1
|
Azbarova AV, Knorre DA. Role of Mitochondrial DNA in Yeast Replicative Aging. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1997-2006. [PMID: 38462446 DOI: 10.1134/s0006297923120040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 03/12/2024]
Abstract
Despite the diverse manifestations of aging across different species, some common aging features and underlying mechanisms are shared. In particular, mitochondria appear to be among the most vulnerable systems in both metazoa and fungi. In this review, we discuss how mitochondrial dysfunction is related to replicative aging in the simplest eukaryotic model, the baker's yeast Saccharomyces cerevisiae. We discuss a chain of events that starts from asymmetric distribution of mitochondria between mother and daughter cells. With age, yeast mother cells start to experience a decrease in mitochondrial transmembrane potential and, consequently, a decrease in mitochondrial protein import efficiency. This induces mitochondrial protein precursors in the cytoplasm, the loss of mitochondrial DNA (mtDNA), and at the later stages - cell death. Interestingly, yeast strains without mtDNA can have either increased or decreased lifespan compared to the parental strains with mtDNA. The direction of the effect depends on their ability to activate compensatory mechanisms preventing or mitigating negative consequences of mitochondrial dysfunction. The central role of mitochondria in yeast aging and death indicates that it is one of the most complex and, therefore, deregulation-prone systems in eukaryotic cells.
Collapse
Affiliation(s)
- Aglaia V Azbarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Response and regulatory mechanisms of heat resistance in pathogenic fungi. Appl Microbiol Biotechnol 2022; 106:5415-5431. [PMID: 35941254 PMCID: PMC9360699 DOI: 10.1007/s00253-022-12119-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Abstract Both the increasing environmental temperature in nature and the defensive body temperature response to pathogenic fungi during mammalian infection cause heat stress during the fungal existence, reproduction, and pathogenic infection. To adapt and respond to the changing environment, fungi initiate a series of actions through a perfect thermal response system, conservative signaling pathways, corresponding transcriptional regulatory system, corresponding physiological and biochemical processes, and phenotypic changes. However, until now, accurate response and regulatory mechanisms have remained a challenge. Additionally, at present, the latest research progress on the heat resistance mechanism of pathogenic fungi has not been summarized. In this review, recent research investigating temperature sensing, transcriptional regulation, and physiological, biochemical, and morphological responses of fungi in response to heat stress is discussed. Moreover, the specificity thermal adaptation mechanism of pathogenic fungi in vivo is highlighted. These data will provide valuable knowledge to further understand the fungal heat adaptation and response mechanism, especially in pathogenic heat-resistant fungi. Key points • Mechanisms of fungal perception of heat pressure are reviewed. • The regulatory mechanism of fungal resistance to heat stress is discussed. • The thermal adaptation mechanism of pathogenic fungi in the human body is highlighted.
Collapse
|
3
|
Schneider KL, Wollman AJM, Nyström T, Shashkova S. Comparison of endogenously expressed fluorescent protein fusions behaviour for protein quality control and cellular ageing research. Sci Rep 2021; 11:12819. [PMID: 34140587 PMCID: PMC8211707 DOI: 10.1038/s41598-021-92249-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
The yeast Hsp104 protein disaggregase is often used as a reporter for misfolded or damaged protein aggregates and protein quality control and ageing research. Observing Hsp104 fusions with fluorescent proteins is a popular approach to follow post stress protein aggregation, inclusion formation and disaggregation. While concerns that bigger protein tags, such as genetically encoded fluorescent tags, may affect protein behaviour and function have been around for quite some time, experimental evidence of how exactly the physiology of the protein of interest is altered within fluorescent protein fusions remains limited. To address this issue, we performed a comparative assessment of endogenously expressed Hsp104 fluorescent fusions function and behaviour. We provide experimental evidence that molecular behaviour may not only be altered by introducing a fluorescent protein tag but also varies depending on such a tag within the fusion. Although our findings are especially applicable to protein quality control and ageing research in yeast, similar effects may play a role in other eukaryotic systems.
