1
|
Warner BR, Bundschuh R, Fredrick K. Roles of the leader-trailer helix and antitermination complex in biogenesis of the 30S ribosomal subunit. Nucleic Acids Res 2023; 51:5242-5254. [PMID: 37102690 PMCID: PMC10250234 DOI: 10.1093/nar/gkad316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Ribosome biogenesis occurs co-transcriptionally and entails rRNA folding, ribosomal protein binding, rRNA processing, and rRNA modification. In most bacteria, the 16S, 23S and 5S rRNAs are co-transcribed, often with one or more tRNAs. Transcription involves a modified RNA polymerase, called the antitermination complex, which forms in response to cis-acting elements (boxB, boxA and boxC) in the nascent pre-rRNA. Sequences flanking the rRNAs are complementary and form long helices known as leader-trailer helices. Here, we employed an orthogonal translation system to interrogate the functional roles of these RNA elements in 30S subunit biogenesis in Escherichia coli. Mutations that disrupt the leader-trailer helix caused complete loss of translation activity, indicating that this helix is absolutely essential for active subunit formation in the cell. Mutations of boxA also reduced translation activity, but by only 2- to 3-fold, suggesting a smaller role for the antitermination complex. Similarly modest drops in activity were seen upon deletion of either or both of two leader helices, termed here hA and hB. Interestingly, subunits formed in the absence of these leader features exhibited defects in translational fidelity. These data suggest that the antitermination complex and precursor RNA elements help to ensure quality control during ribosome biogenesis.
Collapse
Affiliation(s)
- Benjamin R Warner
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus,OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Jüttner M, Ferreira-Cerca S. A Comparative Perspective on Ribosome Biogenesis: Unity and Diversity Across the Tree of Life. Methods Mol Biol 2022; 2533:3-22. [PMID: 35796979 PMCID: PMC9761495 DOI: 10.1007/978-1-0716-2501-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Ribosomes are universally conserved ribonucleoprotein complexes involved in the decoding of the genetic information contained in messenger RNAs into proteins. Accordingly, ribosome biogenesis is a fundamental cellular process required for functional ribosome homeostasis and to preserve satisfactory gene expression capability.Although the ribosome is universally conserved, its biogenesis shows an intriguing degree of variability across the tree of life . These differences also raise yet unresolved questions. Among them are (a) what are, if existing, the remaining ancestral common principles of ribosome biogenesis ; (b) what are the molecular impacts of the evolution history and how did they contribute to (re)shape the ribosome biogenesis pathway across the tree of life ; (c) what is the extent of functional divergence and/or convergence (functional mimicry), and in the latter case (if existing) what is the molecular basis; (d) considering the universal ribosome conservation, what is the capability of functional plasticity and cellular adaptation of the ribosome biogenesis pathway?In this review, we provide a brief overview of ribosome biogenesis across the tree of life and try to illustrate some potential and/or emerging answers to these unresolved questions.
Collapse
Affiliation(s)
- Michael Jüttner
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Biochemistry III-Regensburg Center for Biochemistry-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Malagon F. RNase III is required for localization to the nucleoid of the 5' pre-rRNA leader and for optimal induction of rRNA synthesis in E. coli. RNA (NEW YORK, N.Y.) 2013; 19:1200-7. [PMID: 23893733 PMCID: PMC3753927 DOI: 10.1261/rna.038588.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/14/2013] [Indexed: 05/24/2023]
Abstract
It has recently been demonstrated that ribosomes are preferentially localized outside the nucleoid in Escherichia coli, but little is known about the spatial regulation of pre-rRNA processing. In this work, I investigate the cellular distribution of leader pre-rRNAs using RNA-FISH. In contrast to mature rRNA, the 5' proximal leader region associates with the nucleoid, and this association occurs in an RNase III-dependent manner. Moreover, RNase III plays a role in the rapid induction of ribosomal operons during outgrowth and is essential in the absence of the transcriptional regulator Fis, suggesting a linkage of transcription and RNA processing for ribosomal operons in E. coli.
