1
|
vonHoldt BM, Stahler DR, Brzeski KE, Musiani M, Peterson R, Phillips M, Stephenson J, Laudon K, Meredith E, Vucetich JA, Leonard JA, Wayne RK. Demographic history shapes North American gray wolf genomic diversity and informs species' conservation. Mol Ecol 2024; 33:e17231. [PMID: 38054561 DOI: 10.1111/mec.17231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Effective population size estimates are critical information needed for evolutionary predictions and conservation decisions. This is particularly true for species with social factors that restrict access to breeding or experience repeated fluctuations in population size across generations. We investigated the genomic estimates of effective population size along with diversity, subdivision, and inbreeding from 162,109 minimally filtered and 81,595 statistically neutral and unlinked SNPs genotyped in 437 grey wolf samples from North America collected between 1986 and 2021. We found genetic structure across North America, represented by three distinct demographic histories of western, central, and eastern regions of the continent. Further, grey wolves in the northern Rocky Mountains have lower genomic diversity than wolves of the western Great Lakes and have declined over time. Effective population size estimates revealed the historical signatures of continental efforts of predator extermination, despite a quarter century of recovery efforts. We are the first to provide molecular estimates of effective population size across distinct grey wolf populations in North America, which ranged between Ne ~ 275 and 3050 since early 1980s. We provide data that inform managers regarding the status and importance of effective population size estimates for grey wolf conservation, which are on average 5.2-9.3% of census estimates for this species. We show that while grey wolves fall above minimum effective population sizes needed to avoid extinction due to inbreeding depression in the short term, they are below sizes predicted to be necessary to avoid long-term risk of extinction.
Collapse
Affiliation(s)
- Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Daniel R Stahler
- Yellowstone Center for Resources, Yellowstone National Park, Wyoming, USA
| | - Kristin E Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Marco Musiani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA), Università di Bologna, Bologna, Italy
| | - Rolf Peterson
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | | | | | - Kent Laudon
- California Department of Fish and Wildlife, Northern Region, Redding, California, USA
| | - Erin Meredith
- California Department of Fish and Wildlife, Wildlife Forensic Laboratory, Sacramento, California, USA
| | - John A Vucetich
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
2
|
Zhang J, Wang S, Xu C, Wang S, Du J, Niu M, Yang J, Li Y. Pathogenic selection promotes adaptive immune variations against serious bottlenecks in early invasions of bullfrogs. iScience 2023; 26:107316. [PMID: 37539025 PMCID: PMC10393753 DOI: 10.1016/j.isci.2023.107316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/22/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Adaptive genetic variations are key for understanding evolutionary processes influencing invasions. However, we have limited knowledge on how adaptive genetic diversity in invasive species responds to new pathogenic environments. Here, we compared variations in immune major histocompatibility complex (MHC) class-II β gene and neutral loci in relation to pathogenic chytrid fungus (Batrachochytrium dendrobatidis, Bd) infection across invasive and native populations of American bullfrog between China and United States (US). Chinese invasive populations show a 60% reduction in neutral cytb variations relative to US native populations, and there were similar MHC variation and functional diversity between them. One MHC allele private to China was under recent positive selection and associated with decreased Bd infection, partly explaining the lower Bd prevalence for Chinese populations than for native US populations. These results suggest that pathogen-mediated selection favors adaptive MHC variations and functional diversity maintenance against serious bottlenecks during the early invasions (within 15 generations) of bullfrogs.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Supen Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
| | - Chunxia Xu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Siqi Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
| | - Jiacong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Meiling Niu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Jiaxue Yang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Yiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences Beijing 100049, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
3
|
Tensen L, Jansen van Vuuren B, Groom R, Bertola LD, de Iongh H, Rasmussen G, Du Plessis C, Davies-Mostert H, van der Merwe D, Fabiano E, Lages F, Rocha F, Monterroso P, Godinho R. Spatial genetic patterns in African wild dogs reveal signs of effective dispersal across southern Africa. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.992389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Across much of Africa, decades of civil war, land reforms, and persecution by humans have decimated wildlife populations. African wild dogs (Lycaon pictus) have declined dramatically during the past decades, but have shown recent natural recolonisation of some areas. In Angola, they were rediscovered after almost five decades when no surveys were being conducted, and they have recolonised areas in southern Zimbabwe and northern South Africa. Wild dogs were also reintroduced to Mozambique, where only few individuals remained. Against this backdrop, understanding genetic structure and effective dispersal between fragmented populations is essential to ensure the best conservation approaches for the long-term survival of the species. Our study investigated population genetic diversity, differentiation and gene flow of wild dogs across southern Africa, to include areas where they have recently been rediscovered, reestablished or reintroduced. Our results point to four weakly differentiated genetic clusters, representing the lowveld of Zimbabwe/Limpopo, Kruger NP, Angola/KAZA-TFCA, and the managed metapopulation, counterbalanced by moderate levels of effective dispersal on a southern African scale. Our results suggest that if the human footprint and impact can be significantly minimized, natural dispersal of wild dogs could lead to the demographic recovery of the species in southern Africa.
Collapse
|
4
|
Lu S. Transcriptome analysis and development of EST-SSR markers in Anoectochilus emeiensis (Orchidaceae). PLoS One 2022; 17:e0278551. [PMID: 36472967 PMCID: PMC9725121 DOI: 10.1371/journal.pone.0278551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Anoectochilus emeiensis K. Y. Lang, together with other Anoectochilus species, has long been used as the main source of many traditional Chinese medicines. Owing to the shortcomings of molecular markers, the study of the genetic diversity and medicinal component synthesis mechanism of the endemic Anoectochilus species has been delayed. In this study, I carried out a transcriptome analysis of A. emeiensis. A total of 78,381 unigenes were assembled from 64.2 million reads, and 47,541 (60.65%) unigenes were matched to known proteins in the public databases. Then, 9284 expressed sequence tag-derived simple sequence repeats (EST-SSRs) were identified, and the frequency of SSRs in the A. emeiensis transcriptome was 9.88%. Trinucleotide repeats (3699, 39.84%) were the most common type, followed by dinucleotide (3251, 35.02%) and mononucleotide (1750, 18.85%) repeats. Based on the SSR sequence, 6683 primer pairs were successfully designed, 40 primer pairs were randomly selected, and 10 primer pairs were identified as polymorphic loci from 186 individuals of A. emeiensis. The EST-SSR markers examined in this study will be informative for future population genetic studies of A. emeiensis.
Collapse
Affiliation(s)
- Song Lu
- Sichuan Natural Resources Academy, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
5
|
Meiring C, Schurz H, van Helden P, Hoal E, Tromp G, Kinnear C, Kleynhans L, Glanzmann B, van Schalkwyk L, Miller M, Möller M. African wild dogs (Lycaon pictus) from the Kruger National Park, South Africa are currently not inbred but have low genomic diversity. Sci Rep 2022; 12:14979. [PMID: 36056068 PMCID: PMC9440078 DOI: 10.1038/s41598-022-19025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
African wild dogs (Lycaon pictus) have undergone severe population reductions and are listed as endangered on the International Union for Conservation of Nature Red List. Small, isolated populations have the potential to suffer from threats to their genetic diversity that may impact species viability and future survival. This study provides the first set of population-wide genomic data to address conservation concerns for this endangered species. Whole genome sequencing data were generated for 71 free-ranging African wild dogs from the Kruger National Park (KNP), South Africa, and used to estimate important population genomic parameters. Genomic diversity metrics revealed that variation levels were low; however, this African wild dog population showed low levels of inbreeding. Very few first- and second-order relationships were observed in this cohort, with most relationships falling into the third-order or distant category. Patterns of homozygosity could have resulted from historical inbreeding or a loss in genome variation due to a population bottleneck. Although the results suggest that this stronghold African wild dog population maintains low levels of inbreeding, likely due to their cooperative breeding system, it may lead to a continuous population decline when a reduced number of suitable mates are available. Consequently, the low genomic variation may influence species viability over time. This study highlights the importance of assessing population genomic parameters to set conservation priorities. Future studies should include the investigation of the potential of this endangered species to adapt to environmental changes considering the low genomic diversity in this population.
