1
|
Huang Y, Li J, Bian C, Li R, You X, Shi Q. Evolutionary Genomics Reveals Multiple Functions of Arylalkylamine N-Acetyltransferase in Fish. Front Genet 2022; 13:820442. [PMID: 35664299 PMCID: PMC9160868 DOI: 10.3389/fgene.2022.820442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
As an important hormone, melatonin participates in endocrine regulation of diverse functions in vertebrates. Its biosynthesis is catalyzed by four cascaded enzymes, among them, arylalkylamine N-acetyltransferase (AANAT) is the most critical one. Although only single aanat gene has been identified in most groups of vertebrates, researchers including us have determined that fish have the most diverse of aanat genes (aanat1a, aanat1b, and aanat2), playing various potential roles such as seasonal migration, amphibious aerial vision, and cave or deep-sea adaptation. With the rapid development of genome and transcriptome sequencing, more and more putative sequences of fish aanat genes are going to be available. Related phylogeny and functional investigations will enrich our understanding of AANAT functions in various fish species.
Collapse
Affiliation(s)
- Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB-Ugent Center for Plant Systems Biology, Ghent, Belgium
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, College of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, China
| | - Ruihan Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, College of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, College of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
2
|
Nisembaum LG, Loentgen G, L’Honoré T, Martin P, Paulin CH, Fuentès M, Escoubeyrou K, Delgado MJ, Besseau L, Falcón J. Transient Receptor Potential-Vanilloid (TRPV1-TRPV4) Channels in the Atlantic Salmon, Salmo salar. A Focus on the Pineal Gland and Melatonin Production. Front Physiol 2022; 12:784416. [PMID: 35069244 PMCID: PMC8782258 DOI: 10.3389/fphys.2021.784416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Fish are ectotherm, which rely on the external temperature to regulate their internal body temperature, although some may perform partial endothermy. Together with photoperiod, temperature oscillations, contribute to synchronizing the daily and seasonal variations of fish metabolism, physiology and behavior. Recent studies are shedding light on the mechanisms of temperature sensing and behavioral thermoregulation in fish. In particular, the role of some members of the transient receptor potential channels (TRP) is being gradually unraveled. The present study in the migratory Atlantic salmon, Salmo salar, aims at identifying the tissue distribution and abundance in mRNA corresponding to the TRP of the vanilloid subfamilies, TRPV1 and TRPV4, and at characterizing their putative role in the control of the temperature-dependent modulation of melatonin production-the time-keeping hormone-by the pineal gland. In Salmo salar, TRPV1 and TRPV4 mRNA tissue distribution appeared ubiquitous; mRNA abundance varied as a function of the month investigated. In situ hybridization and immunohistochemistry indicated specific labeling located in the photoreceptor cells of the pineal gland and the retina. Additionally, TRPV analogs modulated the production of melatonin by isolated pineal glands in culture. The TRPV1 agonist induced an inhibitory response at high concentrations, while evoking a bell-shaped response (stimulatory at low, and inhibitory at high, concentrations) when added with an antagonist. The TRPV4 agonist was stimulatory at the highest concentration used. Altogether, the present results agree with the known widespread distribution and role of TRPV1 and TRPV4 channels, and with published data on trout (Oncorhynchus mykiss), leading to suggest these channels mediate the effects of temperature on S. salar pineal melatonin production. We discuss their involvement in controlling the timing of daily and seasonal events in this migratory species, in the context of an increasing warming of water temperatures.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Guillaume Loentgen
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Thibaut L’Honoré
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, Chanteuges, France
| | - Charles-Hubert Paulin
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Michael Fuentès
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Karine Escoubeyrou
- SU, CNRS Fédération 3724, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - María Jesús Delgado
- Departamento de Genética, Fisiología y Microbiologia, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Laurence Besseau
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Jack Falcón
- Sorbonne Université (SU), CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| |
Collapse
|
3
|
