1
|
Deville D, Kawai K, Fujita H, Umino T. Genetic divergences and hybridization within the Sebastes inermis complex. PeerJ 2023; 11:e16391. [PMID: 38025733 PMCID: PMC10656903 DOI: 10.7717/peerj.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The Sebastes inermis complex includes three sympatric species (Sebastes cheni, viz Sebastes inermis, and Sebastes ventricosus) with clear ecomorphological differences, albeit incomplete reproductive isolation. The presence of putative morphological hybrids (PMH) with plausibly higher fitness than the parent species indicates the need to confirm whether hybridization occurs within the complex. In this sense, we assessed the dynamics of genetic divergence and hybridization within the species complex using a panel of 10 microsatellite loci, and sequences of the mitochondrial control region (D-loop) and the intron-free rhodopsin (RH1) gene. The analyses revealed the presence of three distinct genetic clusters, large genetic distances using D-loop sequences, and distinctive mutations within the RH1 gene. These results are consistent with the descriptions of the three species. Two microsatellite loci had signatures of divergent selection, indicating that they are linked to genomic regions that are crucial for speciation. Furthermore, nonsynonymous mutations within the RH1 gene detected in S. cheni and "Kumano" (a PMH) suggest dissimilar adaptations related to visual perception in dim-light environments. The presence of individuals with admixed ancestry between two species confirmed hybridization. The presence of nonsynonymous mutations within the RH1 gene and the admixed ancestry of the "Kumano" morphotype highlight the potential role of hybridization in generating novelties within the species complex. We discuss possible outcomes of hybridization within the species complex, considering hybrid fitness and assortative mating. Overall, our findings indicate that the genetic divergence of each species is maintained in the presence of hybridization, as expected in a scenario of speciation-with-gene-flow.
Collapse
Affiliation(s)
- Diego Deville
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japón
| | - Kentaro Kawai
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japón
| | - Hiroki Fujita
- Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, Shirahama, Wakayama, Japan
| | - Tetsuya Umino
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japón
| |
Collapse
|
2
|
Behrens KA, Girasek QL, Sickler A, Hyde J, Buonaccorsi VP. Regions of genetic divergence in depth-separated Sebastes rockfish species pairs: Depth as a potential driver of speciation. Mol Ecol 2021; 30:4259-4275. [PMID: 34181798 DOI: 10.1111/mec.16046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Depth separation is a proposed driver of speciation in marine fishes, with marine rockfish (genus Sebastes) providing a potentially informative study system. Sebastes rockfishes are commercially and ecologically important. This genus encompasses more than one hundred species and the ecological and morphological variance between these species provides opportunity for identifying speciation-driving adaptations, particularly along a depth gradient. A reduced-representation sequencing method (ddRADseq) was used to compare 95 individuals encompassing six Sebastes species. In this study, we sought to identify regions of divergence between species that were indicative of divergent adaptation and reproductive barriers leading to speciation. A pairwise comparison of S. chrysomelas (black-and-yellow rockfish) and S. carnatus (gopher rockfish) FST values revealed three major regions of elevated genomic divergence, two of which were also present in the S. miniatus (vermilion rockfish) and S. crocotulus (sunset rockfish) comparison. These corresponded with regions of both elevated DXY values and reduced nucleotide diversity in two cases, suggesting a speciation-with-gene-flow evolutionary model followed by post-speciation selective sweeps within each species. Limited whole-genome resequencing was also performed to identify mutations with predicted effects between S. chrysomelas and S. carnatus. Within these islands, we identified important SNPs in genes involved in immune function and vision. This supports their potential role in speciation, as these are adaptive vectors noted in other organisms. Additionally, changes to genes involved in pigment expression and mate recognition shed light on how S. chrysomelas and S. carnatus may have become reproductively isolated.
Collapse
Affiliation(s)
- Kristen A Behrens
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| | - Quinn L Girasek
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| | - Alex Sickler
- Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John Hyde
- Fisheries Resources Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, California, USA
| | | |
Collapse
|
3
|
Mérot C, Oomen RA, Tigano A, Wellenreuther M. A Roadmap for Understanding the Evolutionary Significance of Structural Genomic Variation. Trends Ecol Evol 2020; 35:561-572. [PMID: 32521241 DOI: 10.1016/j.tree.2020.03.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Structural genomic variants (SVs) are ubiquitous and play a major role in adaptation and speciation. Yet, comparative and population genomics have focused predominantly on gene duplications and large-effect inversions. The lack of a common framework for studying all SVs is hampering progress towards a more systematic assessment of their evolutionary significance. Here we (i) review how different types of SVs affect ecological and evolutionary processes; (ii) suggest unifying definitions and recommendations for future studies; and (iii) provide a roadmap for the integration of SVs in ecoevolutionary studies. In doing so, we lay the foundation for population genomics, theoretical, and experimental approaches to understand how the full spectrum of SVs impacts ecological and evolutionary processes.