Collapse
Affiliation(s)
- Christina Meiring
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa.
| | - Haiko Schurz
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
| | - Paul van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
| | - Eileen Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
| | - Gerard Tromp
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
- South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, PO Box 241, Cape Town, 7500, South Africa
| | - Craig Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
- Genomics Centre, South African Medical Research Council, Francie van Zijl Drive, PO Box 19070, Cape Town, 7500, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
| | - Brigitte Glanzmann
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
- Genomics Centre, South African Medical Research Council, Francie van Zijl Drive, PO Box 19070, Cape Town, 7500, South Africa
| | - Louis van Schalkwyk
- Department of Agriculture, Land Reform and Rural Development, PO Box 12, Skukuza, 1350, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Soutpan Road, Pretoria, 0110, South Africa
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315, Radolfzell, Germany
| | - Michele Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Private bag X1, Merriman Avenue, Stellenbosch, 7600, South Africa
| |
Collapse
|
6
|
Rasmussen G, Smultea M, Cloutier T, Giordano A, Kaplin B, Willey L. Quantitative photogrammetric methodology for measuring mammalian belly score in the painted dog. PLoS One 2021; 16:e0261171. [PMID: 34905569 PMCID: PMC8670687 DOI: 10.1371/journal.pone.0261171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022] Open
Abstract
The use of "belly scoring" can offer a novel, non-invasive objective management tool to gauge food intake between individuals, groups, and populations, and thus, population fitness. As food availability is increasingly affected by predation, ecological competition, climate change, habitat modification, and other human activities, an accurate belly scoring tool can facilitate comparisons among wildlife populations, serving as an early warning indicator of threats to wildlife population health and potential population collapse. In social species, belly scores can also be a tool to understand social behavior and ranking. We developed and applied the first rigorous quantitative photogrammetric methodology to measure belly scores of wild painted dogs (Lycaon pictus). Our methodology involves: (1) Rigorous selection of photographs of the dorso/lateral profile of individuals at a right angle to the camera, (2) photogrammetrically measuring belly chord length and "belly drop" in pixels, (3) adjusting belly chord length as a departure from a standardized leg angle, and (4) converting pixel measurements to ratios to eliminate the need to introduce distance from the camera. To highlight a practical application, this belly score method was applied to 631 suitable photographs of 15 painted dog packs that included 186 individuals, all collected between 2004-2015 from allopatric painted dog populations in and around Hwange (n = 462) and Mana Pools National Parks (n = 169) in Zimbabwe. Variation in mean belly scores exhibited a cyclical pattern throughout the year, corresponding to biologically significant patterns to include denning demand and prey availability. Our results show significant differences between belly scores of the two different populations we assessed, thus highlighting food stress in the Hwange population. In the face of growing direct and indirect anthropogenic disturbances, this standardised methodology can provide a rapid, species-specific non-invasive management tool that can be applied across studies to rapidly detect emergent threats.
Collapse
Affiliation(s)
| | - Mari Smultea
- Smultea Environmental Sciences, Preston, Washington, United States of America
| | - Tammy Cloutier
- Smultea Environmental Sciences, Preston, Washington, United States of America
- Antioch University New England, Keene, New Hampshire, United States of America
| | - Anthony Giordano
- S.P.E.C.I.E.S. – The Society for the Preservation of Endangered Carnivores and their International Ecological Study, Ventura, California, United States of America
| | | | - Lisabeth Willey
- Antioch University New England, Keene, New Hampshire, United States of America
| |
Collapse
|
7
|
Evolutionary history of the extinct Sardinian dhole. Curr Biol 2021; 31:5571-5579.e6. [PMID: 34655517 DOI: 10.1016/j.cub.2021.09.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/23/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022]
Abstract
The Sardinian dhole (Cynotherium sardous)1 was an iconic and unique canid species that was endemic to Sardinia and Corsica until it became extinct at the end of the Late Pleistocene.2-5 Given its peculiar dental morphology, small body size, and high level of endemism, several extant canids have been proposed as possible relatives of the Sardinian dhole, including the Asian dhole and African hunting dog ancestor.3,6-9 Morphometric analyses3,6,8-12 have failed to clarify the evolutionary relationship with other canids.We sequenced the genome of a ca-21,100-year-old Sardinian dhole in order to understand its genomic history and clarify its phylogenetic position. We found that it represents a separate taxon from all other living canids from Eurasia, Africa, and North America, and that the Sardinian dhole lineage diverged from the Asian dhole ca 885 ka. We additionally detected historical gene flow between the Sardinian and Asian dhole lineages, which ended approximately 500-300 ka, when the land bridge between Sardinia and mainland Italy was already broken, severing their population connectivity. Our sample showed low genome-wide diversity compared to other extant canids-probably a result of the long-term isolation-that could have contributed to the subsequent extinction of the Sardinian dhole.
Collapse
|
8
|
Miller-Butterworth CM, Vacco K, Russell AL, Gaspard JC. Genetic Diversity and Relatedness among Captive African Painted Dogs in North America. Genes (Basel) 2021; 12:genes12101463. [PMID: 34680858 PMCID: PMC8535225 DOI: 10.3390/genes12101463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
African painted dogs (Lycaon pictus, APD) are highly endangered, with fewer than 7000 remaining in nature. Captive breeding programs can preserve a genetically diverse population and provide a source of individuals for reintroductions. However, most programs are initiated from few founders and suffer from low genetic diversity and inbreeding. The aims of this study were to use molecular markers to assess genetic variation, inbreeding, and relatedness among APDs in the North American captive population, to use these data to realign studbook records, and to compare these data to wild populations and to the European captive population to facilitate the development of a global management plan. We sequenced mitochondrial and major histocompatibility (MHC) class II loci and genotyped 14 microsatellite loci from 109 APDs from 34 institutions in North America. We identified three likely studbook errors and resolved ten cases of uncertain paternity. Overall, microsatellite heterozygosity was higher than reported in Europe, but effective population size estimates were lower. Mitochondrial sequence variation was extremely limited, and there were fewer MHC haplotypes than in Europe or the wild. Although the population did not show evidence of significant inbreeding overall, several individuals shared high relatedness values, which should be incorporated into future breeding programs.
Collapse
Affiliation(s)
| | - Karen Vacco
- Pittsburgh Zoo & PPG Aquarium, Pittsburgh, PA 15206, USA; (K.V.); (J.C.G.III)
| | - Amy L. Russell
- Biology Department, Grand Valley State University, Allendale, MI 49401, USA;
| | - Joseph C. Gaspard
- Pittsburgh Zoo & PPG Aquarium, Pittsburgh, PA 15206, USA; (K.V.); (J.C.G.III)
| |
Collapse
|
9
|
Modi S, Mondol S, Nigam P, Habib B. Genetic analyses reveal demographic decline and population differentiation in an endangered social carnivore, Asiatic wild dog. Sci Rep 2021; 11:16371. [PMID: 34385570 PMCID: PMC8361113 DOI: 10.1038/s41598-021-95918-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/31/2021] [Indexed: 02/07/2023] Open
Abstract
Deforestation and agricultural intensification have resulted in an alarming change in the global land cover over the past 300 years, posing a threat to species conservation. Dhole is a monophyletic, social canid and, being an endangered and highly forest-dependent species, is more prone to the loss of favorable habitat in the Anthropocene. We determined the genetic differentiation and demographic history of dhole across the tiger reserves of Maharashtra using the microsatellite data of 305 individuals. Simulation-based analyses revealed a 77-85% decline in the major dhole sub-populations. Protected areas have provided refuge to the historically declining dhole population resulting in clustering with strong genetic structure in the remnant dhole population. The historical population decline coincides with the extreme events in the landscape over the past 300 years. The study highlights the pattern of genetic differentiation and diversity of a highly forest-dependent species which can be associated with the loss of forest cover outside tiger reserves. It also warrants attention to develop conservation plans for the remnant surviving population of dholes in India.
Collapse
Affiliation(s)
- Shrushti Modi
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Samrat Mondol
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Parag Nigam
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
| | - Bilal Habib
- Wildlife Institute of India, Chandrabani, Dehradun, 248001, India.
| |
Collapse
|
10
|
Stefanović M, Ćirović D, Bogdanović N, Knauer F, Heltai M, Szabó L, Lanszki J, Zhelev CD, Schaschl H, Suchentrunk F. Positive selection on the MHC class II DLA-DQA1 gene in golden jackals (Canis aureus) from their recent expansion range in Europe and its effect on their body mass index. BMC Ecol Evol 2021; 21:122. [PMID: 34134625 PMCID: PMC8207625 DOI: 10.1186/s12862-021-01856-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background In Europe, golden jackals (Canis aureus) have been expanding their range out of the southern and southeastern Balkans towards central Europe continually since the 1960s. Here, we investigated the level of functional diversity at the MHC class II DLA-DQA1 exon 2 in golden jackal populations from Bulgaria, Serbia, and Hungary. Specifically, we tested for positive selection on and geographic variation at that locus due to adaptation to supposedly regionally varying pathogenic landscapes. To test for potential fitness effects of different protein variants on individual body condition, we used linear modeling of individual body mass indexes (bmi) and accounted for possible age, sex, geographical, and climatic effects. The latter approach was performed, however, only on Serbian individuals with appropriate data. Results Only three different DLA-DQA1 alleles were detected, all coding for different amino-acid sequences. The neutrality tests revealed no significant but positive values; there was no signal of spatial structuring and no deviation from the Hardy–Weinberg equilibrium across the studied range of expansion. However, we found a signal of trans-species polymorphism and significant test results for positive selection on three codons. Our information-theory based linear modeling results indicated an effect of ambient temperature on the occurrence of individual DLA-DQA1 genotypes in individuals from across the studied expansion range, independent from geographical position. Our linear modeling results of individual bmi values indicated that yearlings homozygous for DLA-DQA1*03001 reached values typical for adults contrary to yearlings carrying other genotypes (protein combinations). This suggested better growth rates and thus a possible fitness advantage of yearlings homozygous for DLA-DQA1*03001. Conclusions Our results indicate a demographic (stochastic) signal of reduced DLA-DQA1 exon 2 variation, in line with the documented historical demographic bottleneck. At the same time, however, allelic variation was also affected by positive selection and adaptation to varying ambient temperature, supposedly reflecting geographic variation in the pathogenic landscape. Moreover, an allele effect on body mass index values of yearlings suggested differential fitness associated with growth rates. Overall, a combination of a stochastic effect and positive selection has shaped and is still shaping the variation at the studied MHC locus. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01856-z.