Collapse
Affiliation(s)
- Francisco Malagon
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA.
| |
Collapse
|
4
|
The Escherichia coli translation-associated heat shock protein YbeY is involved in rRNA transcription antitermination. PLoS One 2013; 8:e62297. [PMID: 23638028 PMCID: PMC3639268 DOI: 10.1371/journal.pone.0062297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/19/2013] [Indexed: 11/29/2022] Open
Abstract
A new group of translation-associated heat shock genes has been recently identified. One of these novel genes is ybeY which is highly conserved in bacteria. In Escherichia coli the YbeY protein is important for efficient translation at all temperatures and is essential at high temperatures. Deletion mutants of ybeY are defective in protein translation, due to impaired 30 S ribosomal subunits. Here we provide evidence which tie YbeY to the transcription antitermination process. Thus, in ybeY deletion mutants transcription is significantly inhibited when the “nut like” sequences required for transcriptional antitermination are present, while if these sequences are removed transcription is not affected by the mutation.
Collapse
|
5
|
Bubunenko M, Court DL, Refaii AA, Saxena S, Korepanov A, Friedman DI, Gottesman ME, Alix JH. Nus transcription elongation factors and RNase III modulate small ribosome subunit biogenesis in Escherichia coli. Mol Microbiol 2013; 87:382-93. [PMID: 23190053 PMCID: PMC3545037 DOI: 10.1111/mmi.12105] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2012] [Indexed: 01/02/2023]
Abstract
Escherichia coli NusA and NusB proteins bind specific sites, such as those in the leader and spacer sequences that flank the 16S region of the ribosomal RNA transcript, forming a complex with RNA polymerase that suppresses Rho-dependent transcription termination. Although antitermination has long been the accepted role for Nus factors in rRNA synthesis, we propose that another major role for the Nus-modified transcription complex in rrn operons is as an RNA chaperone insuring co-ordination of 16S rRNA folding and RNase III processing that results in production of proper 30S ribosome subunits. This contrarian proposal is based on our studies of nusA and nusB cold-sensitive mutations that have altered translation and at low temperature accumulate 30S subunit precursors. Both phenotypes are suppressed by deletion of RNase III. We argue that these results are consistent with the idea that the nus mutations cause altered rRNA folding that leads to abnormal 30S subunits and slow translation. According to this idea, functional Nus proteins stabilize an RNA loop between their binding sites in the 5' RNA leader and on the transcribing RNA polymerase, providing a topological constraint on the RNA that aids normal rRNA folding and processing.
Collapse
Affiliation(s)
- Mikhail Bubunenko
- Frederick National Laboratory for Cancer Research, Basic Research Program, SAIC-Frederick, Inc., Frederick, Maryland 21702, USA
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Donald L. Court
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Abdalla Al Refaii
- CNRS UPR9073, associated with University of Paris Diderot, Sorbonne Paris Cite Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris
| | - Shivalika Saxena
- Columbia University Medical Center, Departments of Microbiology and Biochemistry and Molecular Biophysics, New York, New York 10032, USA
| | - Alexey Korepanov
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - David I. Friedman
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Max E. Gottesman
- Columbia University Medical Center, Departments of Microbiology and Biochemistry and Molecular Biophysics, New York, New York 10032, USA
| | - Jean-Hervé Alix
- CNRS UPR9073, associated with University of Paris Diderot, Sorbonne Paris Cite Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris
| |
Collapse
|
6
|
Abstract
Growth rate regulation in bacteria has been an important issue in bacterial physiology for the past 50 years. This review, using Escherichia coli as a paradigm, summarizes the mechanisms for the regulation of rRNA synthesis in the context of systems biology, particularly, in the context of genome-wide competition for limited RNA polymerase (RNAP) in the cell under different growth conditions including nutrient starvation. The specific location of the seven rrn operons in the chromosome and the unique properties of the rrn promoters contribute to growth rate regulation. The length of the rrn transcripts, coupled with gene dosage effects, influence the distribution of RNAP on the chromosome in response to growth rate. Regulation of rRNA synthesis depends on multiple factors that affect the structure of the nucleoid and the allocation of RNAP for global gene expression. The magic spot ppGpp, which acts with DksA synergistically, is a key effector in both the growth rate regulation and the stringent response induced by nutrient starvation, mainly because the ppGpp level changes in response to environmental cues. It regulates rRNA synthesis via a cascade of events including both transcription initiation and elongation, and can be explained by an RNAP redistribution (allocation) model.
