1
|
Schwaner C, Farhat S, Boutet I, Tanguy A, Barbosa M, Grouzdev D, Pales Espinosa E, Allam B. Combination of RNAseq and RADseq to Identify Physiological and Adaptive Responses to Acidification in the Eastern Oyster (Crassostrea virginica). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:997-1019. [PMID: 37864760 DOI: 10.1007/s10126-023-10255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Ocean acidification (OA) is a major stressor threatening marine calcifiers, including the eastern oyster (Crassostrea virginica). In this paper, we provide insight into the molecular mechanisms associated with resilience to OA, with the dual intentions of probing both acclimation and adaptation potential in this species. C. virginica were spawned, and larvae were reared in control or acidified conditions immediately after fertilization. RNA samples were collected from larvae and juveniles, and DNA samples were collected from juveniles after undergoing OA-induced mortality and used to contrast gene expression (RNAseq) and SNP (ddRADseq) profiles from animals reared under both conditions. Results showed convergence of evidence from both approaches, particularly in genes involved in biomineralization that displayed significant changes in variant frequencies and gene expression levels among juveniles that survived acidification as compared to controls. Downregulated genes were related to immune processes, supporting previous studies demonstrating a reduction in immunity from exposure to OA. Acclimation to OA via regulation of gene expression might confer short-term resilience to immediate threats; however, the costs may not be sustainable, underscoring the importance of selection of resilient genotypes. Here, we identified SNPs associated with survival under OA conditions, suggesting that this commercially and ecologically important species might have the genetic variation needed for adaptation to future acidification. The identification of genetic features associated with OA resilience is a highly-needed step for the development of marker-assisted selection of oyster stocks for aquaculture and restoration activities.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Denis Grouzdev
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|
2
|
Ito RK, Harada S, Tabata R, Watanabe K. Molecular evolution and convergence of the rhodopsin gene in Gymnogobius, a goby group having diverged into coastal to freshwater habitats. J Evol Biol 2021; 35:333-346. [PMID: 34689368 DOI: 10.1111/jeb.13955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Adaptive evolution of vision-related genes has been frequently observed in the process of invasion of new environments in a wide range of animal taxa. The typical example is that of the molecular evolution of rhodopsin associated with habitat changes in aquatic animals. However, few studies have investigated rhodopsin evolution during adaptive radiation across various habitats. In the present study, we examined the link between molecular evolutionary patterns in the rhodopsin gene and macroscopic habitat changes in Gymnogobius species (Gobiidae), which have adaptively radiated to diverse aquatic habitats including the sea, brackish waters, rivers and lakes. Analysis of amino acid substitutions in rhodopsin in the phylogenetic framework revealed convergent substitutions in 4-5 amino acids in three groups (four species), including two spectral tuning amino acid sites known to change rhodopsin's absorption wavelength. Positive selection was detected in the basal branches of each of these three groups, suggesting adaptive molecular convergence of rhodopsin. However, no significant correlation was observed between amino acid substitutions and the species' habitat changes, suggesting molecular adaptation to some unidentified micro-ecological environments. Taken together, these results emphasize the importance of considering not only macroscopic habitats but also micro-ecological environments when elucidating the driving forces of adaptive evolution of the visual system.
Collapse
Affiliation(s)
- Ryosuke K Ito
- Division of Biological Sciences, Department of Zoology, Graduate School of Science, Kyoto University, Kyoto City, Japan
| | - Shigeo Harada
- Resource Management Division, Fisheries Bureau, Agriculture, Forestry and Fisheries Department, Wakayama Prefectural Government, Wakayama City, Japan
| | | | - Katsutoshi Watanabe
- Division of Biological Sciences, Department of Zoology, Graduate School of Science, Kyoto University, Kyoto City, Japan
| |
Collapse
|
3
|
Leder EH, André C, Le Moan A, Töpel M, Blomberg A, Havenhand JN, Lindström K, Volckaert FAM, Kvarnemo C, Johannesson K, Svensson O. Post-glacial establishment of locally adapted fish populations over a steep salinity gradient. J Evol Biol 2020; 34:138-156. [PMID: 32573797 DOI: 10.1111/jeb.13668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
Studies of colonization of new habitats that appear from rapidly changing environments are interesting and highly relevant to our understanding of divergence and speciation. Here, we analyse phenotypic and genetic variation involved in the successful establishment of a marine fish (sand goby, Pomatoschistus minutus) over a steep salinity drop from 35 PSU in the North Sea (NE Atlantic) to two PSU in the inner parts of the post-glacial Baltic Sea. We first show that populations are adapted to local salinity in a key reproductive trait, the proportion of motile sperm. Thereafter, we show that genome variation at 22,190 single nucleotide polymorphisms (SNPs) shows strong differentiation among populations along the gradient. Sequences containing outlier SNPs and transcriptome sequences, mapped to a draft genome, reveal associations with genes with relevant functions for adaptation in this environment but without overall evidence of functional enrichment. The many contigs involved suggest polygenic differentiation. We trace the origin of this differentiation using demographic modelling and find the most likely scenario is that at least part of the genetic differentiation is older than the Baltic Sea and is a result of isolation of two lineages prior to the current contact over the North Sea-Baltic Sea transition zone.
