1
|
Tomsic J, Caserta E, Pon CL, Gualerzi CO. Weakening the IF2-fMet-tRNA Interaction Suppresses the Lethal Phenotype Caused by GTPase Inactivation. Int J Mol Sci 2021; 22:ijms222413238. [PMID: 34948034 PMCID: PMC8709274 DOI: 10.3390/ijms222413238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/12/2023] Open
Abstract
Substitution of the conserved Histidine 448 present in one of the three consensus elements characterizing the guanosine nucleotide binding domain (IF2 G2) of Escherichia coli translation initiation factor IF2 resulted in impaired ribosome-dependent GTPase activity which prevented IF2 dissociation from the ribosome, caused a severe protein synthesis inhibition, and yielded a dominant lethal phenotype. A reduced IF2 affinity for the ribosome was previously shown to suppress this lethality. Here, we demonstrate that also a reduced IF2 affinity for fMet-tRNA can suppress this dominant lethal phenotype and allows IF2 to support faithful translation in the complete absence of GTP hydrolysis. These results strengthen the premise that the conformational changes of ribosome, IF2, and fMet-tRNA occurring during the late stages of translation initiation are thermally driven and that the energy generated by IF2-dependent GTP hydrolysis is not required for successful translation initiation and that the dissociation of the interaction between IF2 C2 and the acceptor end of fMet-tRNA, which represents the last tie anchoring the factor to the ribosome before the formation of an elongation-competent 70S complex, is rate limiting for both the adjustment of fMet-tRNA in a productive P site and the IF2 release from the ribosome.
Collapse
Affiliation(s)
- Jerneja Tomsic
- Laboratory of Genetics, Department of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy; (J.T.); (E.C.); (C.L.P.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Enrico Caserta
- Laboratory of Genetics, Department of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy; (J.T.); (E.C.); (C.L.P.)
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Cynthia L. Pon
- Laboratory of Genetics, Department of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy; (J.T.); (E.C.); (C.L.P.)
| | - Claudio O. Gualerzi
- Laboratory of Genetics, Department of Bioscience and Biotechnology, University of Camerino, 62032 Camerino, Italy; (J.T.); (E.C.); (C.L.P.)
- Correspondence: ; Tel.: +39-3391602957
| |
Collapse
|
2
|
Maracci C, Rodnina MV. Review: Translational GTPases. Biopolymers 2017; 105:463-75. [PMID: 26971860 PMCID: PMC5084732 DOI: 10.1002/bip.22832] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/26/2023]
Abstract
Translational GTPases (trGTPases) play key roles in facilitating protein synthesis on the ribosome. Despite the high degree of evolutionary conservation in the sequences of their GTP-binding domains, the rates of GTP hydrolysis and nucleotide exchange vary broadly between different trGTPases. EF-Tu, one of the best-characterized model G proteins, evolved an exceptionally rapid and tightly regulated GTPase activity, which ensures rapid and accurate incorporation of amino acids into the nascent chain. Other trGTPases instead use the energy of GTP hydrolysis to promote movement or to ensure the forward commitment of translation reactions. Recent data suggest the GTPase mechanism of EF-Tu and provide an insight in the catalysis of GTP hydrolysis by its unusual activator, the ribosome. Here we summarize these advances in understanding the functional cycle and the regulation of trGTPases, stimulated by the elucidation of their structures on the ribosome and the progress in dissecting the reaction mechanism of GTPases. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 463-475, 2016.