Collapse
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD, USA.
| | | | | |
Collapse
|
7
|
Cabrera JE, Jin DJ. Active transcription of rRNA operons is a driving force for the distribution of RNA polymerase in bacteria: effect of extrachromosomal copies of rrnB on the in vivo localization of RNA polymerase. J Bacteriol 2006; 188:4007-14. [PMID: 16707692 PMCID: PMC1482923 DOI: 10.1128/jb.01893-05] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to eukaryotes, bacteria such as Escherichia coli contain only one form of RNA polymerase (RNAP), which is responsible for all cellular transcription. Using an RNAP-green fluorescent protein fusion protein, we showed previously that E. coli RNAP is partitioned exclusively in the nucleoid and that stable RNA synthesis, particularly rRNA transcription, is critical for concentrating a significant fraction of RNAP in transcription foci during exponential growth. The extent of focus formation varies under different physiological conditions, supporting the proposition that RNAP redistribution is an important element for global gene regulation. Here we show that extra, plasmid-borne copies of an rRNA operon recruit RNAP from the nucleoid into the cytoplasmic space and that this is accompanied by a reduction in the growth rate. Transcription of an intact rRNA operon is not necessary, although a minimal transcript length is required for this phenotype. Replacement of the ribosomal promoters with another strong promoter, Ptac, abolished the effect. These results demonstrate that active synthesis from rRNA promoters is a major driving force for the distribution of RNAP in bacteria. The implications of our results for the regulation of rRNA synthesis and cell growth are discussed.
Collapse
Affiliation(s)
- Julio E Cabrera
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, 1050 Boyles Street, Bldg. 469, Rm. 127, Frederick, MD 21702, USA
| | | |
Collapse
|
8
|
Quan S, Zhang N, French S, Squires CL. Transcriptional polarity in rRNA operons of Escherichia coli nusA and nusB mutant strains. J Bacteriol 2005; 187:1632-8. [PMID: 15716433 PMCID: PMC1063997 DOI: 10.1128/jb.187.5.1632-1638.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthesis of ribosomes in Escherichia coli requires an antitermination system that modifies RNA polymerase to achieve efficient transcription of the genes specifying 16S, 23S, and 5S rRNA. This modification requires nucleotide signals in the RNA and specific transcription factors, such as NusA and NusB. Transcription of rrn operons in strains lacking the ability to produce either NusA or NusB was examined by electron microscopy. The distribution and numbers of RNA polymerase molecules on rrn operons were determined for each mutant. Compared to the wild type, the 16S gene in the nusB mutant strain had an equivalent number of RNA polymerase molecules, but the number of RNA polymerase molecules was reduced 1.4-fold for the nusA mutant. For both mutant strains, there were twofold-fewer RNA polymerase molecules on the 23S RNA gene than for the wild type. Overall, the mutant strains each had 1.6-fold-fewer RNA polymerase molecules on their rrn operons than did the wild type. To determine if decreased transcription of the 23S gene observed by electron microscopy also affected the 30S/50S ribosomal subunit ratio, ribosome profiles were examined by sucrose gradient analysis. The 30S/50S ratio increased 2.5- to 3-fold for the nus mutant strains over that for wild-type cells. Thus, strains carrying either a nusA mutation or a nusB mutation have defects in transcription of 23S rRNA.