Nisembaum LG, Martin P, Lecomte F, Falcón J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J Neuroendocrinol 2021; 33:e12955. [PMID: 33769643 DOI: 10.1111/jne.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 10/21/2022]
Abstract
Part of the life cycle of several fish species includes important salinity changes, as is the case for the sea bass (Dicentrarchus labrax) or the Atlantic salmon (Salmo salar). Salmo salar juveniles migrate downstream from their spawning sites to reach seawater, where they grow and become sexually mature. The process of preparation enabling juveniles to migrate downstream and physiologically adapt to seawater is called smoltification. Daily and seasonal variations of photoperiod and temperature play a role in defining the timing of smoltification, which may take weeks to months, depending on the river length and latitude. Smoltification is characterised by a series of biochemical, physiological and behavioural changes within the neuroendocrine axis. This review discusses the current knowledge and gaps related to the neuroendocrine mechanisms that mediate the effects of light and temperature on smoltification. Studies performed in S. salar and other salmonids, as well as in other species undergoing important salinity changes, are reviewed, and a particular emphasis is given to the pineal hormone melatonin and its possible role in osmoregulation. The daily and annual variations of plasma melatonin levels reflect corresponding changes in external photoperiod and temperature, which suggests that the hormonal time-keeper melatonin might contribute to controlling smoltification. Here, we review studies on (i) the impact of pinealectomy and/or melatonin administration on smoltification; (ii) melatonin interactions with hormones involved in osmoregulation (e.g., prolactin, growth hormone and cortisol); (iii) the presence of melatonin receptors in tissues involved in osmoregulation; and (iv) the impacts of salinity changes on melatonin receptors and circulating melatonin levels. Altogether, these studies show evidence indicating that melatonin interacts with the neuroendocrine pathways controlling smoltification, although more information is needed to clearly decipher its mechanisms of action.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, (BIOM), Banyuls-sur-Mer, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, Chanteuges, France
| | - Frédéric Lecomte
- Ministère des Forêts, de la Faune et des Parcs, Direction de l'expertise sur la faune aquatique, Québec, Canada
| | - Jack Falcón
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 7208, SU, IRD 207, UCN, UA, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
4
|
Nisembaum LG, Martin P, Fuentes M, Besseau L, Magnanou E, McCormick SD, Falcón J. Effects of a temperature rise on melatonin and thyroid hormones during smoltification of Atlantic salmon, Salmo salar. J Comp Physiol B 2020; 190:731-748. [PMID: 32880666 DOI: 10.1007/s00360-020-01304-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 11/28/2022]
Abstract
Smoltification prepares juvenile Atlantic salmon (Salmo salar) for downstream migration. Dramatic changes characterize this crucial event in the salmon's life cycle, including increased gill Na+/K+-ATPase activity (NKA) and plasma hormone levels. The triggering of smoltification relies on photoperiod and is modulated by temperature. Both provide reliable information, to which fish have adapted for thousands of years, that allows deciphering daily and calendar time. Here we studied the impact of different photoperiod (natural, sustained winter solstice) and temperature (natural, ~ + 4° C) combinations, on gill NKA, plasma free triiodothyronine (T3) and thyroxine (T4), and melatonin (MEL; the time-keeping hormone), throughout smoltification. We also studied the impact of temperature history on pineal gland MEL production in vitro. The spring increase in gill NKA was less pronounced in smolts kept under sustained winter photoperiod and/or elevated temperature. Plasma thyroid hormone levels displayed day-night variations, which were affected by elevated temperature, either independently from photoperiod (decrease in T3 levels) or under natural photoperiod exclusively (increase in T4 nocturnal levels). Nocturnal MEL secretion was potentiated by the elevated temperature, which also altered the MEL profile under sustained winter photoperiod. Temperature also affected pineal MEL production in vitro, a response that depended on previous environmental acclimation of the organ. The results support the view that the salmon pineal is a photoperiod and temperature sensor, highlight the complexity of the interaction of these environmental factors on the endocrine system of S. salar, and indicate that climate change might compromise salmon's time "deciphering" during smoltification, downstream migration and seawater residence.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France.