Collapse
Affiliation(s)
- Erica H Leder
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biology, University of Turku, Turku, Finland.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Carl André
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Alan Le Moan
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Mats Töpel
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anders Blomberg
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jonathan N Havenhand
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Kai Lindström
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Filip A M Volckaert
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven, Belgium
| | - Charlotta Kvarnemo
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Johannesson
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Ola Svensson
- Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Department for Pre-School and School Teacher Education, University of Borås, Borås, Sweden
| |
Collapse
|
4
|
Abstract
The evolutionary process that occurs when a species colonizes a new environment provides an opportunity to explore the mechanisms underlying genetic adaptation, which is essential knowledge for understanding evolution and the maintenance of biodiversity. Atlantic herring has an estimated total breeding stock of about 1 trillion (1012) and has colonized the brackish Baltic Sea within the last 10,000 y. Minute genetic differentiation between Atlantic and Baltic herring populations at selectively neutral loci combined with this rapid adaptation to a new environment facilitated the identification of hundreds of loci underlying ecological adaptation. A major question in the field of evolutionary biology is to what extent such an adaptive process involves selection of novel mutations with large effects or genetic changes at many loci, each with a small effect on phenotype (i.e., selection on standing genetic variation). Here we show that a missense mutation in rhodopsin (Phe261Tyr) is an adaptation to the red-shifted Baltic Sea light environment. The transition from phenylalanine to tyrosine differs only by the presence of a hydroxyl moiety in the latter, but this results in an up to 10-nm red-shifted light absorbance of the receptor. Remarkably, an examination of the rhodopsin sequences from 2,056 species of fish revealed that the same missense mutation has occurred independently and been selected for during at least 20 transitions between light environments across all fish. Our results provide a spectacular example of convergent evolution and how a single amino acid change can have a major effect on ecological adaptation.
Collapse
|
5
|
Zhang BD, Xue DX, Li YL, Liu JX. RAD genotyping reveals fine-scale population structure and provides evidence for adaptive divergence in a commercially important fish from the northwestern Pacific Ocean. PeerJ 2019; 7:e7242. [PMID: 31309001 PMCID: PMC6612258 DOI: 10.7717/peerj.7242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/02/2019] [Indexed: 01/08/2023] Open
Abstract
Exploring factors shaping genetic structure of marine fish is challenging due to fewer barriers to gene flow in the ocean. However, genome-wide sequence data can greatly enhance our ability to delineate previously unidentified population structure as well as potential adaptive divergence. The small yellow croaker (Larimichthys polyactis) is a commercially important fish species with high gene flow and its overwintering populations experience heterogeneous environment, suggesting possible population differentiation and adaptive divergence. To delineate patterns of population structure as well as test for signatures of local adaptation, a total of 68,666 quality filtered SNP markers were identified for 80 individuals from four overwintering populations by using restriction site-associated DNA sequencing (RAD-seq). Significant genetic differentiation among overwintering populations from the Central Yellow Sea, the South Yellow Sea and the North East China Sea were detected (Pair-wise FST: 0.00036–0.00390), which were consistent with population division of overwintering groups inferred from traditional ecological approaches. In addition, a total of 126 unique SNPs were detected to be significantly associated with environmental parameters (temperature, salinity and turbidity). These candidate SNPs were involved in multiple pathways such as energy metabolism and phagocytosis, suggesting they may play key roles in growth and innate immunity. Our results suggested the existence of hitherto unrecognized cryptic population structure and local adaptation in this high gene flow marine fish and thus gain new insights into the design of management strategies.
Collapse
Affiliation(s)
- Bai-Dong Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Dong-Xiu Xue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
6
|
Chang CH, Yan HY. Plasticity of opsin gene expression in the adult red shiner (Cyprinella lutrensis) in response to turbid habitats. PLoS One 2019; 14:e0215376. [PMID: 30978235 PMCID: PMC6461250 DOI: 10.1371/journal.pone.0215376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/01/2019] [Indexed: 11/30/2022] Open
Abstract
Vision is very important to fish as it is required for foraging food, fighting competitors, fleeing from predators, and finding potential mates. Vertebrates express opsin genes in photoreceptor cells to receive visual signals, and the variety of light levels in aquatic habits has driven fish to evolve multiple opsin genes with expression profiles that are highly plastic. In this study, red shiners (Cyprinella lutrensis) were exposed to four water turbidity treatments and their opsin genes were cloned to elucidate how opsin gene expression could be modulated by ambient light conditions. Opsin gene cloning revealed that these fish have single RH1, SWS1, SWS2 and LWS genes and two RH2 genes. Phylogenetic analysis also indicated that these two RH2 opsin genes-RH2A and RH2B -are in-paralogous. Using quantitative PCR, we found evidence that opsin expression is plastic in adults. Elevated proportional expression of LWS in the cone under ambient light and turbid treatment indicated that the red shiner's visual spectrum displays a red shift in response to increased turbidity.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Life Science, Tunghai University, Taichung City, Taiwan
- Center for Ecology and Environment, Tunghai University, Taichung City, Taiwan
| | - Hong Young Yan
- National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
| |
Collapse
|
7
|
Corse E, Tougard C, Archambaud‐Suard G, Agnèse J, Messu Mandeng FD, Bilong Bilong CF, Duneau D, Zinger L, Chappaz R, Xu CC, Meglécz E, Dubut V. One-locus-several-primers: A strategy to improve the taxonomic and haplotypic coverage in diet metabarcoding studies. Ecol Evol 2019; 9:4603-4620. [PMID: 31031930 PMCID: PMC6476781 DOI: 10.1002/ece3.5063] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
In diet metabarcoding analyses, insufficient taxonomic coverage of PCR primer sets generates false negatives that may dramatically distort biodiversity estimates. In this paper, we investigated the taxonomic coverage and complementarity of three cytochrome c oxidase subunit I gene (COI) primer sets based on in silico analyses and we conducted an in vivo evaluation using fecal and spider web samples from different invertivores, environments, and geographic locations. Our results underline the lack of predictability of both the coverage and complementarity of individual primer sets: (a) sharp discrepancies exist observed between in silico and in vivo analyses (to the detriment of in silico analyses); (b) both coverage and complementarity depend greatly on the predator and on the taxonomic level at which preys are considered; (c) primer sets' complementarity is the greatest at fine taxonomic levels (molecular operational taxonomic units [MOTUs] and variants). We then formalized the "one-locus-several-primer-sets" (OLSP) strategy, that is, the use of several primer sets that target the same locus (here the first part of the COI gene) and the same group of taxa (here invertebrates). The proximal aim of the OLSP strategy is to minimize false negatives by increasing total coverage through multiple primer sets. We illustrate that the OLSP strategy is especially relevant from this perspective since distinct variants within the same MOTUs were not equally detected across all primer sets. Furthermore, the OLSP strategy produces largely overlapping and comparable sequences, which cannot be achieved when targeting different loci. This facilitates the use of haplotypic diversity information contained within metabarcoding datasets, for example, for phylogeography and finer analyses of prey-predator interactions.