Collapse
Affiliation(s)
- Selwyn Quan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | | | |
Collapse
|
9
|
Liiv A, Remme J. Importance of transient structures during post-transcriptional refolding of the pre-23S rRNA and ribosomal large subunit assembly. J Mol Biol 2004; 342:725-41. [PMID: 15342233 DOI: 10.1016/j.jmb.2004.07.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/10/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
An important step of ribosome assembly is the folding of the rRNA into a functional structure. Despite knowledge of the folded state of rRNA in the ribosomal subunits, there is very little information on the rRNA folding pathway. We are interested in understanding how the functional structure of rRNA is formed and whether the rRNA folding intermediates have a role in ribosome assembly. To this end, transient secondary structures around both ends of pre-23S rRNA were analyzed by a chemical probing approach, using pre-23S rRNA transcripts. Metastable hairpin loop structures were found at both ends of 23S rRNA. The functional importance of the transient structures around the ends of 23S rRNA was tested by mutations that alter only the transient structure. The effect of mutations on 23S rRNA folding was tested in vitro and in vivo. It was found that both stabilization and destabilization of the transient structure around the 5' end of 23S rRNA inhibits post-transcriptional refolding in vitro and ribosome formation in vivo. The data suggest that the transient structure of rRNA has a function during 23S rRNA folding and thereby in ribosome assembly.
Collapse
MESH Headings
- Base Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis
- Nucleic Acid Conformation
- Protein Subunits
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribonuclease III/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Aivar Liiv
- Estonian Biocentre, Tartu University, Riia st. 23, 51010 Tartu, Estonia
| | | |
Collapse
|
10
|
Zaporojets D, French S, Squires CL. Products transcribed from rearranged rrn genes of Escherichia coli can assemble to form functional ribosomes. J Bacteriol 2004; 185:6921-7. [PMID: 14617656 PMCID: PMC262721 DOI: 10.1128/jb.185.23.6921-6927.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine the flexibility of rRNA operons with respect to fundamental organization, transcription, processing, and assembly of ribosomes, operon variations were introduced by a plasmid into an Escherichia coli strain that has deletions of all chromosomal copies of rRNA genes. In the reconstructed operons, a Salmonella intervening sequence (IVS) from 23S helix 45 was introduced into the E. coli 23S gene at the same position. Three different constructs of the E. coli 16S gene were then placed wholly within the IVS sequence, and the 16S gene was deleted from its normal position. The resulting plasmids thus had the normal operon promoters and the leader region followed by the 5' one-third of the 23S gene, the entire 16S gene within the IVS, the last two-thirds of the 23S gene, and the normal end of the operon. The three constructs differed in the amount of 16S leader and spacer regions they contained. Only two of the three constructs, those with redundant leader and spacer antiterminator signals, resulted in viable cultures of the rrn deletion strain. Electron micrographs of the variant operon suggest that the 23S rRNA is made in two separate parts which then must form subassemblies before assembling into a functional 50S subunit. Cells containing only the reshuffled genes were debilitated in their growth properties and ribosome contents. The fact that such out of the ordinary manipulation of rRNA sequences in E. coli is possible paves the way for detailed analysis of ribosome assembly and evolution.
Collapse
MESH Headings
- DNA, Ribosomal Spacer
- Escherichia coli/genetics
- Gene Deletion
- Introns/genetics
- Microscopy, Electron
- Models, Molecular
- Operon
- Plasmids
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/analysis
- RNA, Ribosomal, 23S/genetics
- Recombination, Genetic
- Ribosomes/genetics
- Ribosomes/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Dmitry Zaporojets
- Department of Infectious Diseases, Boston Medical Center, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
11
|