Collapse
Affiliation(s)
- Kara L Schneider
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Adam J M Wollman
- Newcastle University Biosciences Institute, Newcastle, NE2 4HH, UK
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Sviatlana Shashkova
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.
| |
Collapse
|
4
|
Kempf C, Lengeler K, Wendland J. Differential stress response of Saccharomyces hybrids revealed by monitoring Hsp104 aggregation and disaggregation. Microbiol Res 2017; 200:53-63. [PMID: 28527764 DOI: 10.1016/j.micres.2017.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 02/28/2017] [Accepted: 03/31/2017] [Indexed: 12/26/2022]
Abstract
Proteotoxic stress may occur upon exposure of yeast cells to different stress conditions. The induction of stress response mechanisms is important for cells to adapt to changes in the environment and ensure survival. For example, during exposure to elevated temperatures the expression of heat shock proteins such as Hsp104 is induced in yeast. Hsp104 extracts misfolded proteins from aggregates to promote their refolding. We used an Hsp104-GFP reporter to analyze the stress profiles of Saccharomyces species hybrids. To this end a haploid S. cerevisiae strain, harboring a chromosomal HSP104-GFP under control of its endogenous promoter, was mated with stable haploids of S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae, S. paradoxus and S. uvarum. Stress response behaviors in these hybrids were followed over time by monitoring the appearance and dissolution of Hsp104-GFP foci upon heat shock. General stress tolerance of these hybrids was related to the growth rate detected during exposure to e.g. ethanol and oxidizing agents. We observed that hybrids were generally more resistant to high temperature and ethanol stress compared to their parental strains. Amongst the hybrids differential responses regarding the appearance of Hsp104-foci and the time required for dissolving these aggregates were observed. The S. cerevisiae/S. paradoxus hybrid, combining the two most closely related strains, performed best under these conditions.
Collapse
Affiliation(s)
- Claudia Kempf
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Klaus Lengeler
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Jürgen Wendland
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark; Vrije Universiteit Brussel, Functional Yeast Genomics, BE-1050 Brussels, Belgium.
| |
Collapse
|
5
|
Yamamoto Y, Izawa S. Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast. Genes Cells 2013; 18:974-84. [PMID: 24033457 DOI: 10.1111/gtc.12090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/11/2013] [Indexed: 12/16/2022]
Abstract
The formation of cytoplasmic mRNA-protein complex granules termed 'processing bodies and stress granules' is often induced in the stress responses of eukaryotic cells. Most previous studies on stress granules have focused on the response to a single type of stress, and little information is available about the response to combined stress. Additionally, the effects of adaptation on stress granule formation and bulk translation activity are poorly understood. We investigated the formation of stress granules upon combined exposure to mild heat shock (37 °C) and mild ethanol stress (5% v/v) in Saccharomyces cerevisiae. Although neither stress alone induced stress granule formation, their combination caused a pronounced repression of translation activity and the formation of stress granules. Pretreatment with each mild stress significantly attenuated the formation of stress granules and caused changes in the composition of stress granules upon the subsequent combined stress and facilitated stress granule disassembly accompanied by smooth translational resurrection during the recovery process, indicating that yeast cells can induce adaptations in stress granule formation. However, the pretreated cells still exhibited a severe repression of translation activity. These findings provide novel and fundamental insight into the regulation of yeast stress granules.
Collapse
Affiliation(s)
- Yosuke Yamamoto
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | | |
Collapse
|
6
|
Nevarez L, Vasseur V, Debaets S, Barbier G. Use of response surface methodology to optimise environmental stress conditions on Penicillium glabrum, a food spoilage mould. Fungal Biol 2010; 114:490-7. [PMID: 20943160 DOI: 10.1016/j.funbio.2010.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 10/29/2009] [Accepted: 03/24/2010] [Indexed: 11/18/2022]
Abstract
Fungi are ubiquitous microorganisms often associated with spoilage and biodeterioration of a large variety of foods and feedstuffs. Their growth may be influenced by temporary changes in intrinsic or environmental factors such as temperature, water activity, pH, preservatives, atmosphere composition, all of which may represent potential sources of stress. Molecular-based analyses of their physiological responses to environmental conditions would help to better manage the risk of alteration and potential toxicity of food products. However, before investigating molecular stress responses, appropriate experimental stress conditions must be precisely defined. Penicillium glabrum is a filamentous fungus widely present in the environment and frequently isolated in the food processing industry as a contaminant of numerous products. Using response surface methodology, the present study evaluated the influence of two environmental factors (temperature and pH) on P. glabrum growth to determine 'optimised' environmental stress conditions. For thermal and pH shocks, a large range of conditions was applied by varying factor intensity and exposure time according to a two-factorial central composite design. Temperature and exposure duration varied from 30 to 50 °C and from 10 min to 230 min, respectively. The effects of interaction between both variables were observed on fungal growth. For pH, the duration of exposure, from 10 to 230 min, had no significant effect on fungal growth. Experiments were thus carried out on a range of pH from 0.15 to 12.50 for a single exposure time of 240 min. Based on fungal growth results, a thermal shock of 120 min at 40 °C or a pH shock of 240 min at 1.50 or 9.00 may therefore be useful to investigate stress responses to non-optimal conditions.