Collapse
Affiliation(s)
- Emmanuel Corse
- Aix Marseille Univ, Avignon UnivCNRS, IRD, IMBEMarseilleFrance
- Agence de Recherche pour la Biodiversité à la Réunion (ARBRE)Saint‐Leu, La RéunionFrance
| | | | | | | | - Françoise D. Messu Mandeng
- Laboratory of Parasitology and Ecology, Departement of Animal Biology and PhysiologyUniversity of Yaoundé IYaoundéCameroon
| | - Charles F. Bilong Bilong
- Laboratory of Parasitology and Ecology, Departement of Animal Biology and PhysiologyUniversity of Yaoundé IYaoundéCameroon
| | - David Duneau
- Université Toulouse 3 Paul SabatierCNRS, ENSFEA, EDB (Laboratoire Évolution & Diversité Biologique)ToulouseFrance
| | - Lucie Zinger
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMPSL Research UniversityParisFrance
| | - Rémi Chappaz
- Irstea, Aix Marseille Univ, RECOVERAix‐en‐ProvenceFrance
| | - Charles C.Y. Xu
- Redpath Museum and Department of BiologyMcGill UniversityMontréalQuebecCanada
| | - Emese Meglécz
- Aix Marseille Univ, Avignon UnivCNRS, IRD, IMBEMarseilleFrance
| | - Vincent Dubut
- Aix Marseille Univ, Avignon UnivCNRS, IRD, IMBEMarseilleFrance
| |
Collapse
|
8
|
Valen R, Karlsen R, Helvik JV. Environmental, population and life-stage plasticity in the visual system of Atlantic cod. ACTA ACUST UNITED AC 2018; 221:jeb.165191. [PMID: 29146770 DOI: 10.1242/jeb.165191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/12/2017] [Indexed: 02/03/2023]
Abstract
The visual system is for many fishes essential in guiding behaviors, such as foraging, predator avoidance and mate choice. The marine environment is characterized by large spatio-temporal fluctuations in light intensity and spectral composition. However, visual capabilities are restricted by both space limitations set by eye size and by the genomic content of light-absorbing opsin genes. The rich array of visual opsins in teleosts may be used differentially to tune vision towards specific needs during ontogeny and to changing light. Yet, to what extent visual plasticity is a pre-programmed developmental event, or is triggered by photic environment, is unclear. Our previous studies on Atlantic cod revealed an evolutionary genomic loss of UV-sensitive sws1 and red-sensitive lws opsin families, while blue-sensitive sws2 and green-sensitive rh2 opsins had duplicated. The current study has taken an opsin expression approach to characterize visual plasticity in cod towards different spectral light during the larval stage, to maturation and extreme seasonal changes in the Barents Sea. Our data suggest that opsin plasticity in cod larvae is controlled by developmental programme rather than immediate light environment. The lack of expressional changes during maturation suggests a less important role for visual modulation related to mate choice. Although no seasonal effects on visual opsins were detected in migratory Northeast Arctic cod, the expressed opsin subset differed from the more stationary Norwegian coastal cod described in previous studies. Interestingly, these data provide the first indications of a population difference in actively used visual opsins associated with cod ecotypes.
Collapse
Affiliation(s)
- Ragnhild Valen
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| | - Rita Karlsen
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| | - Jon Vidar Helvik
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| |
Collapse
|
9
|
Co-phylogeographic study of the flatworm Gyrodactylus gondae and its goby host Pomatoschistus minutus. Parasitol Int 2017; 66:119-125. [DOI: 10.1016/j.parint.2016.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 11/23/2022]
|
10
|
Abstract
Understanding the evolution of early nervous systems is hazardous because we lack good criteria for determining homology between the systems of distant taxa; the timing of the evolutionary events is contested, and thus the relevant ecological and geological settings for them are also unclear. Here I argue that no simple approach will resolve the first issue, but that it remains likely that animals evolved relatively late, and that their nervous systems thus arose during the late Ediacaran, in a context provided by the changing planktonic and benthic environments of the time. The early trace fossil provides the most concrete evidence for early behavioural diversification, but it cannot simply be translated into increasing nervous system complexity: behavioural complexity does not map on a one-to-one basis onto nervous system complexity, both because of possible limitations to behaviour caused by the environment and because we know that even organisms without nervous systems are capable of relatively complex behaviour.