Schäferkordt J, Wagner R. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation. Nucleic Acids Res 2001; 29:3394-403. [PMID: 11504877 PMCID: PMC55841 DOI: 10.1093/nar/29.16.3394] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of base change mutations in a highly conserved sequence (boxC) within the leader of bacterial ribosomal RNAs (rRNAs) was studied. The boxC sequence preceding the 16S rRNA structural gene constitutes part of the RNase III processing site, one of the first cleavage sites on the pathway to mature 16S rRNA. Moreover, rRNA leader sequences facilitate correct 16S rRNA folding, thereby assisting ribosomal subunit formation. Mutations in boxC cause cold sensitivity and result in 16S rRNA and 30S subunit deficiency. Strains in which all rRNA operons are replaced by mutant transcription units are viable. Thermodynamic studies by temperature gradient gel electrophoresis reveal that mutant transcripts have a different, less ordered structure. In addition, RNA secondary structure differences between mutant and wild-type transcripts were determined by chemical and enzymatic probing. Differences are found in the leader RNA sequence itself but also in structurally important regions of the mature 16S rRNA. A minor fraction of the rRNA transcripts from mutant operons is not processed by RNase III, resulting in a significantly extended precursor half-life compared to the wild-type. The boxC mutations also give rise to a new aberrant degradation product of 16S rRNA. This intermediate cannot be detected in strains lacking RNase III. Together the results indicate that the boxC sequence, although important for RNase III processing, is likely to serve additional functions by facilitating correct formation of the mature 16S rRNA structure. They also suggest that quality control steps are acting during ribosome biogenesis.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Cold Temperature
- Conserved Sequence/genetics
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins
- Half-Life
- Molecular Sequence Data
- Mutation/genetics
- Nuclease Protection Assays
- Nucleic Acid Conformation
- Operon/genetics
- Phenotype
- Protein Subunits
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribonuclease III
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Sequence Deletion/genetics
- Temperature
- Thermodynamics
Collapse
Affiliation(s)
- J Schäferkordt
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
12
|
Torres M, Condon C, Balada JM, Squires C, Squires CL. Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both non-ribosomal and ribosomal RNA antitermination. EMBO J 2001; 20:3811-20. [PMID: 11447122 PMCID: PMC125540 DOI: 10.1093/emboj/20.14.3811] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Escherichia coli ribosomal RNA (rRNA) operons contain antitermination motifs necessary for forming terminator-resistant transcription complexes. In preliminary work, we isolated 'antiterminating' transcription complexes and identified four new proteins potentially involved in rRNA transcription antitermination: ribosomal (r-) proteins S4, L3, L4 and L13. We show here that these r-proteins and Nus factors lead to an 11-fold increase in terminator read-through in in vitro transcription reactions. A significant portion of the effect was a result of r-protein S4. We show that S4 acted as a general antitermination factor, with properties very similar to NusA. It retarded termination and increased read-through at Rho-dependent terminators, even in the absence of the rRNA antiterminator motif. High concentrations of NusG showed reduced antitermination by S4. Like rrn antitermination, S4 selectively antiterminated at Rho-dependent terminators. Lastly, S4 tightly bound RNA polymerase in vivo. Our results suggest that, like NusA, S4 is a general transcription antitermination factor that associates with RNA polymerase during normal transcription and is also involved in rRNA operon antitermination. A model for key r-proteins playing a regulatory role in rRNA synthesis is presented.
Collapse
Affiliation(s)
| | - Ciarán Condon
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA and
CNRS UPR9073, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France Corresponding author e-mail:
| | | | | | - Catherine L. Squires
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA and
CNRS UPR9073, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France Corresponding author e-mail:
| |
Collapse
|
13
|
Liiv A, Tenson T, Margus T, Remme J. Multiple functions of the transcribed spacers in ribosomal RNA operons. Biol Chem 1998; 379:783-93. [PMID: 9705142 DOI: 10.1515/bchm.1998.379.7.783] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
rRNA operons contain about 25% transcribed spacer sequences in addition to the 16S, 23S, 5S and tRNA genes. The spacer sequences are removed from the primary rRNA transcript by a series of co-ordinated nucleolytic events. Besides the role in rRNA processing, the spacer sequences are also involved in transcription and the ribosome assembly. In this study we analyze the spacer between tRNA and 23S rRNA genes. Based on computer modeling and chemical probing data, a model for the transient secondary structure of the intergenic spacer is proposed. Mutational analysis has shown that the transient secondary structure around the 5' end of 23S rRNA is involved in ribosome assembly. We propose that the transient structure at the 5' end of 23S rRNA directs 23S rRNA folding into the mature structure and facilitates ribosomal large subunit assembly.
