cytochrome b (cytb) and parasitic cellulase gene sequences were used to evaluate the genetic relationships among isolates that could indicate possible origins of the new outbreaks. Portuguese isolates were compared with isolates from USA, China, Japan and South Korea, in order to investigate possible infection pathways and disease spread patterns in Portugal. Phylogenetic trees based on both genes show that Portuguese isolates group with Asian isolates. Isolates from USA are in a separate position in both gene trees. However, the phylogenetic tree based on the cellulase gene sequences shows higher differentiation among Portuguese isolates than that of cytb. These results agree with those previously obtained using inter-simple sequence repeats (ISSR). This was the first study to use cytb and cellulase genes to characterize pinewood nematode (PWN) populations. This study suggests that cellulase is a better marker than cytb to study genetic diversity in B. xylophilus.
Collapse
|