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, 43300, Chanteuges, France
| | - Michael Fuentes
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France
| | - Laurence Besseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France
| | - Elodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France
| | - Stephen D McCormick
- S.O. Conte Anadromous Fish Research Laboratory, U.S. Geological Survey, Leetown Science Center, Turners Falls, MA, USA
| | - Jack Falcón
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France.,Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS 7208, UPMC, IRD 207, UCN, UA, Muséum National d'Histoire Naturelle, Paris Cedex, France
| |
Collapse
|
5
|
Ren DL, Ji C, Wang XB, Wang H, Hu B. Endogenous melatonin promotes rhythmic recruitment of neutrophils toward an injury in zebrafish. Sci Rep 2017; 7:4696. [PMID: 28680128 PMCID: PMC5498597 DOI: 10.1038/s41598-017-05074-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/24/2017] [Indexed: 12/28/2022] Open
Abstract
Neutrophil recruitment to injured tissue appears to be an evolutionarily conserved strategy for organisms to fight against exogenous insults. Recent studies have shown rhythmic migration of neutrophils and several factors, including melatonin, have been implicated in regulating this rhythmic migration. The mechanisms underlying how endogenous melatonin regulates rhythmic neutrophils migration, however, are unclear. Here we generated a zebrafish annat2 mutant that lacks endogenous melatonin and, subsequently, a Tg(lyz:EGFP);aanat2−/− transgenic line that allows for monitoring neutrophils migration visually in live zebrafish. We observed that migrating neutrophils are significantly reduced in aanat2−/− mutant zebrafish under a light/dark condition, and the disrupted migrating rhythmicity of neutrophils in aanat2−/− zebrafish is independent of the circadian clock. Further, we also found that endogenous melatonin enhances neutrophils migration likely by inducing the expression of cytokines such as interleukin-8 and interleukin-1β. Together, our findings provide evidence that endogenous melatonin promotes rhythmic migration of neutrophils through cytokines in zebrafish.
Collapse
Affiliation(s)
- Da-Long Ren
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.
| | - Cheng Ji
- Center for Circadian Clocks, Soochow University, Suzhou, 215123, Jiangsu, China.,School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xiao-Bo Wang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, 215123, Jiangsu, China. .,School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Bing Hu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P. R. China.
| |
Collapse
|
6
|
Bouaziz M, Bejaoui S, Rabeh I, Besbes R, El Cafsi M, Falcon J. Impact of temperature on sea bass, Dicentrarchus labrax , retina: Fatty acid composition, expression of rhodopsin and enzymes of lipid and melatonin metabolism. Exp Eye Res 2017; 159:87-97. [DOI: 10.1016/j.exer.2017.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/10/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
|
7
|
Kulczykowska E, Kleszczyńska A, Gozdowska M, Sokołowska E. The time enzyme in melatonin biosynthesis in fish: Day/night expressions of three aralkylamine N -acetyltransferase genes in three-spined stickleback. Comp Biochem Physiol A Mol Integr Physiol 2017; 208:46-53. [DOI: 10.1016/j.cbpa.2017.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 03/09/2017] [Accepted: 03/11/2017] [Indexed: 01/15/2023]
|
8
|
Cowan M, Azpeleta C, López-Olmeda JF. Rhythms in the endocrine system of fish: a review. J Comp Physiol B 2017; 187:1057-1089. [DOI: 10.1007/s00360-017-1094-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/20/2017] [Accepted: 04/06/2017] [Indexed: 12/20/2022]
|
9
|
Nisembaum LG, Besseau L, Paulin CH, Charpantier A, Martin P, Magnanou E, Fuentès M, Delgado MJ, Falcón J. In the Heat of the Night: Thermo-TRPV Channels in the Salmonid Pineal Photoreceptors and Modulation of Melatonin Secretion. Endocrinology 2015; 156:4629-38. [PMID: 26389691 DOI: 10.1210/en.2015-1684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Photoperiod plays an essential role in the synchronization of metabolism, physiology, and behavior to the cyclic variations of the environment. In vertebrates, information is relayed by the pineal cells and translated into the nocturnal production of melatonin. The duration of this signal corresponds to the duration of the night. In fish, the pinealocytes are true photoreceptors in which the amplitude of the nocturnal surge is modulated by temperature in a species-dependent manner. Thus, the daily and annual variations in the amplitude and duration of the nocturnal melatonin signal provide information on daily and calendar time. Both light and temperature act on the activity of the penultimate enzyme in the melatonin biosynthesis