Collapse
|
7
|
Sénéchal P, Arseneault G, Leroux A, Lindquist S, Rokeach LA. The Schizosaccharomyces pombe Hsp104 disaggregase is unable to propagate the [PSI] prion. PLoS One 2009; 4:e6939. [PMID: 19759825 PMCID: PMC2736384 DOI: 10.1371/journal.pone.0006939] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/05/2009] [Indexed: 11/19/2022] Open
Abstract
The molecular chaperone Hsp104 is a crucial factor in the acquisition of thermotolerance in yeast. Under stress conditions, the disaggregase activity of Hsp104 facilitates the reactivation of misfolded proteins. Hsp104 is also involved in the propagation of fungal prions. For instance, the well-characterized [PSI+] prion of Saccharomyces cerevisiae does not propagate in Δhsp104 cells or in cells overexpressing Hsp104. In this study, we characterized the functional homolog of Hsp104 from Schizosaccharomyces pombe (Sp_Hsp104). As its S. cerevisiae counterpart, Sp_hsp104+ is heat-inducible and required for thermotolerance in S. pombe. Sp_Hsp104 displays low disaggregase activity and cannot propagate the [PSI+] prion in S. cerevisiae. When overexpressed in S. cerevisiae, Sp_Hsp104 confers thermotolerance to Δhsp104 cells and reactivates heat-aggregated proteins. However, overexpression of Sp_Hsp104 does not propagate nor eliminate [PSI+]. Strikingly, [PSI+] was cured by overexpression of a chimeric chaperone bearing the C-terminal domain (CTD) of the S. cerevisiae Hsp104 protein. Our study demonstrates that the ability to untangle aggregated proteins is conserved between the S. pombe and S. cerevisiae Hsp104 homologs, and points to a role of the CTD in the propagation of the S. cerevisiae [PSI+] prion.
Collapse
Affiliation(s)
- Patrick Sénéchal
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | | | - Alexandre Leroux
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Susan Lindquist
- Whithead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge Center, Cambridge, Massachusetts, United States of America
| | - Luis A. Rokeach
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
8
|
Wilmink GJ, Opalenik SR, Beckham JT, Abraham AA, Nanney LB, Mahadevan-Jansen A, Davidson JM, Jansen ED. Molecular imaging-assisted optimization of hsp70 expression during laser-induced thermal preconditioning for wound repair enhancement. J Invest Dermatol 2008; 129:205-16. [PMID: 18580963 DOI: 10.1038/jid.2008.175] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients at risk for impaired healing may benefit from prophylactic measures aimed at improving wound repair. Several photonic devices claim to enhance repair by thermal and photochemical mechanisms. We hypothesized that laser-induced thermal preconditioning would enhance surgical wound healing that was correlated with hsp70 expression. Using a pulsed diode laser (lambda=1.85 microm, tau(p)=2 ms, 50 Hz, H=7.64 mJ cm(-2)), the skin of transgenic mice that contain an hsp70 promoter-driven luciferase was preconditioned 12 hours before surgical incisions were made. Laser protocols were optimized in vitro and in vivo using temperature, blood flow, and hsp70-mediated bioluminescence measurements as benchmarks. Biomechanical properties and histological parameters of wound healing were evaluated for up to 14 days. Bioluminescent imaging studies indicated that an optimized laser protocol increased hsp70 expression by 10-fold. Under these conditions, laser-preconditioned incisions were two times stronger than control wounds. Our data suggest that this molecular imaging approach provides a quantitative method for optimization of tissue preconditioning and that mild laser-induced heat shock may be a useful therapeutic intervention prior to surgery.