Collapse
Affiliation(s)
- Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| |
Collapse
|
3
|
Horikawa W, Endo K, Wada M, Ito K. Mutations in the G-domain of Ski7 cause specific dysfunction in non-stop decay. Sci Rep 2016; 6:29295. [PMID: 27381255 PMCID: PMC4933942 DOI: 10.1038/srep29295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/17/2016] [Indexed: 11/10/2022] Open
Abstract
Ski7 functions as a cofactor in both normal mRNA turnover and non-stop mRNA decay (NSD) mRNA surveillance in budding yeast. The N-terminal region of Ski7 (Ski7N) interacts with the ski-complex and the exosome. The C-terminal region of Ski7 (Ski7C) binds guanine nucleotides and shares overall sequence and structural homology with the proteins of the translational GTPase superfamily, especially the tRNA/tRNA-mimic carrier protein subfamilies such as EF1α, eRF3, and Hbs1. Previous reports showed that Ski7N polypeptide functions adequately in vivo, while Ski7C, if any, only slightly. Furthermore, Ski7C does not exhibit GTP-hydrolysing activities under normal conditions. Therefore, the physiological and functional significance of the conserved Ski7C is unclear. Here, we report strong genetic evidence suggesting differential roles for Ski7N and Ski7C in normal and specific mRNA turnover pathways by creating/isolating mutations in both Ski7N and Ski7C conserved motifs using indicator yeast strains. We concluded that Ski7C participates in mRNA surveillance as a regulatory module competitively with the Hbs1/Dom34 complex. Our results provide insights into the molecular regulatory mechanisms underlying mRNA surveillance.
Collapse
Affiliation(s)
- Wataru Horikawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan.,Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kei Endo
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| | - Miki Wada
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan.,Technical office, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Koichi Ito
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-city, Chiba 277-8562, Japan
| |
Collapse
|
4
|
Madison KE, Abdelmeguid MR, Jones-Foster EN, Nakai H. A new role for translation initiation factor 2 in maintaining genome integrity. PLoS Genet 2012; 8:e1002648. [PMID: 22536160 PMCID: PMC3334882 DOI: 10.1371/journal.pgen.1002648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/24/2012] [Indexed: 11/25/2022] Open
Abstract
Escherichia coli translation initiation factor 2 (IF2) performs the unexpected function of promoting transition from recombination to replication during bacteriophage Mu transposition in vitro, leading to initiation by replication restart proteins. This function has suggested a role of IF2 in engaging cellular restart mechanisms and regulating the maintenance of genome integrity. To examine the potential effect of IF2 on restart mechanisms, we characterized its influence on cellular recovery following DNA damage by methyl methanesulfonate (MMS) and UV damage. Mutations that prevent expression of full-length IF2-1 or truncated IF2-2 and IF2-3 isoforms affected cellular growth or recovery following DNA damage differently, influencing different restart mechanisms. A deletion mutant (del1) expressing only IF2-2/3 was severely sensitive to growth in the presence of DNA-damaging agent MMS. Proficient as wild type in repairing DNA lesions and promoting replication restart upon removal of MMS, this mutant was nevertheless unable to sustain cell growth in the presence of MMS; however, growth in MMS could be partly restored by disruption of sulA, which encodes a cell division inhibitor induced during replication fork arrest. Moreover, such characteristics of del1 MMS sensitivity were shared by restart mutant priA300, which encodes a helicase-deficient restart protein. Epistasis analysis indicated that del1 in combination with priA300 had no further effects on cellular recovery from MMS and UV treatment; however, the del2/3 mutation, which allows expression of only IF2-1, synergistically increased UV sensitivity in combination with priA300. The results indicate that full-length IF2, in a function distinct from truncated forms, influences the engagement or activity of restart functions dependent on PriA helicase, allowing cellular growth when a DNA–damaging agent is present. Translation Initiation Factor 2 (IF2) is a bacterial protein that plays an essential role in the initiation of protein synthesis. As such, it not only has an important influence on cellular growth but also is subject to regulation in response to physiological conditions such as nutritional deprivation. Biochemical characterization of IF2's function in replicating movable genetic elements has suggested a new role in the maintenance of genome integrity, potentially regulating replication restart. The parasitic elements exploit the cellular replication restart system to duplicate themselves as they transpose to new positions of the chromosome. In this process, IF2 makes way for action of restart proteins, which assemble replication enzymes for initiation of DNA synthesis. For the bacterial cell, the restart system is the means by which it copes with accidents that result in arrest of chromosomal replication, promoting resumption of replication. We present evidence for an IF2 function associated with restart proteins, allowing chromosomal replication in the presence of DNA–damaging agents. As the IF2 function is a highly conserved one found in all organisms, the findings have implications for understanding the maintenance of genome integrity with respect to physiological status, which can be sensed by the translation apparatus.