Collapse
Affiliation(s)
- Milomir Stefanović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.,Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Duško Ćirović
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Neda Bogdanović
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Felix Knauer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Miklós Heltai
- Institute for Wildlife Conservation, Szent István University, Páter Károly utca 1, Gödöllő, 2100, Hungary
| | - László Szabó
- Institute for Wildlife Conservation, Szent István University, Páter Károly utca 1, Gödöllő, 2100, Hungary
| | - József Lanszki
- Ecological Research Group, University of Kaposvár, PO Box 16, 7401, Kaposvár, Hungary
| | | | - Helmut Schaschl
- Department of Evolutionary Anthropology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| |
Collapse
|
11
|
Riddell P, Paris MCJ, Joonè CJ, Pageat P, Paris DBBP. Appeasing Pheromones for the Management of Stress and Aggression during Conservation of Wild Canids: Could the Solution Be Right under Our Nose? Animals (Basel) 2021; 11:ani11061574. [PMID: 34072227 PMCID: PMC8230031 DOI: 10.3390/ani11061574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Many canid species are declining globally. It is important to conserve these species that often serve as important predators within ecosystems. Continued human expansion and the resulting habitat fragmentation necessitate conservation interventions, such as translocation, artificial pack formation, and captive breeding programs. However, chronic stress often occurs during these actions, and can result in aggression, and the physiological suppression of immunity and reproduction. Limited options are currently available for stress and aggression management in wild canids. Pheromones provide a promising natural alternative for stress management; an appeasing pheromone has been identified for multiple domestic species and may reduce stress and aggression behaviours. Many pheromones are species-specific, and the appeasing pheromone has been found to have slight compositional changes across species. In this review, the benefits of a dog appeasing pheromone and the need to investigate species-specific derivatives to produce more pronounced and beneficial behavioural and physiological modulation in target species as a conservation tool are examined. Abstract Thirty-six species of canid exist globally, two are classified as critically endangered, three as endangered, and five as near threatened. Human expansion and the coinciding habitat fragmentation necessitate conservation interventions to mitigate concurrent population deterioration. The current conservation management of wild canids includes animal translocation and artificial pack formation. These actions often cause chronic stress, leading to increased aggression and the suppression of the immune and reproductive systems. Castration and pharmaceutical treatments are currently used to reduce stress and aggression in domestic and captive canids. The undesirable side effects make such treatments inadvisable during conservation management of wild canids. Pheromones are naturally occurring chemical messages that modulate behaviour between conspecifics; as such, they offer a natural alternative for behaviour modification. Animals are able to distinguish between pheromones of closely related species through small compositional differences but are more likely to have greater responses to pheromones from individuals of the same species. Appeasing pheromones have been found to reduce stress- and aggression-related behaviours in domestic species, including dogs. Preliminary evidence suggests that dog appeasing pheromones (DAP) may be effective in wild canids. However, the identification and testing of species-specific derivatives could produce more pronounced and beneficial behavioural and physiological changes in target species. In turn, this could provide a valuable tool to improve the conservation management of many endangered wild canids.
Collapse
Affiliation(s)
- Pia Riddell
- Gamete and Embryology (GAME) Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, QLD 4811, Australia;
- Institute for Breeding Rare and Endangered African Mammals (IBREAM), 9 Ainslie Place, Edinburgh EH3 6AT SCT, UK;
- Centre for Tropical Environmental and Sustainability Science, James Cook University, James Cook Drive, Townsville, QLD 4811, Australia
| | - Monique C. J. Paris
- Institute for Breeding Rare and Endangered African Mammals (IBREAM), 9 Ainslie Place, Edinburgh EH3 6AT SCT, UK;
- Mammal Research Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Carolynne J. Joonè
- Discipline of Veterinary Science, College of Public Health, Medical and Veterinary Sciences, James Cook University, Solander Drive, Townsville, QLD 4811, Australia;
| | - Patrick Pageat
- Institut de Recherche en Sémiochemie et Ethologie Appliquée, 84400 Apt, France;
| | - Damien B. B. P. Paris
- Gamete and Embryology (GAME) Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, James Cook Drive, Townsville, QLD 4811, Australia;
- Institute for Breeding Rare and Endangered African Mammals (IBREAM), 9 Ainslie Place, Edinburgh EH3 6AT SCT, UK;
- Centre for Tropical Environmental and Sustainability Science, James Cook University, James Cook Drive, Townsville, QLD 4811, Australia
- Correspondence: ; Tel.: +61-7-4781-6006
| |
Collapse
|
12
|
Bouley P, Paulo A, Angela M, Du Plessis C, Marneweck DG. The successful reintroduction of African wild dogs (Lycaon pictus) to Gorongosa National Park, Mozambique. PLoS One 2021; 16:e0249860. [PMID: 33886594 PMCID: PMC8062010 DOI: 10.1371/journal.pone.0249860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
Large carnivores have experienced widespread extirpation and species are now threatened globally. The ecological impact of the loss of large carnivores has been prominent in Gorongosa National Park, Mozambique, after most were extirpated during the 1977–92 civil war. To remedy this, reintroductions are now being implemented in Gorongosa, initiating with endangered African wild dogs (Lycaon pictus), hereafter ‘wild dogs’. We describe the first transboundary translocation and reintroduction of founding packs of wild dogs to Gorongosa over a 28-month study period and evaluate the success of the reintroduction based on five key indicator categories. We also assess how wild dog space use and diet influenced their success. We found that pre-release, artificial pack formation in holding enclosures aided group cohesion and alpha pair establishment. Post-release, we also observed natural pack formations as a result of multiple dispersal events. Founder and naturally formed packs produced pups in two of the three breeding seasons and packs successfully recruited pups. Survival rate for all wild dogs was 73% and all mortality events were from natural causes. Consequently, the population grew significantly over the study period. All indicators of success were fully achieved and this study documents the first successful reintroduction of wild dogs into a large, unfenced landscape in Mozambique and only the second on the continent. Potential mechanisms underlying these early successes were the avoidance of habitats intensively used by lions, dietary partitioning with lion, avoidance of human settlements, and Gorongosa’s management strategy. We predict further population expansion in Gorongosa given that 68% of the park is still unused by wild dogs. This expansion could be stimulated by continued reintroductions over the short- to medium-term. Recovery of wild dogs in Gorongosa could aid in the re-establishment of a larger, connected population across the greater Gorongosa-Marromeu landscape.
Collapse
Affiliation(s)
- Paola Bouley
- Department of Conservation, Gorongosa National Park, Mozambique
- * E-mail:
| | - Antonio Paulo
- Department of Conservation, Gorongosa National Park, Mozambique
| | - Mercia Angela
- Department of Conservation, Gorongosa National Park, Mozambique
| | - Cole Du Plessis
- Carnivore Conservation Programme, Endangered Wildlife Trust, Johannesburg, South Africa
| | - David G. Marneweck
- Department of Nature Conservation Management, Natural Resource Science and Management Cluster, Faculty of Science, Nelson Mandela University, George, South Africa
| |
Collapse
|
13
|
Hidden Markov Models reveal a clear human footprint on the movements of highly mobile African wild dogs. Sci Rep 2020; 10:17908. [PMID: 33087737 PMCID: PMC7578658 DOI: 10.1038/s41598-020-74329-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/29/2020] [Indexed: 02/04/2023] Open
Abstract
Large carnivores have experienced considerable range contraction, increasing the importance of movement across human-altered landscapes between small, isolated populations. African wild dogs (Lycaon pictus) are exceptionally wide-ranging, and recolonization is an important element of their persistence at broad scales. The competition-movement-connection hypothesis suggests that adaptations to move through areas that are unfavorable due to dominant competitors might promote the ability of subordinate competitors (like wild dogs) to move through areas that are unfavorable due to humans. Here, we used hidden Markov models to test how wild dog movements were affected by the Human Footprint Index in areas inside and outside of South Luangwa National Park. Movements were faster and more directed when outside the National Park, but slowed where the human footprint was stronger. Our results can be directly and quantitatively applied to connectivity planning, and we use them to identify ways to better understand differences between species in recent loss of connectivity.