Collapse
Affiliation(s)
- Gerald J Wilmink
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae. EUKARYOTIC CELL 2008; 7:783-90. [PMID: 18359875 DOI: 10.1128/ec.00029-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heat shock transcription factor Hsf1 and the general stress transcription factors Msn2 and Msn4 (Msn2/4) are major regulators of the heat shock response in Saccharomyces cerevisiae. Here, we show that transcriptional activation of their target genes, including HSP104, an antistress chaperone gene, is obligatory for thermotolerance. Although Hsf1 activity might be necessary before the exposure of cells to high temperature, severe heat shock induced the binding of hyperphosphorylated Hsf1 to its target promoters. However, promoter-bound, phosphorylated Hsf1 was inactive for transcription because RNA polymerase II was inactive at high temperatures. Rather, our results suggest that Hsf1 activates the transcription of most of its target genes during the recovery period following severe heat shock. This delayed upregulation by Hsf1, which would be induced by misfolded proteins that accumulate in severely heat-shocked cells, is required for the resumption of normal cell growth. In contrast, the factors Msn2/4 were not involved in the delayed upregulation of genes and were dispensable for cell growth during the recovery period, suggesting that they play a role before the exposure to high temperature. These results show that Hsf1 and Msn2/4 act differentially before and after exposure to extreme temperatures to ensure cell survival and growth.
Collapse
|
10
|
Abstract
In all organisms there is an elevated synthesis of a select family of "stress proteins" in response to a broad array of environmentally driven stress vectors including elevated or depressed temperature, changes in pH, treatment with many classes of chemicals, ischemia, desiccation, and UV irradiation. The presence of stress proteins, often termed heat shock proteins (HSPs), has been recognized for more than four decades, and there is an extensive literature that addresses the structure and properties of HSPs, their function in normal and injured cells and tissues, and the molecular mechanisms of HSP expression in response to stress. Owing to this substantial aggregate of research, there is a growing appreciation of the potential for manipulating the magnitude and timing of elevated HSP expression to achieve targeted therapeutic objectives. The successful realization of this potential requires an understanding of the kinetics of the HSP expression process in response to sublethal stress regimens along with the ability to model the governing events in the process to design practical protocols that could be applied in therapeutic settings. Significant progress has been made in recent years in defining and developing capabilities in these two areas.
Collapse
Affiliation(s)
- Kenneth R Diller
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712-1084, USA.
| |
Collapse
|
11
|
Zenthon JF, Ness F, Cox B, Tuite MF. The [PSI+] prion of Saccharomyces cerevisiae can be propagated by an Hsp104 orthologue from Candida albicans. EUKARYOTIC CELL 2006; 5:217-25. [PMID: 16467463 PMCID: PMC1405891 DOI: 10.1128/ec.5.2.217-225.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular chaperone Hsp104 is not only a key component of the cellular machinery induced to disassemble aggregated proteins in stressed cells of Saccharomyces cerevisiae but also plays an essential role in the propagation of the [PSI+], [URE3], and [RNQ/PIN+] prions in this organism. Here we demonstrate that the fungal pathogen Candida albicans carries an 899-residue stress-inducible orthologue of Hsp104 (CaHsp104) that shows a high degree of amino acid identity to S. cerevisiae Hsp104 (ScHsp104). This identity is significantly lower in the N- and C-terminal regions implicated in substrate recognition and cofactor binding, respectively. CaHsp104 is able to provide all known functions of ScHsp104 in an S. cerevisiae hsp104 null mutant, i.e., tolerance to high-temperature stress, reactivation of heat-denatured proteins, and propagation of the [PSI+] prion. As also observed for ScHsp104, overexpression of CaHsp104 leads to a loss of the [PSI+] prion. However, unlike that of ScHsp104, CaHsp104 function is resistant to guanidine hydrochloride (GdnHCl), an inhibitor of the ATPase activity of this chaperone. These findings have implications both in terms of the mechanism of inhibition of Hsp104 by GdnHCl and in the evolution of the ability of fungal species to propagate prions.
