1
|
Domínguez-Maqueda M, Pérez-Gómez O, Grande-Pérez A, Esteve C, Seoane P, Tapia-Paniagua ST, Balebona MC, Moriñigo MA. Pathogenic strains of Shewanella putrefaciens contain plasmids that are absent in the probiotic strain Pdp11. PeerJ 2022; 10:e14248. [PMID: 36312754 PMCID: PMC9610664 DOI: 10.7717/peerj.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Shewanella putrefaciens Pdp11 is a strain described as a probiotic for use in aquaculture. However, S. putrefaciens includes strains reported to be pathogenic or saprophytic to fish. Although the probiotic trait has been related to the presence of a group of genes in its genome, the existence of plasmids that could determine the probiotic or pathogenic character of this bacterium is unknown. In the present work, we searched for plasmids in several strains of S. putrefaciens that differ in their pathogenic and probiotic character. Under the different conditions tested, plasmids were only found in two of the five pathogenic strains, but not in the probiotic strain nor in the two saprophytic strains tested. Using a workflow integrating Sanger and Illumina reads, the complete consensus sequences of the plasmids were obtained. Plasmids differed in one ORF and encoded a putative replication initiator protein of the repB family, as well as proteins related to plasmid stability and a toxin-antitoxin system. Phylogenetic analysis showed some similarity to functional repB proteins of other Shewanella species. The implication of these plasmids in the probiotic or pathogenic nature of S. putrefaciens is discussed.
Collapse
Affiliation(s)
| | | | - Ana Grande-Pérez
- Área de Genética, Universidad de Málaga, Málaga, Spain,Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Consuelo Esteve
- Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Pedro Seoane
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Madrid, Spain,Departmento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | | | | | | |
Collapse
|
2
|
Li Y, Xia M, He P, Yang Q, Wu Y, He P, Ahmed A, Li X, Wang Y, Munir S, He Y. Developing Penicillium digitatum Management Strategies on Post-Harvest Citrus Fruits with Metabolic Components and Colonization of Bacillus subtilis L1-21. J Fungi (Basel) 2022; 8:80. [PMID: 35050020 PMCID: PMC8777893 DOI: 10.3390/jof8010080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Citrus is among the most important plants in the fruit industry severely infected with pathogens. Citrus green mold caused by Penicillium digitatum is one of the most devastating diseases during post-harvest stages of citrus fruit. In this study, a potential endophyte Bacillus subtilis L1-21, isolated from healthy citrus plants, was assessed for its biocontrol activity against the pathogen P. digitatum. Based on an in vitro crosstalk assay, we suggested that B. subtilis L1-21 inhibits the pathogen with an inhibition zone of 3.51 ± 0.08 cm. Biocontrol efficacy was highest for the fermented culture filtrate of B. subtilis L1-21. Additionally, using GC-MS analysis, 13 compounds were detected in the extract of this endophyte. The culture filtrate in Landy medium could enlarge and deform pathogen spores and prevent them from developing into normal mycelium. Accordingly, the Landy culture filtrate of B. subtilis L1-21 was stable in the temperature range of 4-90 °C and pH of 3-11. Further, MALDI-TOF-MS for B. subtilis L1-21 detected surfactin, fengycin, bacillaene and bacilysin as potential antifungal compounds. GFP-tagged B. subtilis L1-21 easily colonized in citrus fruit peel and pulp, suggesting its role in eliminating the fungal pathogen. Altogether, it is highly expected that the production of antifungal compounds, and the colonization potential of B. subtilis L1-21 are required against the post-harvest P. digitatum pathogen on citrus fruit.
Collapse
Affiliation(s)
- Yongmei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.X.); (P.H.); (Q.Y.); (Y.W.); (P.H.); (A.A.); (X.L.)
| | - Mengyuan Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.X.); (P.H.); (Q.Y.); (Y.W.); (P.H.); (A.A.); (X.L.)
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.X.); (P.H.); (Q.Y.); (Y.W.); (P.H.); (A.A.); (X.L.)
| | - Qiaoming Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.X.); (P.H.); (Q.Y.); (Y.W.); (P.H.); (A.A.); (X.L.)
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.X.); (P.H.); (Q.Y.); (Y.W.); (P.H.); (A.A.); (X.L.)
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.X.); (P.H.); (Q.Y.); (Y.W.); (P.H.); (A.A.); (X.L.)
| | - Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.X.); (P.H.); (Q.Y.); (Y.W.); (P.H.); (A.A.); (X.L.)
| | - Xiangsong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.X.); (P.H.); (Q.Y.); (Y.W.); (P.H.); (A.A.); (X.L.)
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuehu Wang
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.X.); (P.H.); (Q.Y.); (Y.W.); (P.H.); (A.A.); (X.L.)