Collapse
|
14
|
Bhatt S, Biswas S, Karanth K, Pandav B, Mondol S. Genetic analyses reveal population structure and recent decline in leopards ( Panthera pardus fusca) across the Indian subcontinent. PeerJ 2020; 8:e8482. [PMID: 32117616 PMCID: PMC7006512 DOI: 10.7717/peerj.8482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/29/2019] [Indexed: 11/21/2022] Open
Abstract
Background Large carnivores maintain the stability and functioning of ecosystems. Currently, many carnivore species face declining population sizes due to natural and anthropogenic pressures. The leopard, Panthera pardus, is probably the most widely distributed and highly adaptable large felid globally, still persisting in most of its historic range. However, we lack subspecies-level data on country or regional scale on population trends, as ecological monitoring approaches are difficult to apply on such wide-ranging species. We used genetic data from leopards sampled across the Indian subcontinent to investigate population structure and patterns of demographic decline. Methods We collected faecal samples from the Terai-Arc landscape of northern India and identified 56 unique individuals using a panel of 13 microsatellite markers. We merged this data with already available 143 leopard individuals and assessed genetic structure at country scale. Subsequently, we investigated the demographic history of each identified subpopulations and compared genetic decline analyses with countrywide local extinction probabilities. Results Our genetic analyses revealed four distinct subpopulations corresponding to Western Ghats, Deccan Plateau-Semi Arid, Shivalik and Terai region of the north Indian landscape, each with high genetic variation. Coalescent simulations with microsatellite loci revealed a possibly human-induced 75–90% population decline between ∼120–200 years ago across India. Population-specific estimates of genetic decline are in concordance with ecological estimates of local extinction probabilities in these subpopulations obtained from occupancy modeling of the historic and current distribution of leopards in India. Conclusions Our results confirm the population decline of a widely distributed, adaptable large carnivore. We re-iterate the relevance of indirect genetic methods for such species in conjunction with occupancy assessment and recommend that detailed, landscape-level ecological studies on leopard populations are critical to future conservation efforts. Our approaches and inference are relevant to other widely distributed, seemingly unaffected carnivores such as the leopard.
Collapse
Affiliation(s)
- Supriya Bhatt
- Animal Ecology and Conservation Biology, Wildlife Institute of India, Dehradun, India
| | - Suvankar Biswas
- Animal Ecology and Conservation Biology, Wildlife Institute of India, Dehradun, India
| | - Krithi Karanth
- Centre for Wildlife Studies, Bengaluru, India.,Nicholas School of Environment, Duke University, Durham, United States of America
| | - Bivash Pandav
- Endangered Species Management, Wildlife Institute of India, Dehradun, India
| | - Samrat Mondol
- Animal Ecology and Conservation Biology, Wildlife Institute of India, Dehradun, India
| |
Collapse
|
15
|
Dures SG, Carbone C, Savolainen V, Maude G, Gottelli D. Ecology rather than people restrict gene flow in Okavango‐Kalahari lions. Anim Conserv 2020. [DOI: 10.1111/acv.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- S. G. Dures
- Institute of Zoology Zoological Society of London London UK
- Department of Life Sciences Imperial College London Ascot UK
| | - C. Carbone
- Institute of Zoology Zoological Society of London London UK
| | - V. Savolainen
- Department of Life Sciences Imperial College London Ascot UK
| | - G. Maude
- Kalahari Research and Conservation Maun Botswana
| | - D. Gottelli
- Institute of Zoology Zoological Society of London London UK
| |
Collapse
|
16
|
Detailed characterization of repeat motifs of nine canid microsatellite loci in African painted dogs (Lycaon pictus). MAMMAL RES 2019. [DOI: 10.1007/s13364-019-00442-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Rocha RG, Magalhães V, López-Bao JV, van der Loo W, Llaneza L, Alvares F, Esteves PJ, Godinho R. Alternated selection mechanisms maintain adaptive diversity in different demographic scenarios of a large carnivore. BMC Evol Biol 2019; 19:90. [PMID: 30975084 PMCID: PMC6460805 DOI: 10.1186/s12862-019-1420-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/04/2019] [Indexed: 01/26/2023] Open
Abstract
Background Different population trajectories are expected to impact the signature of neutral and adaptive processes at multiple levels, challenging the assessment of the relative roles of different microevolutionary forces. Here, we integrate adaptive and neutral variability patterns to disentangle how adaptive diversity is driven under different demographic scenarios within the Iberian wolf (Canis lupus) range. We studied the persistent, the expanding and a small, isolated group within the Iberian wolf population, using 3 MHC class II genes (DRB1, DQA1, and DQB1), which diversity was compared with 39 microsatellite loci. Results Both the persistent and the expanding groups show evidence of balancing selection, revealed by a significant departure from neutrality at MHC loci, significant higher observed and expected heterozygosity and lower differentiation at MHC than at neutral loci, and signs of positive selection. However, despite exhibiting a significantly higher genetic diversity than the isolated group, the persistent group did not show significant excess of MHC heterozygotes. The expanding group, while showing a similar level of genetic diversity than the persistent group, displays by contrast a significant excess of MHC heterozygotes, which is compatible with the heterozygote advantage mechanism. Results are not clear regarding the role of drift and selection in the isolated group due to the small size of this population. Although diversity indices of MHC loci correspond to neutral expectations in the isolated group, accelerated MHC divergence, revealed by a higher differentiation at MHC than neutral loci, may indicate diversifying selection. Conclusion Different selective pressures were observed in the three different demographic scenarios, which are possibly driven by different selection mechanisms to maintain adaptive diversity. Electronic supplementary material The online version of this article (10.1186/s12862-019-1420-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rita G Rocha
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Vanessa Magalhães
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - José V López-Bao
- Research Unit of Biodiversity (UO/CSIC/PA), University of Oviedo, 33600, Mieres, Spain
| | - Wessel van der Loo
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Luis Llaneza
- A.RE.NA, S.L. Asesores en Recursos Naturales S.L., 27003, Lugo, Spain
| | - Francisco Alvares
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Pedro J Esteves
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Raquel Godinho
- CIBIO/InBio - Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
| |
Collapse
|
18
|
Pahad G, Montgelard C, Jansen van Vuuren B. Phylogeography and niche modelling: reciprocal enlightenment. MAMMALIA 2019. [DOI: 10.1515/mammalia-2018-0191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Phylogeography examines the spatial genetic structure of species. Environmental niche modelling (or ecological niche modelling; ENM) examines the environmental limits of a species’ ecological niche. These two fields have great potential to be used together. ENM can shed light on how phylogeographical patterns develop and help identify possible drivers of spatial structure that need to be further investigated. Specifically, ENM can be used to test for niche differentiation among clades, identify factors limiting individual clades and identify barriers and contact zones. It can also be used to test hypotheses regarding the effects of historical and future climate change on spatial genetic patterns by projecting niches using palaeoclimate or future climate data. Conversely, phylogeographical information can populate ENM with within-species genetic diversity. Where adaptive variation exists among clades within a species, modelling their niches separately can improve predictions of historical distribution patterns and future responses to climate change. Awareness of patterns of genetic diversity in niche modelling can also alert conservationists to the potential loss of genetically diverse areas in a species’ range. Here, we provide a simplistic overview of both fields, and focus on their potential for integration, encouraging researchers on both sides to take advantage of the opportunities available.
Collapse
Affiliation(s)
- Govan Pahad
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology , University of Johannesburg , PO Box 524 , Auckland Park, Johannesburg 2000 , South Africa
| | - Claudine Montgelard
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology , University of Johannesburg , PO Box 524 , Auckland Park, Johannesburg 2000 , South Africa
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier , EPHE, Biogéographie et Ecologie des Vertébrés , 1919 route de Mende , 34293 Montpellier , France
| | - Bettine Jansen van Vuuren
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology , University of Johannesburg , PO Box 524 , Auckland Park, Johannesburg 2000 , South Africa
| |
Collapse
|
19
|
Distribution, fine-scale subdivision, and population size of San Joaquin kit foxes in the Ciervo-Panoche Natural Area, California. CONSERV GENET 2019. [DOI: 10.1007/s10592-018-1122-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Armstrong EE, Taylor RW, Prost S, Blinston P, van der Meer E, Madzikanda H, Mufute O, Mandisodza-Chikerema R, Stuelpnagel J, Sillero-Zubiri C, Petrov D. Cost-effective assembly of the African wild dog (Lycaon pictus) genome using linked reads. Gigascience 2019; 8:5140148. [PMID: 30346553 PMCID: PMC6350039 DOI: 10.1093/gigascience/giy124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/07/2018] [Indexed: 01/07/2023] Open
Abstract
Background A high-quality reference genome assembly is a valuable tool for the study of non-model organisms. Genomic techniques can provide important insights about past population sizes and local adaptation and can aid in the development of breeding management plans. This information is important for fields such as conservation genetics, where endangered species require critical and immediate attention. However, funding for genomic-based methods can be sparse for conservation projects, as costs for general species management can consume budgets. Findings Here, we report the generation of high-quality reference genomes for the African wild dog (Lycaon pictus) at a low cost (<$3000), thereby facilitating future studies of this endangered canid. We generated assemblies for three individuals using the linked-read 10x Genomics Chromium system. The most continuous assembly had a scaffold and contig N50 of 21 Mb and 83 Kb, respectively, and completely reconstructed 95% of a set of conserved mammalian genes. Additionally, we estimate the heterozygosity and demographic history of African wild dogs, revealing that although they have historically low effective population sizes, heterozygosity remains high. Conclusions We show that 10x Genomics Chromium data can be used to effectively generate high-quality genomes from Illumina short-read data of intermediate coverage (∼25x–50x). Interestingly, the wild dog shows higher heterozygosity than other species of conservation concern, possibly due to its behavioral ecology. The availability of reference genomes for non-model organisms will facilitate better genetic monitoring of threatened species such as the African wild dog and help conservationists to better understand the ecology and adaptability of those species in a changing environment.