Collapse
Affiliation(s)
- A Liiv
- Dept. of Molecular Biology, Institute of Molecular and Cell Biology, Tartu University, Estonia
| | | | | | | |
Collapse
|
14
|
Heinrich T, Condon C, Pfeiffer T, Hartmann RK. Point mutations in the leader boxA of a plasmid-encoded Escherichia coli rrnB operon cause defective antitermination in vivo. J Bacteriol 1995; 177:3793-800. [PMID: 7601845 PMCID: PMC177098 DOI: 10.1128/jb.177.13.3793-3800.1995] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have introduced point mutations into the leader boxA of a plasmid-encoded Escherichia coli rrnB operon to study the in vivo role of this regulatory element in the natural context of rRNA synthesis. The same mutations were previously shown to cause severe antitermination defects in vitro and in the context of a reporter gene assay. The plasmid-encoded rrnB mutant constructs studied here also contained point mutations in the 16S and 23S rRNA genes, which were used to distinguish rRNAs derived from plasmid and chromosomal rrn operons by primer extension analysis. Point mutations in boxA reduced the fraction of plasmid-derived rRNA in the cell from 75% to about 50%. The reduction was similar for both 30S and 50S subunits as well as 70S ribosomes, suggesting that no transcriptional polarity occurred between the expression of the 16S and 23S rRNA genes in plasmid rrnB operons carrying a mutant boxA. The boxA mutations do not affect the amount of transcription initiation, suggesting that a suboptimal leader boxA causes premature transcription termination at an early stage of transcription. Our results are consistent with a role for antitermination in the completion of full-length rrn transcripts but give no indications of posttranscriptional boxA functions.
Collapse
MESH Headings
- Base Sequence
- DNA, Ribosomal/genetics
- Escherichia coli/genetics
- Molecular Sequence Data
- Operon/genetics
- Plasmids/genetics
- Point Mutation
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/biosynthesis
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/biosynthesis
- RNA, Ribosomal, 23S/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Ribosomes/genetics
- Ribosomes/metabolism
- Terminator Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- T Heinrich
- Institut für Biochemie, Freie Universität Berlin, Germany
| | | | | | | |
Collapse
|
15
|
Pardon B, Wagner R. The Escherichia coli ribosomal RNA leader nut region interacts specifically with mature 16S RNA. Nucleic Acids Res 1995; 23:932-41. [PMID: 7731806 PMCID: PMC306788 DOI: 10.1093/nar/23.6.932] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
All ribosomal RNAs are preceded by leader sequences not present in the final ribosome particles. The highly conserved leader sequences of bacterial rRNAs are known to be important for the folding and assembly of functional ribosomes. Very likely transient binding of the leader to mature parts of the 16S RNA occurs during transcription. To better understand the mechanistic details of these functions we have performed a secondary structural analysis of E. coli ribosomal RNA leader transcripts by chemical modification and enzymatic hydrolysis studies. The data were combined with results from thermodynamic stability calculations to yield a generalized structural model. The same secondary structure of the leader core, comprising the nut-like sequences up to the mature 5' end of the 16S RNA, was deduced, irrespective if transcripts started at promoter P1 or 120 nucleotides downstream at P2. Employing gelshift and cross-linking studies we were able to demonstrate that a part of the leader core, namely the nut-like sequence elements bind directly to specific regions within the mature 16S RNA. The sites of RNA-RNA cross-linking could be localized by sequencing. They map in the 16S RNA 5' domain at nucleotide positions G27 to G42, C48, G68, G117 and G126. The results may explain the recently observed scaffolding function of the leader RNA during ribosome biogenesis.
Collapse
Affiliation(s)
- B Pardon
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | |
Collapse
|
16
|
Pardon B, Thelen L, Wagner R. The Escherichia coli ribosomal RNA leader: a structural and functional investigation. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1994; 375:11-20. [PMID: 7516168 DOI: 10.1515/bchm3.1994.375.1.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The structure of the E. coli ribosomal RNA leader was analyzed by treatment with single and double strand specific ribonucleases and by chemical modification. The experimentally derived data together with secondary structure calculations according to minimum free energy was used to construct a secondary structure model. The binding of purified Nus proteins to the ribosomal leader RNA was further tested. Contrary to the recently reported interactions of NusB and NusE with a nut RNA sequence we obtained evidence that the presence of NusA and NusE resulted in protection against hydroxyl radical reaction of the leader nut elements boxA, boxB and boxC. The possible significance of this interaction is discussed. In the second part of the study we analyzed effects of leader mutations, which are known to affect cell growth, on the activity of ribosomes in vivo. A system was used able to distinguish the proportion of ribosomes assembled from rRNA of chromosomal origin (wild type) and plasmid origin (mutant). It turned out that the amount of 16S RNA transcribed from genes with point mutations in the leader region decreased if ribosomal pools with different translational activities were compared. High amounts of transcripts from mutant operons were present in the free ribosomal RNA and the free 30S fractions. Significantly less 16S RNA transcripts from the mutated genes were detected in the functionally active and homogeneous 70S tight couple preparations, and even less in the polysome fraction involved in active translation. The results allow a better understanding of the function of rRNA leader sequences in structure formation and correct ribosome biogenesis.