Collapse
Affiliation(s)
| | | | | | - Hiroshi Nakai
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, D.C, United States of America
- * E-mail:
| |
Collapse
|
5
|
Rasmussen LCV, Oliveira CLP, Jensen JM, Pedersen JS, Sperling-Petersen HU, Mortensen KK. Solution structure of C-terminal Escherichia coli translation initiation factor IF2 by small-angle X-ray scattering. Biochemistry 2008; 47:5590-8. [PMID: 18442259 DOI: 10.1021/bi8000598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Initiation of protein synthesis in bacteria involves the combined action of three translation initiation factors, including translation initiation factor IF2. Structural knowledge of this bacterial protein is scarce. A fragment consisting of the four C-terminal domains of IF2 from Escherichia coli was expressed, purified, and characterized by small-angle X-ray scattering (SAXS), and from the SAXS data, a radius of gyration of 43 +/- 1 A and a maximum dimension of approximately 145 A were obtained for the molecule. Furthermore, the SAXS data revealed that E. coli IF2 in solution adopts a structure that is significantly different from the crystal structure of orthologous aIF5B from Methanobacterium thermoautotrophicum. This crystal structure constitutes the only atomic resolution structural knowledge of the full-length factor. Computer programs were applied to the SAXS data to provide an initial structural model for IF2 in solution. The low-resolution nature of SAXS prevents the elucidation of a complete and detailed structure, but the resulting model for C-terminal E. coli IF2 indicates important structural differences between the aIF5B crystal structure and IF2 in solution. The chalice-like structure with a highly exposed alpha-helical stretch observed for the aIF5B crystal structure was not found in the structural model of IF2 in solution, in which domain VI-2 is moved closer to the rest of the protein.
Collapse
|
6
|
Matsuo Y, Oshima T, Loh PC, Morimoto T, Ogasawara N. Isolation and characterization of a dominant negative mutant of Bacillus subtilis GTP-binding protein, YlqF, essential for biogenesis and maintenance of the 50 S ribosomal subunit. J Biol Chem 2007; 282:25270-7. [PMID: 17613524 DOI: 10.1074/jbc.m703894200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The circularly permuted GTPase YlqF is essential for cell viability and is broadly conserved from Gram-positive bacteria to eukaryotes. We previously reported that YlqF participates in the late step of 50 S ribosomal subunit assembly in Bacillus subtilis. Here, we demonstrate that an N-terminal deletion mutant of YlqF (YlqFDeltaN10) inhibits cell growth even in the presence of wild-type YlqF. In contrast to the wild-type protein, the GTPase activity of this mutant was not stimulated by the 50 S subunit and did not dissociate from the premature 50 S subunit. Thus, YlqFDeltaN10 acts as a competitive inhibitor of wild-type YlqF. Premature 50 S subunit lacking ribosomal protein L27 and with a reduced amount of L16 accumulated in YlqFDeltaN10-overexpressing cells and in YlqF-depleted cells, suggesting that YlqFDeltaN10 binds to the premature 50 S subunit. Moreover, premature 50 S subunit from both YlqFDeltaN10-overexpressing and YlqF-depleted cells more strongly enhanced the GTPase activity of YlqF than the mature 50 S subunit of the 70 S ribosome. Collectively, our results indicate that YlqF is targeted to the premature 50 S subunit lacking ribosomal proteins L16 and L27 to assemble functional 50 S subunit through a GTPase activity-dependent conformational change of 23 S rRNA.