Collapse
Affiliation(s)
- Ellie E Armstrong
- Program for Conservation Genomics, Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305, USA
| | - Ryan W Taylor
- Program for Conservation Genomics, Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305, USA
| | - Stefan Prost
- Program for Conservation Genomics, Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305, USA.,Department of Integrative Biology, 3040 Valley Life Science Building, University of California, Berkeley, CA, 94720-3140, USA
| | - Peter Blinston
- Painted Dog Conservation, PO Box 72, Dete, 00263, Zimbabwe
| | | | | | - Olivia Mufute
- The Zimbabwe Parks & Wildlife Management Authority, Corner Sandringham & Borrowdale Roads, Botanical Gardens. Causeway, Harare, 00263, Zimbabwe
| | - Roseline Mandisodza-Chikerema
- The Zimbabwe Parks & Wildlife Management Authority, Corner Sandringham & Borrowdale Roads, Botanical Gardens. Causeway, Harare, 00263, Zimbabwe
| | - John Stuelpnagel
- 10x Genomics, Inc., 7068 Koll Center Pkwy #401, Pleasanton, CA, 94566, USA
| | - Claudio Sillero-Zubiri
- Wildlife Conservation Research Unit, Zoology, University of Oxford, The Recanati-Kaplan Centre, Abingdon Road, Tubney House, Tubney, UK014
| | - Dmitri Petrov
- Program for Conservation Genomics, Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
21
|
Mable BK. Conservation of adaptive potential and functional diversity: integrating old and new approaches. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1129-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Greenhorn JE, Bowman J, Wilson PJ. Genetic monitoring suggests increasing structure following recolonization by fishers. J Wildl Manage 2018. [DOI: 10.1002/jwmg.21495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Janet E. Greenhorn
- Environmental and Life Sciences Graduate Program; Trent University; 2140 East Bank Drive Peterborough ON K9L 0G2 Canada
| | - Jeff Bowman
- Wildlife Research and Monitoring Section; Ontario Ministry of Natural Resources and Forestry; 2140 East Bank Drive Peterborough ON K9L 0G2 Canada
| | - Paul J. Wilson
- Department of Biology; Trent University; 2140 East Bank Drive Peterborough ON K9L 0G2 Canada
| |
Collapse
|
23
|
Cosgrove AJ, McWhorter TJ, Maron M. Consequences of impediments to animal movements at different scales: A conceptual framework and review. DIVERS DISTRIB 2017. [DOI: 10.1111/ddi.12699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Anita J. Cosgrove
- School of Earth and Environmental Sciences The University of Queensland St Lucia Qld Australia
| | - Todd J. McWhorter
- School of Animal and Veterinary Sciences The University of Adelaide Adelaide SA Australia
| | - Martine Maron
- School of Earth and Environmental Sciences The University of Queensland St Lucia Qld Australia
| |
Collapse
|
24
|
Grogan KE, Sauther ML, Cuozzo FP, Drea CM. Genetic wealth, population health: Major histocompatibility complex variation in captive and wild ring-tailed lemurs ( Lemur catta). Ecol Evol 2017; 7:7638-7649. [PMID: 29043021 PMCID: PMC5632616 DOI: 10.1002/ece3.3317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 12/24/2022] Open
Abstract
Across species, diversity at the major histocompatibility complex (MHC) is critical to individual disease resistance and, hence, to population health; however, MHC diversity can be reduced in small, fragmented, or isolated populations. Given the need for comparative studies of functional genetic diversity, we investigated whether MHC diversity differs between populations which are open, that is experiencing gene flow, versus populations which are closed, that is isolated from other populations. Using the endangered ring-tailed lemur (Lemur catta) as a model, we compared two populations under long-term study: a relatively "open," wild population (n = 180) derived from Bezà Mahafaly Special Reserve, Madagascar (2003-2013) and a "closed," captive population (n = 121) derived from the Duke Lemur Center (DLC, 1980-2013) and from the Indianapolis and Cincinnati Zoos (2012). For all animals, we assessed MHC-DRB diversity and, across populations, we compared the number of unique MHC-DRB alleles and their distributions. Wild individuals possessed more MHC-DRB alleles than did captive individuals, and overall, the wild population had more unique MHC-DRB alleles that were more evenly distributed than did the captive population. Despite management efforts to maintain or increase genetic diversity in the DLC population, MHC diversity remained static from 1980 to 2010. Since 2010, however, captive-breeding efforts resulted in the MHC diversity of offspring increasing to a level commensurate with that found in wild individuals. Therefore, loss of genetic diversity in lemurs, owing to small founder populations or reduced gene flow, can be mitigated by managed breeding efforts. Quantifying MHC diversity within individuals and between populations is the necessary first step to identifying potential improvements to captive management and conservation plans.
Collapse
Affiliation(s)
- Kathleen E. Grogan
- University Program in EcologyDuke UniversityDurhamNCUSA
- Department of Evolutionary AnthropologyDuke UniversityDurhamNCUSA
| | | | - Frank P. Cuozzo
- Lajuma Research CentreLouis Trichardt (Makhado)0920South Africa
| | - Christine M. Drea
- University Program in EcologyDuke UniversityDurhamNCUSA
- Department of Evolutionary AnthropologyDuke UniversityDurhamNCUSA
- Department of BiologyDuke UniversityDurhamNCUSA
| |
Collapse
|
25
|
Wang S, Liu C, Wilson AB, Zhao N, Li X, Zhu W, Gao X, Liu X, Li Y. Pathogen richness and abundance predict patterns of adaptive major histocompatibility complex variation in insular amphibians. Mol Ecol 2017; 26:4671-4685. [PMID: 28734069 DOI: 10.1111/mec.14242] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022]
Abstract
The identification of the factors responsible for genetic variation and differentiation at adaptive loci can provide important insights into the evolutionary process and is crucial for the effective management of threatened species. We studied the impact of environmental viral richness and abundance on functional diversity and differentiation of the MHC class Ia locus in populations of the black-spotted pond frog (Pelophylax nigromaculatus), an IUCN-listed species, on 24 land-bridge islands of the Zhoushan Archipelago and three nearby mainland sites. We found a high proportion of private MHC alleles in mainland and insular populations, corresponding to 32 distinct functional supertypes, and strong positive selection on MHC antigen-binding sites in all populations. Viral pathogen diversity and abundance were reduced at island sites relative to the mainland, and islands housed distinctive viral communities. Standardized MHC diversity at island sites exceeded that found at neutral microsatellites, and the representation of key functional supertypes was positively correlated with the abundance of specific viruses in the environment (Frog virus 3 and Ambystoma tigrinum virus). These results indicate that pathogen-driven diversifying selection can play an important role in maintaining functionally important MHC variation following island isolation, highlighting the importance of considering functionally important genetic variation and host-pathogen associations in conservation planning and management.
Collapse
Affiliation(s)
- Supen Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Conghui Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Anthony B Wilson
- Department of Biology, Brooklyn College and The Graduate Center, City University of New York, Brooklyn, NY, USA
| | - Na Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xianping Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu Gao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yiming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Danner JE, Fleischer RC, Danner RM, Moore IT. Genetic population structure in an equatorial sparrow: roles for culture and geography. J Evol Biol 2017; 30:1078-1093. [PMID: 28294451 DOI: 10.1111/jeb.13065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 11/29/2022]
Abstract
Female preference for local cultural traits has been proposed as a barrier to breeding among animal populations. As such, several studies have found correlations between male bird song dialects and population genetics over relatively large distances. To investigate whether female choice for local dialects could act as a barrier to breeding between nearby and contiguous populations, we tested whether variation in male song dialects explains genetic structure among eight populations of rufous-collared sparrows (Zonotrichia capensis) in Ecuador. Our study sites lay along a transect, and adjacent study sites were separated by approximately 25 km, an order of magnitude less than previously examined for this and most other species. This transect crossed an Andean ridge and through the Quijos River Valley, both of which may be barriers to gene flow. Using a variance partitioning approach, we show that song dialect is important in explaining population genetics, independent of the geographic variables: distance, the river valley and the Andean Ridge. This result is consistent with the hypothesis that song acts as a barrier to breeding among populations in close proximity. In addition, songs of contiguous populations differed by the same degree or more than between two populations previously shown to exhibit female preference for local dialect, suggesting that birds from these populations would also breed preferentially with locals. As expected, all geographic variables (distance, the river valley and the Andean Ridge) also predicted population genetic structure. Our results have important implications for the understanding whether, and at what spatial scale, culture can affect population divergence.