Collapse
Affiliation(s)
- B Pardon
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
17
|
Alix JH, Guérin MF. Mutant DnaK chaperones cause ribosome assembly defects in Escherichia coli. Proc Natl Acad Sci U S A 1993; 90:9725-9. [PMID: 8105482 PMCID: PMC47643 DOI: 10.1073/pnas.90.20.9725] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To determine whether the biogenesis of ribosomes in Escherichia coli is the result of the self-assembly of their different constituents or involves the participation of additional factors, we have studied the influence of a chaperone, the product of the gene dnaK, on ribosome assembly in vivo. Using three thermosensitive (ts) mutants carrying the mutations dnaK756-ts, dnaK25-ts, and dnaK103-ts, we have observed the accumulation at nonpermissive temperature (45 degrees C) of ribosomal particles with different sedimentation constants--namely, 45S, 35S, and 25S along with the normal 30S and 50S ribosomal subunits. This is the result of a defect not in thermostability but in ribosome assembly at the nonpermissive temperature. These abnormal ribosomal particles are rescued if the mutant cells are returned to 30 degrees C. Thus, the product of the dnaK gene is implicated in ribosome biogenesis at high temperature.
Collapse
Affiliation(s)
- J H Alix
- Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
18
|
Krohn M, Pardon B, Wagner R. Effects of template topology on RNA polymerase pausing during in vitro transcription of the Escherichia coli rrnB leader region. Mol Microbiol 1992; 6:581-9. [PMID: 1552858 DOI: 10.1111/j.1365-2958.1992.tb01504.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription elongation catalysed by DNA-dependent RNA polymerase does not occur at a constant rate. Instead, during the transcription of many genes pausing occurs at defined template positions. Pausing is known to be influenced by the intracellular NTP concentration, the secondary structure of the growing transcript or by transcription factors like NusA. We have investigated the effects of the template topology of transcriptional pauses in the presence and absence on purified NusA protein. Taking advantage of a method for quantifying transcriptional pauses we have studied pausing behaviour during in vitro transcription of the early region of a plasmid-encoded ribosomal RNA operon. Plasmid templates with different superhelical densities (sigma between +0.0017 and -0.055) were employed in transcription elongation assays. If linearized or relaxed templates are used, some of the characteristic pauses can no longer be detected. For the stronger pauses we could demonstrate a direct correlation between pause strength and the negative superhelical densities of the templates used. This correlation is observed regardless of whether or not pauses are dependent upon NusA. Changes in the average transcription elongation rate, caused by variations in the NTP concentration or the temperature, do not appear to have a comparable effect on transcription pausing. The results are consistent with the assumption that the template topology has a regulatory function in transcription elongation of rRNA genes in Escherichia coli.
Collapse
Affiliation(s)
- M Krohn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
19
|
Sohaskey CD, Im H, Schauer AT. Construction and application of plasmid- and transposon-based promoter-probe vectors for Streptomyces spp. that employ a Vibrio harveyi luciferase reporter cassette. J Bacteriol 1992; 174:367-76. [PMID: 1309525 PMCID: PMC205726 DOI: 10.1128/jb.174.2.367-376.1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several versatile promoter-probe vectors have been constructed for Streptomyces strains which utilize the production of blue-green light as a measure of transcription activity. Three plasmid vectors (two high and one low copy number) and two transposons are described. The multicopy plasmids pRS1106 and pRS1108 contain a transcription terminator and multiple-cloning polylinker upstream of promoterless luciferase (lux) and neomycin resistance reporter genes. Plasmid pHI90 is similar in structure to the pRS vectors except that its single copy number is an advantage for regulation studies or situations in which overexpression is otherwise toxic to the cell. The two transposons carry a promoterless lux cassette cloned such that transposition into a target DNA and fusion to the target's transcription unit occur simultaneously. Tn5351 was created by inserting the luciferase genes near the right end of the viomycin resistance transposon Tn4563. Tn5353 carries the luciferase genes near the right end of a neomycin resistance transposon derived from Tn4556. The size of Tn5353 was minimized by deleting nonessential transposon sequences, making this element small enough to be cloned into phi C31 bacteriophages for efficient transposon delivery to target cells of Streptomyces strains. The two Tnlux transposons have been used to generate Streptomyces coelicolor morphological mutants and to monitor transcription from chromosomal promoters during development.