Collapse
Affiliation(s)
- Claire Mérot
- Université Laval, Institut de Biologie Intégrative des Systèmes, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada.
| | - Rebekah A Oomen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindernveien 31, 0371 Oslo, Norway; Centre for Coastal Research, University of Agder, Universitetsveien 25, 4630 Kristiansand, Norway.
| | - Anna Tigano
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA.
| | - Maren Wellenreuther
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand; The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand.
| |
Collapse
|
4
|
Baetscher DS, Anderson EC, Gilbert‐Horvath EA, Malone DP, Saarman ET, Carr MH, Garza JC. Dispersal of a nearshore marine fish connects marine reserves and adjacent fished areas along an open coast. Mol Ecol 2019; 28:1611-1623. [DOI: 10.1111/mec.15044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Diana S. Baetscher
- Department of Ocean Sciences University of California Santa Cruz California
- Southwest Fisheries Science CenterSanta Cruz California
| | - Eric C. Anderson
- Southwest Fisheries Science CenterSanta Cruz California
- Institute of Marine Sciences University of California Santa Cruz California
| | - Elizabeth A. Gilbert‐Horvath
- Southwest Fisheries Science CenterSanta Cruz California
- Institute of Marine Sciences University of California Santa Cruz California
| | - Daniel P. Malone
- Department of Ecology and Evolutionary Biology University of California Santa Cruz California
| | - Emily T. Saarman
- Department of Ecology and Evolutionary Biology University of California Santa Cruz California
| | - Mark H. Carr
- Institute of Marine Sciences University of California Santa Cruz California
- Department of Ecology and Evolutionary Biology University of California Santa Cruz California
| | - John Carlos Garza
- Department of Ocean Sciences University of California Santa Cruz California
- Southwest Fisheries Science CenterSanta Cruz California
- Institute of Marine Sciences University of California Santa Cruz California
| |
Collapse
|
5
|
Schwenke PL, Park LK, Hauser L. Introgression among three rockfish species (Sebastes spp.) in the Salish Sea, northeast Pacific Ocean. PLoS One 2018; 13:e0194068. [PMID: 29566070 PMCID: PMC5864001 DOI: 10.1371/journal.pone.0194068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/25/2018] [Indexed: 11/18/2022] Open
Abstract
Interspecific hybridization is often seen as a major conservation issue, potentially threatening endangered species and decreasing biodiversity. In natural populations, the conservation implications of hybridization depends on both on anthropogenic factors and the evolutionary processes maintaining the hybrid zone. However, the timeline and patterns of hybridization in the hybrid zone are often not known. Therefore, species conservation becomes a concern when recent anthropogenic changes influence hybridization and not if hybridization is part of a long-term process. Here, we use sequence data from one mitochondrial gene, three nuclear introns and one nuclear exon to estimate the direction, geographic extent, frequency and possible timeline of hybridization between three rockfish species (Sebastes auriculatus, S. caurinus, S. maliger) in the Salish Sea, Washington, USA. We show that (i) introgression occurred much more frequently in the Salish Sea than on the outer coast, (ii) introgression was highly asymmetrical from S. maliger into the other two species, (iii) almost 40% of individuals in the Salish Sea were hybrids, with frequency of hybrids increasing with isolation from the coast, and (iv) all hybrids were later generation backcrosses rather than F1 hybrids. Our results suggest long-standing low-level hybridization rather than recent onset of interbreeding because of human induced environmental change, possibly facilitated by specific environmental conditions in the sub-basins of the Salish Sea, and by differences in population sizes during recolonization of the area after the last glaciation. This rockfish hybrid system, with asymmetrical introgression and the maintenance of parental species, may prove useful to study both mechanisms that maintain species boundaries and that facilitate speciation in the presence of rapid environmental change.