Collapse
Affiliation(s)
- Yoshitaka Matsuo
- Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
7
|
Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU. Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 2005; 69:101-23. [PMID: 15755955 PMCID: PMC1082788 DOI: 10.1128/mmbr.69.1.101-123.2005] [Citation(s) in RCA: 428] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Valuable information on translation initiation is available from biochemical data and recently solved structures. We present a detailed description of current knowledge about the structure, function, and interactions of the individual components involved in bacterial translation initiation. The first section describes the ribosomal features relevant to the initiation process. Subsequent sections describe the structure, function, and interactions of the mRNA, the initiator tRNA, and the initiation factors IF1, IF2, and IF3. Finally, we provide an overview of mechanisms of regulation of the translation initiation event. Translation occurs on ribonucleoprotein complexes called ribosomes. The ribosome is composed of a large subunit and a small subunit that hold the activities of peptidyltransfer and decode the triplet code of the mRNA, respectively. Translation initiation is promoted by IF1, IF2, and IF3, which mediate base pairing of the initiator tRNA anticodon to the mRNA initiation codon located in the ribosomal P-site. The mechanism of translation initiation differs for canonical and leaderless mRNAs, since the latter is dependent on the relative level of the initiation factors. Regulation of translation occurs primarily in the initiation phase. Secondary structures at the mRNA ribosomal binding site (RBS) inhibit translation initiation. The accessibility of the RBS is regulated by temperature and binding of small metabolites, proteins, or antisense RNAs. The future challenge is to obtain atomic-resolution structures of complete initiation complexes in order to understand the mechanism of translation initiation in molecular detail.
Collapse
Affiliation(s)
- Brian Søgaard Laursen
- Department of Molecular Biology, Aarhus University, Gustav Wieds vej 10C, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
8
|
Laursen BS, Siwanowicz I, Larigauderie G, Hedegaard J, Ito K, Nakamura Y, Kenney JM, Mortensen KK, Sperling-Petersen HU. Characterization of mutations in the GTP-binding domain of IF2 resulting in cold-sensitive growth of Escherichia coli. J Mol Biol 2003; 326:543-51. [PMID: 12559921 DOI: 10.1016/s0022-2836(02)01367-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The infB gene encodes translation initiation factor IF2. We have determined the entire sequence of infB from two cold-sensitive Escherichia coli strains IQ489 and IQ490. These two strains have been isolated as suppressor strains for the temperature-sensitive secretion mutation secY24. The mutations causing the suppression phenotype are located within infB. The only variations from the wild-type (wt) infB found in the two mutant strains are a replacement of Asp409 with Glu in strain IQ489 and an insertion of Gly between Ala421 and Gly422 in strain IQ490. Both positions are located in the GTP-binding G-domain of IF2. A model of the G-domain of E.coli IF2 is presented in. Physiological quantities of the recombinant mutant proteins were expressed in vivo in E.coli strains from which the chromosomal infB gene has been inactivated. At 42 degrees C, the mutants sustained normal cell growth, whereas a significant decrease in growth rate was found at 25 degrees C for both mutants as compared to wt IF2 expressed in the control strain. Circular dichroism spectra were recorded of the wt and the two mutant proteins to investigate the structural properties of the proteins. The spectra are characteristic of alpha-helix dominated structure, and reveal a significant different behavior between the wt and mutant IF2s with respect to temperature-induced conformational changes. The temperature-induced conformational change of the wt IF2 is a two-state process. In a ribosome-dependent GTPase assay in vitro the two mutants showed practically no activity at temperatures below 10 degrees C and a reduced activity at all temperatures up to 45 degrees C, as compared to wt IF2. The results indicate that the amino acid residues, Asp409 and Gly422, are located in important regions of the IF2 G-domain and demonstrate the importance of GTP hydrolysis in translation initiation for optimal cell growth.