Collapse
Affiliation(s)
- J E Danner
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, Washington, DC, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - R C Fleischer
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - R M Danner
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - I T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
27
|
Zhang Y, Zhang X, Wang YH, Shen SK. De Novo Assembly of Transcriptome and Development of Novel EST-SSR Markers in Rhododendron rex Lévl. through Illumina Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:1664. [PMID: 29018469 PMCID: PMC5622969 DOI: 10.3389/fpls.2017.01664] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/11/2017] [Indexed: 05/18/2023]
Abstract
Transcriptome sequences generated by next-generation sequencing (NGS) technologies can be utilized to rapidly detect and characterize a large number of gene-based microsatellites from different plants. Rhododendron rex Lévl. is a perennial woody species from the family Ericaceae and an endangered plant with high ornamental value endemic to Southwestern China. Nevertheless, the genetic and genomic information of R. rex remain unknown. In this study, we performed transcriptome sequencing for R. rex leaf samples, and generated large transcript sequences for functional characterization and development gene-associated SSR markers. A total of 164,242 unigenes were assembled and 115,089 (70.07%) unigenes were successfully annotated in public databases. In addition, a total of 15,314 potential EST-SSRs were identified, and the frequency of SSRs in the R. rex unigenes was 9.32%, with an average of one EST-SSR per 5.65 kb. The most abundant type was repeated di-nucleotide (54.63%), followed by mono- (26.03%) and tri-nucleotide (18.51%) repeats. Based on the SSR-containing sequence, 100 primer pairs were randomly selected and synthesized and used for assessment of the polymorphism. Thirty-six primer pairs were polymorphic and revealed polymorphism among 20 individuals from four R. rex populations. A total of 197 alleles were identified, with an average of 5.472 alleles per locus. The Polymorphism Information Content ranged from 0.154 to 0.870, with a mean of 0.482. The newly developed EST-SSR markers exhibited high transferability (58.33-83.33%) among the six subgenera. Thus, these novel EST-SSR markers developed would provide valuable sequence resources for population structure, genetic diversity analysis, and genetic resource assessments of R. rex and its related species.
Collapse
|
28
|
Genome sequence, population history, and pelage genetics of the endangered African wild dog (Lycaon pictus). BMC Genomics 2016; 17:1013. [PMID: 27938335 PMCID: PMC5148847 DOI: 10.1186/s12864-016-3368-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The African wild dog (Lycaon pictus) is an endangered African canid threatened by severe habitat fragmentation, human-wildlife conflict, and infectious disease. A highly specialized carnivore, it is distinguished by its social structure, dental morphology, absence of dewclaws, and colorful pelage. RESULTS We sequenced the genomes of two individuals from populations representing two distinct ecological histories (Laikipia County, Kenya and KwaZulu-Natal Province, South Africa). We reconstructed population demographic histories for the two individuals and scanned the genomes for evidence of selection. CONCLUSIONS We show that the African wild dog has undergone at least two effective population size reductions in the last 1,000,000 years. We found evidence of Lycaon individual-specific regions of low diversity, suggestive of inbreeding or population-specific selection. Further research is needed to clarify whether these population reductions and low diversity regions are characteristic of the species as a whole. We documented positive selection on the Lycaon mitochondrial genome. Finally, we identified several candidate genes (ASIP, MITF, MLPH, PMEL) that may play a role in the characteristic Lycaon pelage.
Collapse
|
29
|
Bilska K, Szczecińska M. Comparison of the effectiveness of ISJ and SSR markers and detection of outlier loci in conservation genetics of Pulsatilla patens populations. PeerJ 2016; 4:e2504. [PMID: 27833793 PMCID: PMC5101595 DOI: 10.7717/peerj.2504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/30/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Research into the protection of rare and endangered plant species involves genetic analyses to determine their genetic variation and genetic structure. Various categories of genetic markers are used for this purpose. Microsatellites, also known as simple sequence repeats (SSR), are the most popular category of markers in population genetics research. In most cases, microsatellites account for a large part of the noncoding DNA and exert a neutral effect on the genome. Neutrality is a desirable feature in evaluations of genetic differences between populations, but it does not support analyses of a population's ability to adapt to a given environment or its evolutionary potential. Despite the numerous advantages of microsatellites, non-neutral markers may supply important information in conservation genetics research. They are used to evaluate adaptation to specific environmental conditions and a population's adaptive potential. The aim of this study was to compare the level of genetic variation in Pulsatilla patens populations revealed by neutral SSR markers and putatively adaptive ISJ markers (intron-exon splice junction). METHODS The experiment was conducted on 14 Polish populations of P. patens and three P. patens populations from the nearby region of Vitebsk in Belarus. A total of 345 individuals were examined. Analyses were performed with the use of eight SSR primers specific to P. patens and three ISJ primers. RESULTS SSR markers revealed a higher level of genetic variation than ISJ markers (He = 0.609, He = 0.145, respectively). An analysis of molecular variance (AMOVA) revealed that, the overall genetic diversity between the analyzed populations defined by parameters FST and Φ PT for SSR (20%) and Φ PT for ISJ (21%) markers was similar. Analysis conducted in the Structure program divided analyzed populations into two groups (SSR loci) and three groups (ISJ markers). Mantel test revealed correlations between the geographic distance and genetic diversity of Polish populations of P. patens for ISJ markers, but not for SSR markers. CONCLUSIONS The results of the present study suggest that ISJ markers can complement the analyses based on SSRs. However, neutral and adaptive markers should not be alternatively applied. Neutral microsatellite markers cannot depict the full range of genetic variation in a population because they do not enable to analyze functional variation. Although ISJ markers are less polymorphic, they can contribute to the reliability of analyses based on SSRs.
Collapse
Affiliation(s)
- Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Monika Szczecińska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
30
|
Salmier A, de Thoisy B, Crouau-Roy B, Lacoste V, Lavergne A. Spatial pattern of genetic diversity and selection in the MHC class II DRB of three Neotropical bat species. BMC Evol Biol 2016; 16:229. [PMID: 27782798 PMCID: PMC5080761 DOI: 10.1186/s12862-016-0802-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022] Open
Abstract
Background Although bats are natural reservoirs of many pathogens, few studies have been conducted on the genetic variation and detection of selection in major histocompatibility complex (MHC) genes. These genes are critical for resistance and susceptibility to diseases, and host–pathogen interactions are major determinants of their extensive polymorphism. Here we examined spatial patterns of diversity of the expressed MHC class II DRB gene of three sympatric Neotropical bats, Carollia perspicillata and Desmodus rotundus (Phyllostomidae), and Molossus molossus (Molossidae), all of which use the same environments (e.g., forests, edge habitats, urban areas). Comparison with neutral marker (mtDNA D-loop) diversity was performed at the same time. Results Twenty-three DRB alleles were identified in 19 C. perspicillata, 30 alleles in 35 D. rotundus and 20 alleles in 28 M. molossus. The occurrence of multiple DRB loci was found for the two Phyllostomidae species. The DRB polymorphism was high in all sampling sites and different signatures of positive selection were detected depending on the environment. The patterns of DRB diversity were similar to those of neutral markers for C. perspicillata and M. molossus. In contrast, these patterns were different for D. rotundus for which a geographical structure was highlighted. A heterozygote advantage was also identified for this species. No recombination or gene conversion event was found and phylogenetic relationships showed a trans-species mode of evolution in the Phyllostomids. Conclusions This study of MHC diversity demonstrated the strength of the environment and contrasting pathogen pressures in shaping DRB diversity. Differences between positively selected sites identified in bat species highlighted the potential role of gut microbiota in shaping immune responses. Furthermore, multiple geographic origins and/or population admixtures observed in C. perspicillata and M. molossus populations acted as an additional force in shaping DRB diversity. In contrast, DRB diversity of D. rotundus was shaped by environment rather than demographic history. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0802-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arielle Salmier
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 23 avenue Pasteur, BP 6010, 97306, Cayenne, Cedex, French Guiana
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 23 avenue Pasteur, BP 6010, 97306, Cayenne, Cedex, French Guiana
| | - Brigitte Crouau-Roy
- CNRS, Université Toulouse 3 UPS, ENFA, UMR 5174 EDB (Laboratoire Évolution et Diversité Biologique), 118 Route de Narbonne, 31062, Toulouse, France
| | - Vincent Lacoste
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 23 avenue Pasteur, BP 6010, 97306, Cayenne, Cedex, French Guiana
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, 23 avenue Pasteur, BP 6010, 97306, Cayenne, Cedex, French Guiana.
| |
Collapse
|
31
|
Sallaberry‐Pincheira N, González‐Acuña D, Padilla P, Dantas GPM, Luna‐Jorquera G, Frere E, Valdés‐Velásquez A, Vianna JA. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins. Ecol Evol 2016; 6:7498-7510. [PMID: 28725416 PMCID: PMC5513272 DOI: 10.1002/ece3.2502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/18/2016] [Accepted: 08/28/2016] [Indexed: 12/21/2022] Open
Abstract
The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.