Collapse
Affiliation(s)
- Piper L. Schwenke
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, Washington, United States of America
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Linda K. Park
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, Washington, United States of America
| | - Lorenz Hauser
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Fowler BLS, Buonaccorsi VP. Genomic characterization of sex‐identification markers in
Sebastes carnatus
and
Sebastes chrysomelas
rockfishes. Mol Ecol 2016; 25:2165-75. [DOI: 10.1111/mec.13594] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/10/2016] [Accepted: 01/20/2016] [Indexed: 01/16/2023]
|
7
|
Putman AI, Carbone I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 2014; 4:4399-428. [PMID: 25540699 PMCID: PMC4267876 DOI: 10.1002/ece3.1305] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/14/2022] Open
Abstract
Advancing technologies have facilitated the ever-widening application of genetic markers such as microsatellites into new systems and research questions in biology. In light of the data and experience accumulated from several years of using microsatellites, we present here a literature review that synthesizes the limitations of microsatellites in population genetic studies. With a focus on population structure, we review the widely used fixation (F ST) statistics and Bayesian clustering algorithms and find that the former can be confusing and problematic for microsatellites and that the latter may be confounded by complex population models and lack power in certain cases. Clustering, multivariate analyses, and diversity-based statistics are increasingly being applied to infer population structure, but in some instances these methods lack formalization with microsatellites. Migration-specific methods perform well only under narrow constraints. We also examine the use of microsatellites for inferring effective population size, changes in population size, and deeper demographic history, and find that these methods are untested and/or highly context-dependent. Overall, each method possesses important weaknesses for use with microsatellites, and there are significant constraints on inferences commonly made using microsatellite markers in the areas of population structure, admixture, and effective population size. To ameliorate and better understand these constraints, researchers are encouraged to analyze simulated datasets both prior to and following data collection and analysis, the latter of which is formalized within the approximate Bayesian computation framework. We also examine trends in the literature and show that microsatellites continue to be widely used, especially in non-human subject areas. This review assists with study design and molecular marker selection, facilitates sound interpretation of microsatellite data while fostering respect for their practical limitations, and identifies lessons that could be applied toward emerging markers and high-throughput technologies in population genetics.
Collapse
Affiliation(s)
- Alexander I Putman
- Department of Plant Pathology, North Carolina State University Raleigh, North Carolina, 27695-7616
| | - Ignazio Carbone
- Department of Plant Pathology, North Carolina State University Raleigh, North Carolina, 27695-7616
| |
Collapse
|
8
|
Muto N, Kai Y, Noda T, Nakabo T. Extensive hybridization and associated geographic trends between two rockfishes Sebastes vulpes
and S. zonatus
(Teleostei: Scorpaeniformes: Sebastidae). J Evol Biol 2013; 26:1750-62. [DOI: 10.1111/jeb.12175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/06/2013] [Accepted: 03/28/2013] [Indexed: 11/27/2022]
Affiliation(s)
- N. Muto
- Division of Applied Biosciences; Graduate School of Agriculture; Kyoto University c/o The Kyoto University Museum; Kyoto University; Sakyo Kyoto Japan
| | - Y. Kai
- Field Science Education and Research Centre; Maizuru Fisheries Research Station; Kyoto University; Maizuru Kyoto Japan
| | - T. Noda
- Tohoku National Fisheries Research Institute; Fisheries Research Agency; Miyako Iwate Japan
| | - T. Nakabo
- The Kyoto University Museum; Kyoto University; Sakyo Kyoto Japan
| |
Collapse
|
9
|
Flaxman SM, Feder JL, Nosil P. Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow. Evolution 2013; 67:2577-91. [PMID: 24033168 DOI: 10.1111/evo.12055] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 01/02/2013] [Indexed: 12/22/2022]
Abstract
A major issue in evolutionary biology is explaining patterns of differentiation observed in population genomic data, as divergence can be due to both direct selection on a locus and genetic hitchhiking. "Divergence hitchhiking" (DH) theory postulates that divergent selection on a locus reduces gene flow at physically linked sites, facilitating the formation of localized clusters of tightly linked, diverged loci. "Genome hitchhiking" (GH) theory emphasizes genome-wide effects of divergent selection. Past theoretical investigations of DH and GH focused on static snapshots of divergence. Here, we used simulations assessing a variety of strengths of selection, migration rates, population sizes, and mutation rates to investigate the relative importance of direct selection, GH, and DH in facilitating the dynamic buildup of genomic divergence as speciation proceeds through time. When divergently selected mutations were limiting, GH promoted divergence, but DH had little measurable effect. When populations were small and divergently selected mutations were common, DH enhanced the accumulation of weakly selected mutations, but this contributed little to reproductive isolation. In general, GH promoted reproductive isolation by reducing effective migration rates below that due to direct selection alone, and was important for genome-wide "congealing" or "coupling" of differentiation (F(ST)) across loci as speciation progressed.
Collapse
Affiliation(s)
- Samuel M Flaxman
- Department of Ecology and Evolutionary Biology, N211 Ramaley Hall, University of Colorado, Boulder, Colorado.
| | | | | |
Collapse
|
10
|
|