Collapse
|
9
|
Larigauderie G, Laalami S, Nyengaard NR, Grunberg-Manago M, Cenatiempo Y, Mortensen KK, Sperling-Petersen HU. Mutation of Thr445 and Ile500 of initiation factor 2 G-domain affects Escherichia coli growth rate at low temperature. Biochimie 2000; 82:1091-8. [PMID: 11120350 DOI: 10.1016/s0300-9084(00)01200-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Escherichia coli protein synthesis initiation factor IF2 is a member of the large family of G-proteins. Along with translational elongation factors EF-Tu and EF-G and translational release factor RF-3, IF2 belongs to the subgroup of G-proteins that are part of the prokaryotic translational apparatus. The roles of IF2 and EF-Tu are similar: both promote binding of an aminoacyl-tRNA to the ribosome and hydrolyze GTP. In order to investigate the differences and similarities between EF-Tu and IF2 we have created point mutations in the G-domain of IF2, Thr445 to Cys, Ile500 to Cys, and the double mutation. Threonine 445 (X1), which corresponds to cysteine 81 in EF-Tu, is well conserved in the DX1X2GH consensus sequence that has been proposed to interact with GTP. The NKXD motif, in which X is isoleucine 500 in IF2, corresponds to cysteine 137 in EF-Tu, and is responsible for the binding of the guanine ring. The recombinant mutant proteins were expressed and tested in vivo for their ability to sustain growth of an Escherichia coli strain lacking the chromosomal copy of the infB gene coding for IF2. All mutated proteins resulted in cell viability when grown at 42 degrees C or 37 degrees C. However, Thr445 to Cys mutant showed a significant decrease in the growth rate at 25 degrees C. The mutant proteins were overexpressed and purified. As observed in vivo, a reduced activity at low temperature was measured when carrying out in vitro ribosome dependent GTPase and stimulation of ribosomal fMet-tRNAfMet binding.
Collapse
Affiliation(s)
- G Larigauderie
- Department of Molecular and Structural Biology, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
10
|
Lee JH, Choi SK, Roll-Mecak A, Burley SK, Dever TE. Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc Natl Acad Sci U S A 1999; 96:4342-7. [PMID: 10200264 PMCID: PMC16334 DOI: 10.1073/pnas.96.8.4342] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Binding of initiator methionyl-tRNA to ribosomes is catalyzed in prokaryotes by initiation factor (IF) IF2 and in eukaryotes by eIF2. The discovery of both IF2 and eIF2 homologs in yeast and archaea suggested that these microbes possess an evolutionarily intermediate protein synthesis apparatus. We describe the identification of a human IF2 homolog, and we demonstrate by using in vivo and in vitro assays that human IF2 functions as a translation factor. In addition, we show that archaea IF2 can substitute for its yeast homolog both in vivo and in vitro. We propose a universally conserved function for IF2 in facilitating the proper binding of initiator methionyl-tRNA to the ribosomal P site.
Collapse
Affiliation(s)
- J H Lee
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2716, USA
| | | | | | | | | |
Collapse
|
11
|
Luchin S, Putzer H, Hershey JW, Cenatiempo Y, Grunberg-Manago M, Laalami S. In vitro study of two dominant inhibitory GTPase mutants of Escherichia coli translation initiation factor IF2. Direct evidence that GTP hydrolysis is necessary for factor recycling. J Biol Chem 1999; 274:6074-9. [PMID: 10037688 DOI: 10.1074/jbc.274.10.6074] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that the Escherichia coli initiation factor 2 (IF2) G-domain mutants V400G and H448E do not support cell survival and have a strong negative effect on growth even in the presence of wild-type IF2. We have isolated both mutant proteins and performed an in vitro study of their main functions. The affinity of both mutant proteins for GTP is almost unchanged compared with wild-type IF2. However, the uncoupled GTPase activity of the V400G and H448E mutants is severely impaired, the Vmax values being 11- and 40-fold lower, respectively. Both mutant forms promoted fMet-tRNAfMet binding to 70 S ribosomes with similar efficiencies and were as sensitive to competitive inhibition by GDP as wild-type IF2. Formation of the first peptide bond, as measured by the puromycin reaction, was completely inhibited in the presence of the H448E mutant but still significant in the case of the V400G mutant. Sucrose density gradient centrifugation revealed that, in contrast to wild-type IF2, both mutant proteins stay blocked on the ribosome after formation of the 70 S initiation complex. This probably explains their dominant negative effect in vivo. Our results underline the importance of GTP hydrolysis for the recycling of IF2.