pathway, the arylalkylamine N-acetyltransferase (serotonin → N-acetylserotonin). Although the mechanisms of the light/dark regulation of melatonin secretion are quite well understood, those of temperature remain unelucidated. More generally, the mechanisms of thermoreception are unknown in ectotherms. Here we provide the first evidence that two thermotransient receptor potential (TRP) channels, TRPV1 and TRPV4, are expressed in the pineal photoreceptor cells of a teleost fish, in which they modulate melatonin secretion in vitro. The effects are temperature dependent, at least for TRPV1. Our data support the idea that the pineal of fish is involved in thermoregulation and that the pineal photoreceptors are also thermoreceptors. In other nervous and nonnervous tissues, TRPV1 and TRPV4 display a ubiquitous but quantitatively variable distribution. These results are a fundamental step in the elucidation of the mechanisms of temperature transduction in fish.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06 (L.B., C.-H.P., A.C.), Centre National de la Recherche Scientifique (L.G.N., E.M., M.F., J.F.), Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls sur Mer, France; Conservatoire National du Saumon Sauvage (P.M.), F-43300 Chanteuges, France; and Universidad Complutense de Madrid (L.G.N., M.J.D.) E-28040 Madrid, Spain
| | - Laurence Besseau
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06 (L.B., C.-H.P., A.C.), Centre National de la Recherche Scientifique (L.G.N., E.M., M.F., J.F.), Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls sur Mer, France; Conservatoire National du Saumon Sauvage (P.M.), F-43300 Chanteuges, France; and Universidad Complutense de Madrid (L.G.N., M.J.D.) E-28040 Madrid, Spain
| | - Charles-Hubert Paulin
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06 (L.B., C.-H.P., A.C.), Centre National de la Recherche Scientifique (L.G.N., E.M., M.F., J.F.), Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls sur Mer, France; Conservatoire National du Saumon Sauvage (P.M.), F-43300 Chanteuges, France; and Universidad Complutense de Madrid (L.G.N., M.J.D.) E-28040 Madrid, Spain
| | - Alice Charpantier
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06 (L.B., C.-H.P., A.C.), Centre National de la Recherche Scientifique (L.G.N., E.M., M.F., J.F.), Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls sur Mer, France; Conservatoire National du Saumon Sauvage (P.M.), F-43300 Chanteuges, France; and Universidad Complutense de Madrid (L.G.N., M.J.D.) E-28040 Madrid, Spain
| | - Patrick Martin
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06 (L.B., C.-H.P., A.C.), Centre National de la Recherche Scientifique (L.G.N., E.M., M.F., J.F.), Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls sur Mer, France; Conservatoire National du Saumon Sauvage (P.M.), F-43300 Chanteuges, France; and Universidad Complutense de Madrid (L.G.N., M.J.D.) E-28040 Madrid, Spain
| | - Elodie Magnanou
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06 (L.B., C.-H.P., A.C.), Centre National de la Recherche Scientifique (L.G.N., E.M., M.F., J.F.), Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls sur Mer, France; Conservatoire National du Saumon Sauvage (P.M.), F-43300 Chanteuges, France; and Universidad Complutense de Madrid (L.G.N., M.J.D.) E-28040 Madrid, Spain
| | - Michael Fuentès
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06 (L.B., C.-H.P., A.C.), Centre National de la Recherche Scientifique (L.G.N., E.M., M.F., J.F.), Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls sur Mer, France; Conservatoire National du Saumon Sauvage (P.M.), F-43300 Chanteuges, France; and Universidad Complutense de Madrid (L.G.N., M.J.D.) E-28040 Madrid, Spain
| | - Maria-Jesus Delgado
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06 (L.B., C.-H.P., A.C.), Centre National de la Recherche Scientifique (L.G.N., E.M., M.F., J.F.), Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls sur Mer, France; Conservatoire National du Saumon Sauvage (P.M.), F-43300 Chanteuges, France; and Universidad Complutense de Madrid (L.G.N., M.J.D.) E-28040 Madrid, Spain
| | - Jack Falcón
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06 (L.B., C.-H.P., A.C.), Centre National de la Recherche Scientifique (L.G.N., E.M., M.F., J.F.), Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls sur Mer, France; Conservatoire National du Saumon Sauvage (P.M.), F-43300 Chanteuges, France; and Universidad Complutense de Madrid (L.G.N., M.J.D.) E-28040 Madrid, Spain
| |
Collapse
|
10
|
Paulin CH, Cazaméa-Catalan D, Zilberman-Peled B, Herrera-Perez P, Sauzet S, Magnanou E, Fuentès M, Gothilf Y, Muñoz-Cueto JA, Falcón J, Besseau L. Subfunctionalization of arylalkylamine N-acetyltransferases in the sea bass Dicentrarchus labrax: two-ones for one two. J Pineal Res 2015; 59:354-64. [PMID: 26267754 DOI: 10.1111/jpi.12266] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 01/16/2023]