Collapse
Affiliation(s)
- Graham E Budd
- Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Villavägen 16, Uppsala 752 36, Sweden
| |
Collapse
|
11
|
Andersen Ø, Johnsen H, De Rosa MC, Præbel K, Stjelja S, Kirubakaran TG, Pirolli D, Jentoft S, Fevolden SE. Evolutionary history and adaptive significance of the polymorphic Pan I in migratory and stationary populations of Atlantic cod (Gadus morhua). Mar Genomics 2015; 22:45-54. [DOI: 10.1016/j.margen.2015.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 11/27/2022]
|
12
|
Pampoulie C, Skirnisdottir S, Star B, Jentoft S, Jónsdóttir IG, Hjörleifsson E, Thorsteinsson V, Pálsson ÓK, Berg PR, Andersen Ø, Magnusdottir S, Helyar SJ, Daníelsdóttir AK. Rhodopsin Gene Polymorphism Associated with Divergent Light Environments in Atlantic Cod. Behav Genet 2015; 45:236-44. [DOI: 10.1007/s10519-014-9701-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/15/2014] [Indexed: 11/24/2022]
|
13
|
Vandamme SG, Maes GE, Raeymaekers JAM, Cottenie K, Imsland AK, Hellemans B, Lacroix G, Mac Aoidh E, Martinsohn JT, Martínez P, Robbens J, Vilas R, Volckaert FAM. Regional environmental pressure influences population differentiation in turbot (Scophthalmus maximus). Mol Ecol 2014; 23:618-36. [PMID: 24354713 DOI: 10.1111/mec.12628] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 12/02/2013] [Accepted: 12/08/2013] [Indexed: 01/18/2023]
Abstract
Unravelling the factors shaping the genetic structure of mobile marine species is challenging due to the high potential for gene flow. However, genetic inference can be greatly enhanced by increasing the genomic, geographical or environmental resolution of population genetic studies. Here, we investigated the population structure of turbot (Scophthalmus maximus) by screening 17 random and gene-linked markers in 999 individuals at 290 geographical locations throughout the northeast Atlantic Ocean. A seascape genetics approach with the inclusion of high-resolution oceanographical data was used to quantify the association of genetic variation with spatial, temporal and environmental parameters. Neutral loci identified three subgroups: an Atlantic group, a Baltic Sea group and one on the Irish Shelf. The inclusion of loci putatively under selection suggested an additional break in the North Sea, subdividing southern from northern Atlantic individuals. Environmental and spatial seascape variables correlated marginally with neutral genetic variation, but explained significant proportions (respectively, 8.7% and 10.3%) of adaptive genetic variation. Environmental variables associated with outlier allele frequencies included salinity, temperature, bottom shear stress, dissolved oxygen concentration and depth of the pycnocline. Furthermore, levels of explained adaptive genetic variation differed markedly between basins (3% vs. 12% in the North and Baltic Sea, respectively). We suggest that stable environmental selection pressure contributes to relatively strong local adaptation in the Baltic Sea. Our seascape genetic approach using a large number of sampling locations and associated oceanographical data proved useful for the identification of population units as the basis of management decisions.
Collapse
Affiliation(s)
- S G Vandamme
- Institute for Agricultural and Fisheries Research (ILVO), Animal Sciences Unit - Fisheries, Ankerstraat 1, B-8400, Ostend, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lim HC, Ahmad AT, Nuruddin AA, Mohd Nor SA. Cytochrome b gene reveals panmixia among Japanese Threadfin Bream, Nemipterus japonicus (Bloch, 1791) populations along the coasts of Peninsular Malaysia and provides evidence of a cryptic species. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:575-84. [PMID: 24724977 DOI: 10.3109/19401736.2014.908354] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We evaluated genetic differentiation among ten presumed Japanese threadfin bream, Nemipterus japonicus populations along the coast of Peninsular Malaysia based on the partial sequence of the mitochondrial cytochrome b gene (982 bp). Genetic divergences (Kimura-2 parameter) ranged from 0.5% to 0.8% among nine of the ten populations while these nine populations were 4.4% to 4.6% diverged from the Kuala Besar population located at the Northeast coast. The constructed Neighbour Joining (NJ) phylogenetic trees based on haplotypes showed the Kuala Besar population forming an isolated cluster. The Analysis of Molecular Variance (AMOVA) of the ten populations a priori assigned into four regions, revealed that most of the variation occurred within population with a fairly low but significant level of regional differentiation (FST = 0.07, p < 0.05, FSC = 0.00, p > 0.05 and FCT = 0.07, p < 0.05) attributed to the Kuala Besar population. p Value after Bonferroni correction revealed that only pairwise FST values involving the Kuala Besar population with the other nine populations were significant. Thus, this study revealed that the N. japonicus populations off Peninsular Malaysia were panmictic. However, the Kuala Besar population, although morphologically identical was composed of a genetically discrete taxon from the rest. These findings are important contributions in formulating sustainable fishery management policies for this important fishery in Peninsular Malaysia.
Collapse
Affiliation(s)
- Hong-Chiun Lim
- a School of Biological Sciences, Universiti Sains Malaysia , 11800, Penang , Malaysia
| | - Abu Talib Ahmad
- b Fisheries Research Institute , 11900 Batu Maung , Penang , Malaysia , and
| | | | - Siti Azizah Mohd Nor
- a School of Biological Sciences, Universiti Sains Malaysia , 11800, Penang , Malaysia .,c Centre for Marine and Coastal Studies, Universiti Sains Malaysia , 11800, Penang , Malaysia
| |
Collapse
|
15
|
Schott RK, Refvik SP, Hauser FE, López-Fernández H, Chang BSW. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. Mol Biol Evol 2014; 31:1149-65. [PMID: 24509690 DOI: 10.1093/molbev/msu064] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Studies of cichlid evolution have highlighted the importance of visual pigment genes in the spectacular radiation of the African rift lake cichlids. Recent work, however, has also provided strong evidence for adaptive diversification of riverine cichlids in the Neotropics, which inhabit environments of markedly different spectral properties from the African rift lakes. These ecological and/or biogeographic differences may have imposed divergent selective pressures on the evolution of the cichlid visual system. To test these hypotheses, we investigated the molecular evolution of the dim-light visual pigment, rhodopsin. We sequenced rhodopsin from Neotropical and African riverine cichlids and combined these data with published sequences from African cichlids. We found significant evidence for positive selection using random sites codon models in all cichlid groups, with the highest levels in African lake cichlids. Tests using branch-site and