Collapse
Affiliation(s)
- S Luchin
- UPR9073 du CNRS, Institut de Biologie Physico-Chimique 13, rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
12
|
Steffensen SA, Poulsen AB, Mortensen KK, Sperling-Petersen HU. E. coli translation initiation factor IF2--an extremely conserved protein. Comparative sequence analysis of the infB gene in clinical isolates of E. coli. FEBS Lett 1997; 419:281-4. [PMID: 9428651 DOI: 10.1016/s0014-5793(97)01472-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The functionally uncharacterised N-terminal of translation initiation factor IF2 has been found to be extremely variable when comparing different bacterial species. In order to study the intraspecies variability of IF2 the 2670 basepairs nucleotide sequence of the infB gene (encoding IF2) was determined in 10 clinical isolates of E. coli. The N-terminal domains (I, II and III) were completely conserved indicating a specific function of this region of IF2. Only one polymorphic position was found in the deduced 890 amino acid sequence. This Gln/Gly490 is located within the central GTP/GDP-binding domain IV of IF2. The results are further evidence that IF2 from E. coli has reached a highly defined level of structural and functional development.
Collapse
Affiliation(s)
- S A Steffensen
- Department of Biostructural Chemistry, Institute of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | | | |
Collapse
|
13
|
Laalami S, Grentzmann G, Bremaud L, Cenatiempo Y. Messenger RNA translation in prokaryotes: GTPase centers associated with translational factors. Biochimie 1996; 78:577-89. [PMID: 8955901 DOI: 10.1016/s0300-9084(96)80004-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During the decoding of messenger RNA, each step of the translational cycle requires the intervention of protein factors and the hydrolysis of one or more GTP molecule(s). Of the prokaryotic translational factors, IF2, EF-Tu, SELB, EF-G and RF3 are GTP-binding proteins. In this review we summarize the latest findings on the structures and the roles of these GTPases in the translational process.
Collapse
Affiliation(s)
- S Laalami
- Institut de Biologie Moléculaire et d'Ingénierie Génétique, URA-CNRS 1172, Université de Poitiers, France
| | | | | | | |
Collapse
|
14
|
Schmitt E, Guillon JM, Meinnel T, Mechulam Y, Dardel F, Blanquet S. Molecular recognition governing the initiation of translation in Escherichia coli. A review. Biochimie 1996; 78:543-54. [PMID: 8955898 DOI: 10.1016/s0300-9084(96)80001-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Selection of the proper start codon for the synthesis of a polypeptide by the Escherichia coli translation initiation apparatus involves several macromolecular components. These macromolecules interact in a specific and concerted manner to yield the translation initiation complex. This review focuses on recent data concerning the properties of the initiator tRNA and of enzymes and factors involved in the translation initiation process. The three initiation factors, as well as methionyl-tRNA synthetase and methionyl-tRNA(f)Met formyltransferase are described. In addition, the tRNA recognition properties of EF-Tu and peptidyl-tRNA hydrolase are considered. Finally, peptide deformylase and methionine aminopeptidase, which catalyze the amino terminal maturation of nascent polypeptides, can also be associated to the translation initiation process.
Collapse
Affiliation(s)
- E Schmitt
- Laboratoire de Biochimie, URA-CNRS no 1970, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | | | |
Collapse
|