Collapse
Affiliation(s)
- Nicole Sallaberry‐Pincheira
- Laboratorio de Biodiversidad MolecularDepartamento de Ecosistemas y Medio AmbienteFacultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
- Escuela de Medicina VeterinariaFacultad Ecología y Recursos NaturalesUniversidad Andrés BelloSantiagoChile
| | | | - Pamela Padilla
- Laboratorio de Biodiversidad MolecularDepartamento de Ecosistemas y Medio AmbienteFacultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
| | | | - Guillermo Luna‐Jorquera
- Universidad Católica del NorteMillenium Nucleus of Ecology and Sustainable Management of Oceanic Islands ESMOICentro de Estudios Avanzados en Zonas Áridas CEAZACoquimboChile
| | - Esteban Frere
- Centro de Investigaciones de Puerto DeseadoUniversidad Nacional de la Patagonia AustralPuerto DeseadoArgentina
| | - Armando Valdés‐Velásquez
- Laboratorio de Estudios en BiodiversidadFacultad de Ciencias Biológicas y FisiológicasUniversidad Peruana Cayetano HerediaLimaPeru
| | - Juliana A. Vianna
- Laboratorio de Biodiversidad MolecularDepartamento de Ecosistemas y Medio AmbienteFacultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
32
|
Hoover B, Nevitt G. Modeling the Importance of Sample Size in Relation to Error in MHC-Based Mate-Choice Studies on Natural Populations. Integr Comp Biol 2016; 56:925-933. [DOI: 10.1093/icb/icw105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
Biedrzycka A, Kloch A. Development of novel associations between MHC alleles and susceptibility to parasitic infections in an isolated population of an endangered mammal. INFECTION GENETICS AND EVOLUTION 2016; 44:210-217. [PMID: 27423515 DOI: 10.1016/j.meegid.2016.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
The role of pathogens in dynamics of endangered species is not fully understood, and the effect of infection often interacts with other processes affecting those species, such as fragmentation and isolation or loss of genetic variation. Small, isolated populations are prone to losing functional alleles due to demographic processes and genetic drift, which may diminish their ability to resist infection if immune genes are affected. Demographic processes may also alter the selective pressure exerted by a parasite, as they influence the rate of parasite transmission between individuals. In the present paper we studied changes in parasite infection levels and genetic variability in an isolated population of spotted suslik (Spermophillus suslicus). Over a three-year period (approx. three generations), when the population size remained relatively stable, we observed a considerable increase in parasite prevalence and infection intensity, followed by the development of novel associations between MHC DRB alleles and parasite burden. Contrary to expectations, the change in MHC allele frequency over time was not consistent with the effect of the allele - for instance, Spsu-DRB*07, associated with higher intensity of infection with a nematode Capillaria sp., increased in frequency from 11.8 to 20.2%. Yet, we found no signatures of selection in the studied loci. Our results show that an isolated, stable population may experience a sudden increase in parasitic infections, resulting in a development of novel associations between MHC alleles and parasite susceptibility/resistance, even though no signatures of selection can be found.
Collapse
Affiliation(s)
- Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of Sciences, al. A. Mickiewicza 33, 31-120 Kraków, Poland.
| | - Agnieszka Kloch
- Department of Ecology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland.
| |
Collapse
|
34
|
Genetic diversity and spatial genetic structure of African wild dogs (Lycaon pictus) in the Greater Limpopo transfrontier conservation area. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0821-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Creel S, Creel NM. Opposing effects of group size on reproduction and survival in African wild dogs. Behav Ecol 2015. [DOI: 10.1093/beheco/arv100] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
|
37
|
Drift rather than selection dominates MHC class II allelic diversity patterns at the biogeographical range scale in natterjack toads Bufo calamita. PLoS One 2014; 9:e100176. [PMID: 24937211 PMCID: PMC4061088 DOI: 10.1371/journal.pone.0100176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 05/23/2014] [Indexed: 12/31/2022] Open
Abstract
Study of major histocompatibility complex (MHC) loci has gained great popularity in recent years, partly due to their function in protecting vertebrates from infections. This is of particular interest in amphibians on account of major threats many species face from emergent diseases such as chytridiomycosis. In this study we compare levels of diversity in an expressed MHC class II locus with neutral genetic diversity at microsatellite loci in natterjack toad (Bufo (Epidalea) calamita) populations across the whole of the species' biogeographical range. Variation at both classes of loci was high in the glacial refugium areas (REF) and much lower in postglacial expansion areas (PGE), especially in range edge populations. Although there was clear evidence that the MHC locus was influenced by positive selection in the past, congruence with the neutral markers suggested that historical demographic events were the main force shaping MHC variation in the PGE area. Both neutral and adaptive genetic variation declined with distance from glacial refugia. Nevertheless, there were also some indications from differential isolation by distance and allele abundance patterns that weak effects of selection have been superimposed on the main drift effect in the PGE zone.
Collapse
|
38
|
Niskanen AK, Kennedy LJ, Ruokonen M, Kojola I, Lohi H, Isomursu M, Jansson E, Pyhäjärvi T, Aspi J. Balancing selection and heterozygote advantage in major histocompatibility complex loci of the bottlenecked Finnish wolf population. Mol Ecol 2014; 23:875-89. [DOI: 10.1111/mec.12647] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 02/03/2023]
Affiliation(s)
- A. K. Niskanen
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - L. J. Kennedy
- Centre for Integrated Genomic Medical Research; University of Manchester; Stopford Building Oxford Road Manchester M13 9PT UK
| | - M. Ruokonen
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - I. Kojola
- Finnish Game and Fisheries Research Institute; Paavo Havaksen tie 3 PO Box 413 FI-90014 Oulu Finland
| | - H. Lohi
- Department of Veterinary Biosciences; Research Programs Unit; Molecular Neurology; Folkhälsan Institute of Genetics; Biomedicum Helsinki; University of Helsinki; PO Box 63 FI-00014 Helsinki Finland
| | - M. Isomursu
- Fish and Wildlife Health Research Unit; Finnish Food Safety Authority Evira; PO Box 517 FI-90101 Oulu Finland
| | - E. Jansson
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - T. Pyhäjärvi
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| | - J. Aspi
- Department of Biology; University of Oulu; PO Box 3000 FI-90014 Oulu Finland
| |
Collapse
|
39
|
Dobigny G, Tatard C, Gauthier P, Ba K, Duplantier JM, Granjon L, Kergoat GJ. Mitochondrial and nuclear genes-based phylogeography of Arvicanthis niloticus (Murinae) and sub-Saharan open habitats pleistocene history. PLoS One 2013; 8:e77815. [PMID: 24223730 PMCID: PMC3815218 DOI: 10.1371/journal.pone.0077815] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/05/2013] [Indexed: 11/19/2022] Open
Abstract
A phylogeographic study was conducted on the Nile grass rat, Arvicanthis niloticus, a rodent species that is tightly associated with open grasslands from the Sudano-Sahelian regions. Using one mitochondrial (cytochrome b) and one nuclear (intron 7 of Beta Fibrinogen) gene, robust patterns were retrieved that clearly show that (i) the species originated in East Africa concomitantly with expanding grasslands some 2 Ma, and (ii) four parapatric and genetically well-defined lineages differentiated essentially from East to West following Pleistocene bioclimatic cycles. This strongly points towards allopatric genetic divergence within savannah refuges during humid episodes, then dispersal during arid ones; secondary contact zones would have then stabilized around geographic barriers, namely, Niger River and Lake Chad basins. Our results pertinently add to those obtained for several other African rodent as well as non-rodent species that inhabit forests, humid zones, savannahs and deserts, all studies that now allow one to depict a more comprehensive picture of the Pleistocene history of the continent south of the Sahara. In particular, although their precise location remains to be determined, at least three Pleistocene refuges are identified within the West and Central African savannah biome.
Collapse
Affiliation(s)
- Gauthier Dobigny
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
- Centre Régional Agrhymet, Rive Droite, Niamey, Niger
| | - Caroline Tatard
- Inra, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
| | - Philippe Gauthier
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
| | - Khalilou Ba
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Dakar, Senegal
| | - Jean-Marc Duplantier
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
| | - Laurent Granjon
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
- IRD, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Dakar, Senegal
| | - Gael J. Kergoat
- Inra, CBGP (IRD, Inra, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, France
| |
Collapse
|
40
|
Non-adaptive phenotypic evolution of the endangered carnivore Lycaon pictus. PLoS One 2013; 8:e73856. [PMID: 24086298 PMCID: PMC3781135 DOI: 10.1371/journal.pone.0073856] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/25/2013] [Indexed: 11/24/2022] Open
Abstract
Decline in wild populations as a result of anthropogenic impact is widely considered to have evolutionary consequences for the species concerned. Here we examine changes in developmental stability in the painted hunting dog (Lycaon pictus), which once occupied most of sub-Saharan Africa but has undergone a dramatic population decline in the last century. Fluctuating asymmetry (FA) was used as an indicator of developmental stability and measured in museum skull specimens spanning a hundred year period. A comparison with the more ubiquitous black-backed jackal (Canis mesomelas) revealed FA in L. pictus to be high. Furthermore, the data indicate a temporal increase in FA over time in L. pictus, corresponding to the period of its population decline. The high rate of change is compatible with genetic drift although environmental factors are also likely to be important. Lowering developmental stability over time may have direct fitness consequences and as such represents an unacknowledged threat to future resilience of the population.