clade models that partitioned the data along ecological (lake, river) and/or biogeographic (African, Neotropical) boundaries found significant evidence of divergent selective pressures among cichlid groups. However, statistical comparisons among these models suggest that ecological, rather than biogeographic, factors may be responsible for divergent selective pressures that have shaped the evolution of the visual system in cichlids. We found that branch-site models did not perform as well as clade models for our data set, in which there was evidence for positive selection in the background. One of our most intriguing results is that the amino acid sites found to be under positive selection in Neotropical and African lake cichlids were largely nonoverlapping, despite falling into the same three functional categories: spectral tuning, retinal uptake/release, and rhodopsin dimerization. Taken together, these results would imply divergent selection across cichlid clades, but targeting similar functions. This study highlights the importance of molecular investigations of ecologically important groups and the flexibility of clade models in explicitly testing ecological hypotheses.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
16
|
Wang L, Liu S, Zhuang Z, Guo L, Meng Z, Lin H. Population genetic studies revealed local adaptation in a high gene-flow marine fish, the small yellow croaker (Larimichthys polyactis). PLoS One 2013; 8:e83493. [PMID: 24349521 PMCID: PMC3861527 DOI: 10.1371/journal.pone.0083493] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/04/2013] [Indexed: 12/02/2022] Open
Abstract
The genetic differentiation of many marine fish species is low. Yet local adaptation may be common in marine fish species as the vast and changing marine environment provides more chances for natural selection. Here, we used anonymous as well as known protein gene linked microsatellites and mitochondrial DNA to detect the population structure of the small yellow croaker (Larimichthys polyactis) in the Northwest Pacific marginal seas. Among these loci, we detected at least two microsatellites, anonymous H16 and HSP27 to be clearly under diversifying selection in outlier tests. Sequence cloning and analysis revealed that H16 was located in the intron of BAHCC1 gene. Landscape genetic analysis showed that H16 mutations were significantly associated with temperature, which further supported the diversifying selection at this locus. These marker types presented different patterns of population structure: (i) mitochondrial DNA phylogeny showed no evidence of genetic divergence and demonstrated only one glacial linage; (ii) population differentiation using putatively neutral microsatellites presented a pattern of high gene flow in the L. polyactis. In addition, several genetic barriers were identified; (iii) the population differentiation pattern revealed by loci under diversifying selection was rather different from that revealed by putatively neutral loci. The results above suggest local adaptation in the small yellow croaker. In summary, population genetic studies based on different marker types disentangle the effects of demographic history, migration, genetic drift and local adaptation on population structure and also provide valuable new insights for the design of management strategies in L. polyactis.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Liang Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Raeymaekers JAM, Konijnendijk N, Larmuseau MHD, Hellemans B, De Meester L, Volckaert FAM. A gene with major phenotypic effects as a target for selection vs. homogenizing gene flow. Mol Ecol 2013; 23:162-81. [PMID: 24192132 DOI: 10.1111/mec.12582] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/20/2013] [Accepted: 10/28/2013] [Indexed: 01/28/2023]
Abstract
Genes with major phenotypic effects facilitate quantifying the contribution of genetic vs. plastic effects to adaptive divergence. A classical example is Ectodysplasin (Eda), the major gene controlling lateral plate phenotype in three-spined stickleback. Completely plated marine stickleback populations evolved repeatedly towards low-plated freshwater populations, representing a prime example of parallel evolution by natural selection. However, many populations remain polymorphic for lateral plate number. Possible explanations for this polymorphism include relaxation of selection, disruptive selection or a balance between divergent selection and gene flow. We investigated 15 polymorphic stickleback populations from brackish and freshwater habitats in coastal North-western Europe. At each site, we tracked changes in allele frequency at the Eda gene between subadults in fall, adults in spring and juveniles in summer. Eda genotypes were also compared for body size and reproductive investment. We observed a fitness advantage for the Eda allele for the low morph in freshwater and for the allele for the complete morph in brackish water. Despite these results, the differentiation at the Eda gene was poorly correlated with habitat characteristics. Neutral population structure was the best predictor of spatial variation in lateral plate number, suggestive of a substantial effect of gene flow. A meta-analysis revealed that the signature of selection at Eda was weak compared to similar studies in stickleback. We conclude that a balance between divergent selection and gene flow can maintain stickleback populations polymorphic for lateral plate number and that ecologically relevant genes may not always contribute much to local adaptation, even when targeted by selection.
Collapse
Affiliation(s)
- Joost A M Raeymaekers
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat 32, Leuven, B-3000, Belgium; Zoological Institute, University of Basel, Vesalgasse 1, Basel, CH-4051, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Milano I, Babbucci M, Cariani A, Atanassova M, Bekkevold D, Carvalho GR, Espiñeira M, Fiorentino F, Garofalo G, Geffen AJ, Hansen JH, Helyar SJ, Nielsen EE, Ogden R, Patarnello T, Stagioni M, Tinti F, Bargelloni L. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius). Mol Ecol 2013; 23:118-35. [DOI: 10.1111/mec.12568] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Ilaria Milano
- Department of Biological; Geological and Environmental Sciences; University of Bologna; via Selmi 3 40126 Bologna Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science-Agripolis-Viale dell'Università 16; I-35020 Legnaro Padova Italy
| | - Alessia Cariani
- Department of Biological; Geological and Environmental Sciences; University of Bologna; via Selmi 3 40126 Bologna Italy
| | - Miroslava Atanassova
- Living Resources, Aquaculture and Management of their Traceability Division of ANFACO-CECOPESCA; Ctra. Colegio Universitario 16; 36.310 Vigo Spain
| | - Dorte Bekkevold
- National Institute of Aquatic Resources; Technical University of Denmark; Vejlsøvej 39 DK-8600 Silkeborg Denmark