Abstract
Melatonin is an important component of the vertebrates circadian system, synthetized from serotonin by the successive action of the arylalkylamine N-acetyltransferase (Aanat: serotonin→N-acetylserotonin) and acetylserotonin-O-methyltransferase (Asmt: N-acetylserotonin→melatonin). Aanat is responsible for the daily rhythm in melatonin production. Teleost fish are unique because they express two Aanat genes, aanat1 and aanat2, mainly expressed in the retina and pineal gland, respectively. In silico analysis indicated that the teleost-specific whole-genome duplication generated Aanat1 duplicates (aanat1a and aanat1b); some fish express both of them, while others express either one of the isoforms. Here, we bring the first information on the structure, function, and distribution of Aanat1a and Aanat1b in a teleost, the sea bass Dicentrarchus labrax. Aanat1a and Aanat1b displayed a wide and distinct distribution in the nervous system and peripheral tissues, while Aanat2 appeared as a pineal enzyme. Co-expression of Aanats with asmt was found in the pineal gland and the three retinal nuclear layers. Enzyme kinetics indicated subtle differences in the affinity and catalytic efficiency of Aanat1a and Aanat1b for indolethylamines and phenylethylamines, respectively. Our data are consistent with the idea that Aanat2 is a pineal enzyme involved in melatonin production, while Aanat1 enzymes have a broader range of functions including melatonin synthesis in the retina, and catabolism of serotonin and dopamine in the retina and other tissues. The data are discussed in light of the recently uncovered roles of N-acetylserotonin and N-acetyldopamine as antioxidants, neuroprotectants, and modulators of cell proliferation and enzyme activities.
Collapse
Affiliation(s)
- Charles-Hubert Paulin
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| | - Damien Cazaméa-Catalan
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| | - Bina Zilberman-Peled
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neurosciences, University of Tel Aviv, Tel Aviv, Israel
| | - Patricia Herrera-Perez
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Sandrine Sauzet
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| | - Elodie Magnanou
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| | - Michael Fuentès
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neurosciences, University of Tel Aviv, Tel Aviv, Israel
| | - Jose Antonio Muñoz-Cueto
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Jack Falcón
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| | - Laurence Besseau
- UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Sorbonne Universités, Banyuls/Mer, France
| |
Collapse
|
11
|
Cazaméa-Catalan D, Besseau L, Falcón J, Magnanou E. The timing of Timezyme diversification in vertebrates. PLoS One 2014; 9:e112380. [PMID: 25486407 PMCID: PMC4259306 DOI: 10.1371/journal.pone.0112380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/15/2014] [Indexed: 01/23/2023] Open
Abstract
All biological functions in vertebrates are synchronized with daily and seasonal changes in the environment by the time keeping hormone melatonin. Its nocturnal surge is primarily due to the rhythmic activity of the arylalkylamine N-acetyl transferase AANAT, which thus became the focus of many investigations regarding its evolution and function. Various vertebrate isoforms have been reported from cartilaginous fish to mammals but their origin has not been clearly established. Using phylogeny and synteny, we took advantage of the increasing number of available genomes in order to test whether the various rounds of vertebrate whole genome duplications were responsible for the diversification of AANAT. We highlight a gene secondary loss of the AANAT2 in the Sarcopterygii, revealing for the first time that the AAANAT1/2 duplication occurred before the divergence between Actinopterygii (bony fish) and Sarcopterygii (tetrapods, lobe-finned fish, and lungfish). We hypothesize the teleost-specific whole genome duplication (WDG) generated the appearance of the AANAT1a/1b and the AANAT2/2′paralogs, the 2′ isoform being rapidly lost in the teleost common ancestor (ray-finned fish). We also demonstrate the secondary loss of the AANAT1a in a Paracantopterygii (Atlantic cod) and of the 1b in some Ostariophysi (zebrafish and cave fish). Salmonids present an even more diverse set of AANATs that may be due to their specific WGD followed by secondary losses. We propose that vertebrate AANAT diversity resulted from 3 rounds of WGD followed by previously uncharacterized secondary losses. Extant isoforms show subfunctionalized localizations, enzyme activities and affinities that have increased with time since their emergence.