Collapse
Affiliation(s)
- C D Sohaskey
- Department of Microbiology, University of Texas, Austin 78712-1095
| | | | | |
Collapse
|
20
|
Schauer AT, Nelson AD, Daniel JB. Tn4563 transposition in Streptomyces coelicolor and its application to isolation of new morphological mutants. J Bacteriol 1991; 173:5060-7. [PMID: 1650343 PMCID: PMC208196 DOI: 10.1128/jb.173.16.5060-5067.1991] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Tn3-like transposon Tn4556 (and its derivatives Tn4560 and Tn4563) has been used for insertion mapping of genetic loci cloned on plasmids, but it has been difficult to obtain chromosomal insertions, largely because of the lack of a strong selection against transposon donor molecules. In this communication, we report two efficient selection techniques for transposition and their use in the isolation of chromosomal insertion mutations. A number of independent Streptomyces coelicolor morphological mutants (bld and whi) were obtained. Two of the bld mutations were mapped to locations on the chromosome by SCP1-mediated conjugation; at least one mutation, bld-5m1, appears to define a novel locus involved in control of S. coelicolor morphogenesis and antibiotic production.
Collapse
Affiliation(s)
- A T Schauer
- Department of Microbiology, University of Texas, Austin 78712-1095
| | | | | |
Collapse
|
21
|
Zacharias M, Theissen G, Bradaczek C, Wagner R. Analysis of sequence elements important for the synthesis and control of ribosomal RNA in E coli. Biochimie 1991; 73:699-712. [PMID: 1764516 DOI: 10.1016/0300-9084(91)90050-b] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The regulation of the synthesis of ribosomal RNA is a key problem for the understanding of bacterial growth. Many different regulatory mechanisms involving cis and trans acting components participate in a concerted way to achieve the very efficient, flexible and coordinated production of this class of molecules. We have studied three different sequence regions within a ribosomal RNA transcription unit which are believed to control different stages of ribosomal RNA expression. In the first part of the study the function of AT-rich sequences upstream of the -35 hexamer of rRNA promoter P1 in the activation of rRNA transcription was analyzed. We confirm that a sequence dependent bend upstream of P1 is responsible for the high promoter activity. Experiments employing linker scanning mutations demonstrated that the distance as well as the angular orientation of the bent DNA is crucial for the degree of activation. In addition, the effect of the trans activating protein Fis on the transcription initiation of promoter P1 was investigated. We can show, using the abortive initiation assay, that the predominant effect of Fis is due to an increase in the affinity of RNA polymerase for the promoter (binding constant KB) while the isomerisation rate (kf) from a closed to an open RNA polymerase promoter complex is not altered significantly. We also describe the characterization of sequence determinants important for stringent regulation and growth rate control. Evidence is provided that the discriminator motif GCGC is a necessary but not sufficient element for both types of control. Furthermore we show that not simply a particular DNA primary structure but the higher order conformation of the complete promoter region is recognized and triggers the two regulatory mechanisms, both of which are apparently mediated by the effector molecule guanosine tetraphosphate (ppGpp). Finally, we have carried out a systematic mutational analysis of the rrnB leader region preceding the structural gene for 16S RNA. We could demonstrate that highly conserved sequence elements within the rrnB leader, which were believed to be involved in transcription antitermination have post-transcriptional functions. We present evidence that these sequence elements direct the biogenesis of active ribosomal particles.
Collapse
Affiliation(s)
- M Zacharias
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin, Germany
| | | | | | | |
Collapse
|