| | - Gary R. Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory; School of Biological Sciences; Bangor University; Environment Centre Wales; Bangor UK
| | - Montserrat Espiñeira
- Living Resources, Aquaculture and Management of their Traceability Division of ANFACO-CECOPESCA; Ctra. Colegio Universitario 16; 36.310 Vigo Spain
| | - Fabio Fiorentino
- National Research Council (CNR)-Institute for Coastal Marine Environment (IAMC); Via L. Vaccara 61 91026 Mazara del Vallo Trapani Italy
| | - Germana Garofalo
- National Research Council (CNR)-Institute for Coastal Marine Environment (IAMC); Via L. Vaccara 61 91026 Mazara del Vallo Trapani Italy
| | - Audrey J. Geffen
- Department of Biology; University of Bergen; P.O. Box 7803, N-5020 Bergen Norway
| | - Jakob. H. Hansen
- Living Resources, Aquaculture and Management of their Traceability Division of ANFACO-CECOPESCA; Ctra. Colegio Universitario 16; 36.310 Vigo Spain
| | - Sarah J. Helyar
- Food Safety, Environment & Genetics; Matís ohf, Vínlandsleið 12; 113 Reykjavík Iceland
| | - Einar E. Nielsen
- National Institute of Aquatic Resources; Technical University of Denmark; Vejlsøvej 39 DK-8600 Silkeborg Denmark
| | - Rob Ogden
- TRACE Wildlife Forensics Network; Royal Zoological Society of Scotland; Edinburgh EH12 6TS UK
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science-Agripolis-Viale dell'Università 16; I-35020 Legnaro Padova Italy
| | - Marco Stagioni
- Department of Biological; Geological and Environmental Sciences; University of Bologna; via Selmi 3 40126 Bologna Italy
| | - Fausto Tinti
- Department of Biological; Geological and Environmental Sciences; University of Bologna; via Selmi 3 40126 Bologna Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science-Agripolis-Viale dell'Università 16; I-35020 Legnaro Padova Italy
| | | |
Collapse
|
19
|
Xu P, Lu B, Xiao H, Fu X, Murphy RW, Wu K. The evolution and expression of the moth visual opsin family. PLoS One 2013; 8:e78140. [PMID: 24205129 PMCID: PMC3813493 DOI: 10.1371/journal.pone.0078140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/17/2013] [Indexed: 12/24/2022] Open
Abstract
Because visual genes likely evolved in response to their ambient photic environment, the dichotomy between closely related nocturnal moths and diurnal butterflies forms an ideal basis for investigating their evolution. To investigate whether the visual genes of moths are associated with nocturnal dim-light environments or not, we cloned long-wavelength (R), blue (B) and ultraviolet (UV) opsin genes from 12 species of wild-captured moths and examined their evolutionary functions. Strong purifying selection appeared to constrain the functions of the genes. Dark-treatment altered the levels of mRNA expression in Helicoverpa armigera such that R and UV opsins were up-regulated after dark-treatment, the latter faster than the former. In contrast, B opsins were not significantly up-regulated. Diel changes of opsin mRNA levels in both wild-captured and lab-reared individuals showed no significant fluctuation within the same group. However, the former group had significantly elevated levels of expression compared with the latter. Consequently, environmental conditions appeared to affect the patterns of expression. These findings and the proportional expression of opsins suggested that moths potentially possessed color vision and the visual system played a more important role in the ecology of moths than previously appreciated. This aspect did not differ much from that of diurnal butterflies.
Collapse
Affiliation(s)
- Pengjun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Bin Lu
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Haijun Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xiaowei Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Robert W. Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, P.R. China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
20
|
Tornabene L, Chen Y, Pezold F. Gobies are deeply divided: phylogenetic evidence from nuclear DNA (Teleostei: Gobioidei: Gobiidae). SYST BIODIVERS 2013. [DOI: 10.1080/14772000.2013.818589] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Defaveri J, Shikano T, Shimada Y, Merilä J. High degree of genetic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus). Mol Ecol 2013; 22:4811-28. [PMID: 23947683 DOI: 10.1111/mec.12430] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/11/2013] [Accepted: 06/18/2013] [Indexed: 12/12/2022]
Abstract
Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene-based genome-scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection-as determined with several outlier detection methods-was low (F(ST) = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (F(ST) = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes.
Collapse
Affiliation(s)
- Jacquelin Defaveri
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | | | | | | |
Collapse
|
22
|
Saarinen P, Pahlberg J, Herczeg G, Viljanen M, Karjalainen M, Shikano T, Merilä J, Donner K. Spectral tuning by selective chromophore uptake in rods and cones of eight populations of nine-spined stickleback (Pungitius pungitius). ACTA ACUST UNITED AC 2012; 215:2760-73. [PMID: 22837448 DOI: 10.1242/jeb.068122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The visual pigments of rods and cones were studied in eight Fennoscandian populations of nine-spined stickleback (Pungitius pungitius). The wavelength of maximum absorbance of the rod pigment (λ(max)) varied between populations from 504 to 530 nm. Gene sequencing showed that the rod opsins of all populations were identical in amino acid composition, implying that the differences were due to varying proportions of chromophores A1 and A2. Four spectral classes of cones were found (two S-cones, M-cones and L-cones), correlating with the four classes of vertebrate cone pigments. For quantitative estimation of chromophore proportions, we considered mainly rods and M-cones. In four populations, spectra of both photoreceptor types indicated A2 dominance (population mean λ(max)=525-530 nm for rods and 535-544 nm for M-cones). In the four remaining populations, however, rod spectra (mean λ(max)=504-511 nm) indicated strong A1 dominance, whereas M-cone spectra (mean λ(max)=519-534 nm) suggested substantial fractions of A2. Quantitative analysis of spectra by three methods confirmed that rods and cones in these populations use significantly different chromophore proportions. The outcome is a shift of M-cone spectra towards longer wavelengths and a better match to the photic environment (light spectra peaking >560 nm in all the habitats) than would result from the chromophore proportions of the rods. Chromophore content was also observed to vary partly independently in M- and L-cones with potential consequences for colour discrimination. This is the first demonstration that selective processing of chromophore in rods and cones, and in different cone types, may be ecologically relevant.