Collapse
Affiliation(s)
- Damien Cazaméa-Catalan
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7232, BIOM Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
- CNRS, UMR 7232, BIOM Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
| | - Laurence Besseau
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7232, BIOM Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
- CNRS, UMR 7232, BIOM Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
| | - Jack Falcón
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7232, BIOM Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
- CNRS, UMR 7232, BIOM Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
| | - Elodie Magnanou
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7232, BIOM Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
- CNRS, UMR 7232, BIOM Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Banyuls/Mer, France
- * E-mail:
| |
Collapse
|
12
|
Drastic neofunctionalization associated with evolution of the timezyme AANAT 500 Mya. Proc Natl Acad Sci U S A 2013; 111:314-9. [PMID: 24351931 DOI: 10.1073/pnas.1312634110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytrypamine) is the vertebrate hormone of the night: circulating levels at night are markedly higher than day levels. This increase is driven by precisely regulated increases in acetylation of serotonin in the pineal gland by arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme in the synthesis of melatonin. This unique essential role of AANAT in vertebrate timekeeping is recognized by the moniker the timezyme. AANAT is also found in the retina, where melatonin is thought to play a paracrine role. Here, we focused on the evolution of AANAT in early vertebrates. AANATs from Agnathans (lamprey) and Chondrichthyes (catshark and elephant shark) were cloned, and it was found that pineal glands and retinas from these groups express a form of AANAT that is compositionally, biochemically, and kinetically similar to AANATs found in bony vertebrates (VT-AANAT). Examination of the available genomes indicates that VT-AANAT is absent from other forms of life, including the Cephalochordate amphioxus. Phylogenetic analysis and evolutionary rate estimation indicate that VT-AANAT evolved from the nonvertebrate form of AANAT after the Cephalochordate-Vertebrate split over one-half billion years ago. The emergence of VT-AANAT apparently involved a dramatic acceleration of evolution that accompanied neofunctionalization after a duplication of the nonvertebrate AANAT gene. This scenario is consistent with the hypotheses that the advent of VT-AANAT contributed to the evolution of the pineal gland and lateral eyes from a common ancestral photodetector and that it was not a posthoc recruitment.
Collapse
|
13
|
Cazaméa-Catalan D, Magnanou E, Helland R, Besseau L, Boeuf G, Falcón J, Jørgensen EH. Unique arylalkylamine N-acetyltransferase-2 polymorphism in Salmonids and profound variations in thermal stability and catalytic efficiency conferred by two residues. J Exp Biol 2013; 216:1938-48. [DOI: 10.1242/jeb.080960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Summary
Melatonin contributes to synchronizing major biological and behavioral functions to the cyclic changes in the environment. The arylalkylamine N-acetyltransferase (AANAT) is responsible for a daily rhythm in melatonin secretion. Teleost possess two enzyme forms, AANAT1 and AANAT2, preferentially expressed in the retina and pineal organ, respectively. The concomitant action of light and temperature shapes the daily and seasonal changes in melatonin secretion: the former controls duration while the latter modulates amplitude. Investigating the respective roles of light and temperature is particularly relevant in the context of a global warming likely to affect the way fish decode and anticipate seasonal changes with dramatic consequences on their physiology and behavior. Here we investigated the impact of temperature on pineal melatonin secretion of a migratory species, the Arctic charr (Salvelinus alpinus), the northernmost living and cold adapted salmonid. We show that temperature impacts directly melatonin production in cultured pineal organs. We also show that one organ expresses two AANAT2 transcripts displaying high similarity between them and with trout Oncorhynchus mykiss AANAT2, differing by only two amino acid sites. We compared the kinetics and 3D models of these enzymes as well as of a chimeric construct, particularly with regard to their response to temperature. Our study brings interesting and totally new information on the evolutionary diversity of AANAT enzymes in Teleost and on the role played by specific residues in the catalytic properties of the enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jack Falcón
- CNRS, Biologie Intégrative des Organismes Marins
| | | |
Collapse
|