Collapse
|
41
|
Šimková A, Civáňová K, Gettová L, Gilles A. Genomic Porosity between Invasive Chondrostoma nasus and Endangered Endemic Parachondrostoma toxostoma (Cyprinidae): The Evolution of MHC IIB Genes. PLoS One 2013; 8:e65883. [PMID: 23824831 PMCID: PMC3688810 DOI: 10.1371/journal.pone.0065883] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/30/2013] [Indexed: 02/06/2023] Open
Abstract
Two cyprinid species, Parachondrostoma toxostoma, an endemic threatened species, and Chondrostoma nasus, an invasive species, live in sympatry in southern France and form two sympatric zones where the presence of intergeneric hybrids is reported. To estimate the potential threat to endemic species linked to the introduction of invasive species, we focused on the DAB genes (functional MHC IIB genes) because of their adaptive significance and role in parasite resistance. More specifically, we investigated (1) the variability of MHC IIB genes, (2) the selection pattern shaping MHC polymorphism, and (3) the extent to which trans-species evolution and intergeneric hybridization affect MHC polymorphism. In sympatric areas, the native species has more diversified MHC IIB genes when compared to the invasive species, probably resulting from the different origins and dispersal of both species. A similar level of MHC polymorphism was found at population level in both species, suggesting similar mechanisms generating MHC diversity. In contrast, a higher number of DAB-like alleles per specimen were found in invasive species. Invasive species tended to express the alleles of two DAB lineages, whilst native species tended to express the alleles of only the DAB3 lineage. Hybrids have a pattern of MHC expression intermediate between both species. Whilst positive selection acting on peptide binding sites (PBS) was demonstrated in both species, a slightly higher number of positively selected sites were identified in C. nasus, which could result from parasite-mediated selection. Bayesian clustering analysis revealed a similar pattern of structuring for the genetic variation when using microsatellites or the MHC approach. We confirmed the importance of trans-species evolution for MHC polymorphism. In addition, we demonstrated bidirectional gene flow for MHC IIB genes in sympatric areas. The positive significant correlation between MHC and microsatellites suggests that demographic factors may contribute to MHC variation on a short time scale.
Collapse
Affiliation(s)
- Andrea Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristína Civáňová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Gettová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - André Gilles
- Aix-Marseille Université, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, UMR Centre national de la recherche scientifique 7263, Evolution Génome Environnement, Marseille, France
| |
Collapse
|
42
|
Therkildsen NO, Hemmer-Hansen J, Als TD, Swain DP, Morgan MJ, Trippel EA, Palumbi SR, Meldrup D, Nielsen EE. Microevolution in time and space: SNP analysis of historical DNA reveals dynamic signatures of selection in Atlantic cod. Mol Ecol 2013; 22:2424-40. [PMID: 23551301 DOI: 10.1111/mec.12260] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/29/2012] [Accepted: 01/09/2013] [Indexed: 01/09/2023]
Abstract
Little is known about how quickly natural populations adapt to changes in their environment and how temporal and spatial variation in selection pressures interact to shape patterns of genetic diversity. We here address these issues with a series of genome scans in four overfished populations of Atlantic cod (Gadus morhua) studied over an 80-year period. Screening of >1000 gene-associated single-nucleotide polymorphisms (SNPs) identified 77 loci that showed highly elevated levels of differentiation, likely as an effect of directional selection, in either time, space or both. Exploratory analysis suggested that temporal allele frequency shifts at certain loci may correlate with local temperature variation and with life history changes suggested to be fisheries induced. Interestingly, however, largely nonoverlapping sets of loci were temporal outliers in the different populations and outliers from the 1928 to 1960 period showed almost complete stability during later decades. The contrasting microevolutionary trajectories among populations resulted in sequential shifts in spatial outliers, with no locus maintaining elevated spatial differentiation throughout the study period. Simulations of migration coupled with observations of temporally stable spatial structure at neutral loci suggest that population replacement or gene flow alone could not explain all the observed allele frequency variation. Thus, the genetic changes are likely to at least partly be driven by highly dynamic temporally and spatially varying selection. These findings have important implications for our understanding of local adaptation and evolutionary potential in high gene flow organisms and underscore the need to carefully consider all dimensions of biocomplexity for evolutionarily sustainable management.
Collapse
Affiliation(s)
- Nina O Therkildsen
- Section for Population Ecology and Genetics, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pan-African genetic structure in the African buffalo (Syncerus caffer): investigating intraspecific divergence. PLoS One 2013; 8:e56235. [PMID: 23437100 PMCID: PMC3578844 DOI: 10.1371/journal.pone.0056235] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 01/11/2013] [Indexed: 11/19/2022] Open
Abstract
The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today.
Collapse
|
44
|
Marsden CD, Verberkmoes H, Thomas R, Wayne RK, Mable BK. Pedigrees, MHC and microsatellites: an integrated approach for genetic management of captive African wild dogs (Lycaon pictus). CONSERV GENET 2013. [DOI: 10.1007/s10592-012-0440-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Pauls SU, Nowak C, Bálint M, Pfenninger M. The impact of global climate change on genetic diversity within populations and species. Mol Ecol 2012; 22:925-46. [DOI: 10.1111/mec.12152] [Citation(s) in RCA: 392] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 12/16/2022]
Affiliation(s)
- Steffen U. Pauls
- Biodiversity and Climate Research Centre (BiK‐F) by Senckenberg Gesellschaft für Naturforschung and Goethe University Senckenberganlage 25 D‐60325 Frankfurt/Main Germany
| | - Carsten Nowak
- Biodiversity and Climate Research Centre (BiK‐F) by Senckenberg Gesellschaft für Naturforschung and Goethe University Senckenberganlage 25 D‐60325 Frankfurt/Main Germany
- Conservation Genetics Group Senckenberg Research Institute and Natural History Museum Frankfurt Clamecystraße 12 D‐63571 Gelnhausen Germany
| | - Miklós Bálint
- Biodiversity and Climate Research Centre (BiK‐F) by Senckenberg Gesellschaft für Naturforschung and Goethe University Senckenberganlage 25 D‐60325 Frankfurt/Main Germany
- Molecular Biology Center, Babes‐Bolyai University Str. Treboniu Laurian 42 400271 Cluj Romania
| | - Markus Pfenninger
- Biodiversity and Climate Research Centre (BiK‐F) by Senckenberg Gesellschaft für Naturforschung and Goethe University Senckenberganlage 25 D‐60325 Frankfurt/Main Germany
| |
Collapse
|
46
|
Yasukochi Y, Kurosaki T, Yoneda M, Koike H, Satta Y. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus. BMC Evol Biol 2012. [PMID: 23190438 PMCID: PMC3575356 DOI: 10.1186/1471-2148-12-230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that the Japanese black bears may also retain more potential resistance against pathogens than other endangered mammalian species. To prevent further decline of potential resistance against pathogens, a conservation policy for the Japanese black bear should be designed to maintain MHC rare variants in each local population.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Evolutionary Studies of Biosystems, the Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan.
| | | | | | | | | |
Collapse
|
47
|
Nichols HJ, Jordan NR, Jamie GA, Cant MA, Hoffman JI. Fine-scale spatiotemporal patterns of genetic variation reflect budding dispersal coupled with strong natal philopatry in a cooperatively breeding mammal. Mol Ecol 2012; 21:5348-62. [DOI: 10.1111/mec.12015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/07/2012] [Accepted: 07/17/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Hazel J. Nichols
- Department of Zoology; University of Cambridge; Cambridge; CB2 3EJ; UK
| | - Neil R. Jordan
- Department of Zoology; University of Cambridge; Cambridge; CB2 3EJ; UK
| | - Gabriel A. Jamie
- Department of Zoology; University of Cambridge; Cambridge; CB2 3EJ; UK
| | - Michael A. Cant
- Centre for Ecology and Conservation; University of Exeter; Cornwall Campus; Cornwall; TR10 9EZ; UK
| | - Joseph I. Hoffman
- Department of Animal Behaviour; University of Bielefeld; Postfach 100131; Bielefeld; 33501; Germany
| |
Collapse
|
48
|
MARSDEN CLARED, WOODROFFE ROSIE, MILLS MICHAELGL, MCNUTT JWELDON, CREEL SCOTT, GROOM ROSEMARY, EMMANUEL MASENGA, CLEAVELAND SARAH, KAT PIETER, RASMUSSEN GREGORYSA, GINSBERG JOSHUA, LINES ROBIN, ANDRÉ JEANMARC, BEGG COLLEEN, WAYNE ROBERTK, MABLE BARBARAK. Corrigendum. Mol Ecol 2012. [DOI: 10.1111/j.1365-294x.2012.05674.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Abstract
The savannah biome of sub-Saharan Africa harbours the highest diversity of ungulates (hoofed mammals) on Earth. In this review, we compile population genetic data from 19 codistributed ungulate taxa of the savannah biome and find striking concordance in the phylogeographic structuring of species. Data from across taxa reveal distinct regional lineages, which reflect the survival and divergence of populations in isolated savannah refugia during the climatic oscillations of the Pleistocene. Data from taxa across trophic levels suggest distinct savannah refugia were present in West, East, Southern and South-West Africa. Furthermore, differing Pleistocene evolutionary biogeographic scenarios are proposed for East and Southern Africa, supported by palaeoclimatic data and the fossil record. Environmental instability in East Africa facilitated several spatial and temporal refugia and is reflected in the high inter- and intraspecific diversity of the region. In contrast, phylogeographic data suggest a stable, long-standing savannah refuge in the south.
Collapse
Affiliation(s)
- E D Lorenzen
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|