Collapse
Affiliation(s)
- Pia Saarinen
- Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Philip S, Machado JP, Maldonado E, Vasconcelos V, O'Brien SJ, Johnson WE, Antunes A. Fish lateral line innovation: insights into the evolutionary genomic dynamics of a unique mechanosensory organ. Mol Biol Evol 2012; 29:3887-98. [PMID: 22844072 DOI: 10.1093/molbev/mss194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mechanosensory lateral line, found only in fishes and amphibians, is an important sense organ associated with aquatic life. Lateral line patterns differ among teleost, the most diverse vertebrate taxa, hypothetically in response to selective pressures from different aquatic habitats. In this article, we conduct evolutionary genomic analyses of 34 genes associated with lateral line system development in teleosts to elucidate the significance of contrasting evolutionary rates and changes in the protein coding sequences. We find that duplicated copies of these genes are preferentially retained in the teleost genomes and that episodic events of positive selection have occurred in 22 of the 30 postduplication branches. In general, teleost genes evolved at a faster rate relative to their tetrapod counterparts, and the mutation rates of 26 of the 34 genes differed among teleosts and tetrapods. We conclude that following whole genome duplication, evolutionary rates and episodic events of positive selection on the lateral line system development genes might have been one of the factors favoring the subsequent adaptive radiation of teleosts into diverse habitats. These results provide the foundation for further detailed explorations into lateral line system genes and the evolution of diverse phenotypes and adaptations.
Collapse
Affiliation(s)
- Siby Philip
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
24
|
Lagman D, Sundström G, Ocampo Daza D, Abalo XM, Larhammar D. Expansion of transducin subunit gene families in early vertebrate tetraploidizations. Genomics 2012; 100:203-11. [PMID: 22814267 DOI: 10.1016/j.ygeno.2012.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
Abstract
Hundreds of gene families expanded in the early vertebrate tetraploidizations including many gene families in the phototransduction cascade. We have investigated the evolution of the heterotrimeric G-proteins of photoreceptors, the transducins, in relation to these events using both phylogenetic analyses and synteny comparisons. Three alpha subunit genes were identified in amniotes and the coelacanth, GNAT1-3; two of these were identified in amphibians and teleost fish, GNAT1 and GNAT2. Most tetrapods have four beta genes, GNB1-4, and teleosts have additional duplicates. Finally, three gamma genes were identified in mammals, GNGT1, GNG11 and GNGT2. Of these, GNGT1 and GNGT2 were found in the other vertebrates. In frog and zebrafish additional duplicates of GNGT2 were identified. Our analyses show all three transducin families expanded during the early vertebrate tetraploidizations and the beta and gamma families gained additional copies in the teleost-specific genome duplication. This suggests that the tetraploidizations contributed to visual specialisations.
Collapse
Affiliation(s)
- David Lagman
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-751 24 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Huang CL, Hung CY, Chiang YC, Hwang CC, Hsu TW, Huang CC, Hung KH, Tsai KC, Wang KH, Osada N, Schaal BA, Chiang TY. Footprints of natural and artificial selection for photoperiod pathway genes in Oryza. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:769-82. [PMID: 22268451 DOI: 10.1111/j.1365-313x.2012.04915.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Asian rice, Oryza sativa, consists of two major subspecies, indica and japonica, which are physiologically differentiated and adapted to different latitudes. Genes for photoperiod sensitivity are likely targets of selection along latitude. We examined the footprints of natural and artificial selections for four major genes of the photoperiod pathway, namely PHYTOCHROME B (PhyB), HEADING DATE 1 (Hd1), HEADING DATE 3a (Hd3a), and EARLY HEADING DATE 1 (Ehd1), by investigation of the patterns of nucleotide polymorphisms in cultivated and wild rice. Geographical subdivision between tropical and subtropical O. rufipogon was found for all of the photoperiod genes in plants divided by the Tropic of Cancer (TOC). All of these genes, except for PhyB, were characterized by the existence of clades that split a long time ago and that corresponded to latitudinal subdivisions, and revealed a likely diversifying selection. Ssp. indica showed close affinity to tropical O. rufipogon for all genes, while ssp. japonica, which has a much wider range of distribution, displayed complex patterns of differentiation from O. rufipogon, which reflected various agricultural needs in relation to crop yield. In japonica, all genes, except Hd3a, were genetically differentiated at the TOC, while geographical subdivision occurred at 31°N in Hd3a, probably the result of varying photoperiods. Many other features of the photoperiod genes revealed domestication signatures, which included high linkage disequilibrium (LD) within genes, the occurrence of frequent and recurrent non-functional Hd1 mutants in cultivated rice, crossovers between subtropical and tropical alleles of Hd1, and significant LD between Hd1 and Hd3a in japonica and indica.
Collapse
Affiliation(s)
- Chao-Li Huang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kesäniemi JE, Geuverink E, Knott KE. Polymorphism in developmental mode and its effect on population genetic structure of a spionid polychaete, Pygospio elegans. Integr Comp Biol 2012; 52:181-96. [PMID: 22576815 DOI: 10.1093/icb/ics064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Population genetic structure of sedentary marine species is expected to be shaped mainly by the dispersal ability of their larvae. Long-lived planktonic larvae can connect populations through migration and gene flow, whereas species with nondispersive benthic or direct-developing larvae are expected to have genetically differentiated populations. Poecilogonous species producing different larval types are ideal when studying the effect of developmental mode on population genetic structure and connectivity. In the spionid polychaete Pygospio elegans, different larval types have been observed between, and sometimes also within, populations. We used microsatellite markers to study population structure of European P. elegans from the Baltic Sea (BS) and North Sea (NS). We found that populations with planktonic larvae had higher genetic diversity than did populations with benthic larvae. However, this pattern may not be related to developmental mode, since in P. elegans, developmental mode may be associated with geography. Benthic larvae were more commonly seen in the brackish BS and planktonic larvae were predominant in the NS, although both larval types also are found from both areas. Significant isolation-by-distance (IBD) was found overall and within regions. Most of the pair-wise F(ST) comparisons among populations were significant, although some geographically close populations with planktonic larvae were found to be genetically similar. However, these results, together with the pattern of IBD, autocorrelation within populations, as well as high estimated local recruitment, suggest that dispersal is limited in populations with planktonic larvae as well as in those with benthic larvae. The decrease in salinity between the NS and BS causes a barrier to gene flow in many marine species. In P. elegans, low, but significant, differentiation was detected between the NS and BS (3.34% in AMOVA), but no clear transition zone was observed, indicating that larvae are not hampered by the change in salinity.