Collapse
Affiliation(s)
- Joanna F Zenthon
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | | | | | |
Collapse
|
12
|
Bösl B, Grimminger V, Walter S. The molecular chaperone Hsp104--a molecular machine for protein disaggregation. J Struct Biol 2006; 156:139-48. [PMID: 16563798 DOI: 10.1016/j.jsb.2006.02.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/06/2006] [Accepted: 02/09/2006] [Indexed: 11/25/2022]
Abstract
At the Cold Spring Harbor Meeting on 'Molecular Chaperones and the Heat Shock Response' in May 1996, Susan Lindquist presented evidence that a chaperone of yeast termed Hsp104, which her group had been investigating for several years, is able to dissolve protein aggregates (Glover, J.R., Lindquist, S., 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73-82). Among many of the participants this news stimulated reactions reaching from decided skepticism to utter disbelief because protein aggregation was widely considered to be an irreversible process. Several years and publications later, it is undeniable that Susan had been right. Hsp104 is an ATP dependent molecular machine that-in cooperation with Hsp70 and Hsp40-extracts polypeptide chains from protein aggregates and facilitates their refolding, although the molecular details of this process are still poorly understood. Meanwhile, close homologues of Hsp104 have been identified in bacteria (ClpB), in mitochondria (Hsp78), and in the cytosol of plants (Hsp101), but intriguingly not in the cytosol of animal cells (Mosser, D.D., Ho, S., Glover, J.R., 2004. Saccharomyces cerevisiae Hsp104 enhances the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling. Biochemistry 43, 8107-8115). Observations that Hsp104 plays an essential role in the maintenance of yeast prions (see review by James Shorter in this issue) have attracted even more attention to the molecular mechanism of this ATP dependent chaperone (Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G., Liebman, S.W., 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268, 880-884).
Collapse
Affiliation(s)
- Benjamin Bösl
- Department für Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | |
Collapse
|
13
|
Abstract
Exposure of yeast cells to environmental stresses can disrupt essential intracellular processes, especially those carried out by large macromolecular complexes. The production of mature, translatable mRNAs is most sensitive to stress owing to the inhibition of messenger RNA splicing and alterations in the export of mRNA from the nucleus. Changes in the cytoplasmic pools of mRNAs also occur following exposure to stress conditions. Messenger RNAs accumulate in discrete cytoplasmic foci such as processing bodies and stress granules. These dynamic changes in RNA metabolism, following exposure to stress, ensure the preferential production and export of heat-shock mRNAs and the sequestering of general cellular mRNAs in the nucleus or in cytoplasmic foci, thus allowing for a redirection of the translational machinery to encode stress proteins, which aid in cellular recovery following stress. Stress proteins, such as Hsp70p and Hsp104p, have been shown to play a direct role in the repair of macromolecular complexes involved in RNA metabolism in yeast cells, thus ensuring that the cell returns to homeostasis.
Collapse
Affiliation(s)
- Ursula Bond
- Microbiology Department, Moyne Institute for Preventive Medicine, Trinity College, University of Dublin, Dublin, Ireland.
| |
Collapse
|
14
|
Seppä L, Makarow M. Regulation and recovery of functions of Saccharomyces cerevisiae chaperone BiP/Kar2p after thermal insult. EUKARYOTIC CELL 2005; 4:2008-16. [PMID: 16339719 PMCID: PMC1317487 DOI: 10.1128/ec.4.12.2008-2016.2005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We described earlier a novel mode of regulation of Hsp104, a cytosolic chaperone directly involved in the refolding of heat-denatured proteins, and designated it delayed upregulation, or DUR. When Saccharomyces cerevisiae cells grown at the physiological temperature of 24 degrees C, preconditioned at 37 degrees C, and treated briefly at 50 degrees C were shifted back to 24 degrees C, Hsp104 expression was strongly induced after 2.5 h of recovery and returned back to normal after 5 h. Here we show that the endoplasmic reticulum (ER) chaperones BiP/Kar2p and Lhs1p and the mitochondrial chaperone Hsp78 were also upregulated at the physiological temperature during recovery from thermal insult. The heat shock element (HSE) in the KAR2 promoter was found to be sufficient to drive DUR. The unfolded protein element could also evoke DUR, albeit weakly, in the absence of a functional HSE. BiP/Kar2p functions in ER translocation and assists protein folding. Here we found that the synthesis of new BiP/Kar2p molecules was negligible for more than an hour after the shift of the cells from 50 degrees C to 24 degrees C. Concomitantly, ER translocation was blocked, suggesting that preexisting BiP/Kar2p molecules or other necessary proteins were not functioning. Translocation resumed concomitantly with enhanced synthesis of BiP/Kar2p after 3 h of recovery, after which ER exit and protein secretion also resumed. For a unicellular organism like S. cerevisiae, conformational repair of denatured proteins is the sole survival strategy. Chaperones that refold proteins in the cytosol, ER, and mitochondria of S. cerevisiae appear to be subject to DUR to ensure survival after thermal insults.
Collapse
Affiliation(s)
- Laura Seppä
- Program in Cellular Biotechnology, Institute of Biotechnology, P.O. Box 56, 00014 University of Helsinki, Finland.
| | | |
Collapse
|