Collapse
Affiliation(s)
- Jenni E Kesäniemi
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland.
| | | | | |
Collapse
|
27
|
Audzijonyte A, Pahlberg J, Viljanen M, Donner K, Väinölä R. Opsin gene sequence variation across phylogenetic and population histories in Mysis (Crustacea: Mysida) does not match current light environments or visual-pigment absorbance spectra. Mol Ecol 2012; 21:2176-96. [PMID: 22429275 DOI: 10.1111/j.1365-294x.2012.05516.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The hypothesis that selection on the opsin gene is efficient in tuning vision to the ambient light environment of an organism was assessed in 49 populations of 12 Mysis crustacean species, inhabiting arctic marine waters, coastal littoral habitats, freshwater lakes ('glacial relicts') and the deep Caspian Sea. Extensive sequence variation was found within and among taxa, but its patterns did not match expectations based on light environments, spectral sensitivity of the visual pigment measured by microspectrophotometry or the history of species and populations. The main split in the opsin gene tree was between lineages I and II, differing in six amino acids. Lineage I was present in marine and Caspian Sea species and in the North American freshwater Mysis diluviana, whereas lineage II was found in the European and circumarctic fresh- and brackish-water Mysis relicta, Mysis salemaai and Mysis segerstralei. Both lineages were present in some populations of M. salemaai and M. segerstralei. Absorbance spectra of the visual pigment in nine populations of the latter three species showed a dichotomy between lake (λ(max) =554-562 nm) and brackish-water (Baltic Sea) populations (λ(max) = 521-535 nm). Judged by the shape of spectra, this difference was not because of different chromophores (A2 vs. A1), but neither did it coincide with the split in the opsin tree (lineages I/II), species identity or current light environments. In all, adaptive evolution of the opsin gene in Mysis could not be demonstrated, but its sequence variation did not conform to a neutral expectation either, suggesting evolutionary constraints and/or unidentified mechanisms of spectral tuning.
Collapse
Affiliation(s)
- Asta Audzijonyte
- Finnish Museum of Natural History, PO Box 17, FI-00014 University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
28
|
Differences in spectral sensitivity within and among species of darters (genus Etheostoma). Vision Res 2012; 55:19-23. [DOI: 10.1016/j.visres.2011.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/10/2011] [Accepted: 12/21/2011] [Indexed: 11/17/2022]
|
29
|
Fuller RC, Claricoates KM. Rapid light-induced shifts in opsin expression: finding new opsins, discerning mechanisms of change, and implications for visual sensitivity. Mol Ecol 2011; 20:3321-35. [PMID: 21749514 DOI: 10.1111/j.1365-294x.2011.05180.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Light-induced shifts in cone frequency and opsin expression occur in many aquatic species. Yet little is known about how quickly animals can alter opsin expression and, thereby, track their visual environments. Similarly, little is known about whether adult animals can alter opsin expression or whether shifts in opsin expression are limited to critical developmental windows. We took adult wild-caught bluefin killifish (Lucania goodei) from three different lighting environments (spring, swamp and variable), placed them under two different lighting treatments (clear vs. tea-stained water) and monitored opsin expression over 4 weeks. We measured opsin expression for five previously described opsins (SWS1, SWS2B, SWS2A, RH2-1 and LWS) as well as RH2-2 which we discovered via 454 sequencing. We used two different metrics of opsin expression. We measured expression of each opsin relative to a housekeeping gene and the proportional expression of each opsin relative to the total pool of opsins. Population and lighting environment had large effects on opsin expression which were present at the earliest time points indicating rapid shifts in expression. The two measures of expression produced radically different patterns. Proportional measures indicated large effects of light on SWS1 expression, whereas relative measures indicated no such effect. Instead, light had large effects on the relative expression of SWS2B, RH2-2, RH2-1 and LWS. We suggest that proportional measures of opsin expression are best for making inferences about colour vision, but that measures relative to a housekeeping gene are better for making conclusions about which opsins are differentially regulated.
Collapse
Affiliation(s)
- Rebecca C Fuller
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Champaign, IL 61820, USA.
| | | |
Collapse
|
30
|
LARMUSEAU MHD, VANHOVE MPM, HUYSE T, VOLCKAERT FAM, DECORTE R. Signature of selection on the rhodopsin gene in the marine radiation of American seven-spined gobies (Gobiidae, Gobiosomatini). J Evol Biol 2011; 24:1618-25. [DOI: 10.1111/j.1420-9101.2011.02290.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Johannesson K, Smolarz K, Grahn M, André C. The future of Baltic Sea populations: local extinction or evolutionary rescue? AMBIO 2011; 40:179-90. [PMID: 21446396 PMCID: PMC3357795 DOI: 10.1007/s13280-010-0129-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Environmental change challenges local and global survival of populations and species. In a species-poor environment like the Baltic Sea this is particularly critical as major ecosystem functions may be upheld by single species. A complex interplay between demographic and genetic characteristics of species and populations determines risks of local extinction, chances of re-establishment of lost populations, and tolerance to environmental changes by evolution of new adaptations. Recent studies show that Baltic populations of dominant marine species are locally adapted, have lost genetic variation and are relatively isolated. In addition, some have evolved unusually high degrees of clonality and others are representatives of endemic (unique) evolutionary lineages. We here suggest that a consequence of local adaptation, isolation and genetic endemism is an increased risk of failure in restoring extinct Baltic populations. Additionally, restricted availability of genetic variation owing to lost variation and isolation may negatively impact the potential for evolutionary rescue following environmental change.
Collapse
Affiliation(s)
- Kerstin Johannesson
- Department of Marine Ecology-Tjärnö, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Katarzyna Smolarz
- Centre for Baltic and East European Studies, Södertörn University, 141 89 Huddinge, Sweden
| | - Mats Grahn
- School of Life Sciences, Södertörn University, 141 89 Huddinge, Sweden
| | - Carl André
- Department of Marine Ecology-Tjärnö, University of Gothenburg, 452 96 Strömstad, Sweden
| |
Collapse
|