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (Y.L.); (M.X.); (P.H.); (Q.Y.); (Y.W.); (P.H.); (A.A.); (X.L.)
| |
Collapse
|
3
|
Kuzmanović N, Puławska J. Evolutionary Relatedness and Classification of Tumor-Inducing and Opine-Catabolic Plasmids in Three Rhizobium rhizogenes Strains Isolated from the Same Crown Gall Tumor. Genome Biol Evol 2019; 11:1525-1540. [PMID: 31028704 PMCID: PMC6546132 DOI: 10.1093/gbe/evz091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Plasmids play a crucial role in the ecology of agrobacteria. In this study, we sequenced tumor-inducing (Ti) and opine-catabolic (OC) plasmids in three Rhizobium rhizogenes (Agrobacterium biovar 2) strains isolated from the same crown gall tumor on “Colt” cherry rootstock and conducted comparative genomic analyses. Tumorigenic strains C5.7 and C6.5 carry nopaline-type Ti plasmids pTiC5.7/pTiC6.5, whereas the nonpathogenic strain Colt5.8 carries the nopaline-type OC plasmid pOC-Colt5.8. Overall, comparative genomic analysis indicated that pTiC5.7/pTiC6.5 and related Ti plasmids described before (pTiC58 and pTi-SAKURA) originate from a common ancestor, although they have diverged during evolution. On the other hand, plasmid pOC-Colt5.8 was most closely related to the well-known OC plasmid pAtK84b; however, analysis suggested that they had different evolutionary histories and seem to share a more distant common ancestor. Although the reconstruction of the evolutionary history of Ti and OC plasmids is still speculative, we hypothesized that nopaline-type Ti plasmid might originate from the nopaline-type OC plasmid. Our results suggested that OC plasmids are widespread and closely associated with crown gall tumors. Finally, we proposed a thorough scheme for classification of Ti and OC plasmids that is based on separate comparative analysis of each functional element of the plasmid studied.
Collapse
Affiliation(s)
- Nemanja Kuzmanović
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | | |
Collapse
|
4
|
Vaghchhipawala Z, Radke S, Nagy E, Russell ML, Johnson S, Gelvin SB, Gilbertson LA, Ye X. RepB C-terminus mutation of a pRi-repABC binary vector affects plasmid copy number in Agrobacterium and transgene copy number in plants. PLoS One 2018; 13:e0200972. [PMID: 30412579 PMCID: PMC6226153 DOI: 10.1371/journal.pone.0200972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022] Open
Abstract
A native repABC replication origin from pRiA4b was previously reported as a single copy plasmid in Agrobacterium tumefaciens and can improve the production of transgenic plants with a single copy insertion of transgenes when it is used in binary vectors for Agrobacterium-mediated transformation. A high copy pRi-repABC variant plasmid, pTF::Ri, which does not improve the frequency of single copy transgenic plants, has been reported in the literature. Sequencing the high copy pTF::Ri repABC operon revealed the presence of two mutations: one silent mutation and one missense mutation that changes a tyrosine to a histidine (Y299H) in a highly conserved area of the C-terminus of the RepB protein (RepBY299H). Reproducing these mutations in the wild-type pRi-repABC binary vector showed that Agrobacterium cells with the RepBY299H mutation grow faster on both solidified and in liquid medium, and have higher plasmid copy number as determined by ddPCR. In order to investigate the impact of the RepBY299H mutation on transformation and quality plant production, the RepBY299H mutated pRi-repABC binary vector was compared with the original wild-type pRi-repABC binary vector and a multi-copy oriV binary vector in canola transformation. Molecular analyses of the canola transgenic plants demonstrated that the multi-copy pRi-repABC with the RepBY299H mutation provides no advantage in generating high frequency single copy, backbone-free transgenic plants in comparison with the single copy wild-type pRi-repABC binary vector.
Collapse
Affiliation(s)
| | - Sharon Radke
- Woodland Campus, Monsanto Company, Woodland, CA, United States of America
| | - Ervin Nagy
- Monsanto Company, St. Louis, MO, United States of America
| | - Mary L. Russell
- Woodland Campus, Monsanto Company, Woodland, CA, United States of America
| | - Susan Johnson
- Monsanto Company, St. Louis, MO, United States of America
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | | | - Xudong Ye
- Monsanto Company, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
5
|
Fournes F, Val ME, Skovgaard O, Mazel D. Replicate Once Per Cell Cycle: Replication Control of Secondary Chromosomes. Front Microbiol 2018; 9:1833. [PMID: 30131796 PMCID: PMC6090056 DOI: 10.3389/fmicb.2018.01833] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
Faithful vertical transmission of genetic information, especially of essential core genes, is a prerequisite for bacterial survival. Hence, replication of all the replicons is tightly controlled to ensure that all daughter cells get the same genome copy as their mother cell. Essential core genes are very often carried by the main chromosome. However they can occasionally be found on secondary chromosomes, recently renamed chromids. Chromids have evolved from non-essential megaplasmids, and further acquired essential core genes and a genomic signature closed to that of the main chromosome. All chromids carry a plasmidic replication origin, belonging so far to either the iterons or repABC type. Based on these differences, two categories of chromids have been distinguished. In this review, we focus on the replication initiation controls of these two types of chromids. We show that the sophisticated mechanisms controlling their replication evolved from their plasmid counterparts to allow a timely controlled replication, occurring once per cell cycle.
Collapse
Affiliation(s)
- Florian Fournes
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Eve Val
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
6
|
Koper P, Żebracki K, Marczak M, Skorupska A, Mazur A. RepB proteins of the multipartite Rhizobium leguminosarum bv. trifolii genome discriminate between centromere-like parS sequences for plasmid segregational stability. Mol Microbiol 2016; 102:446-466. [PMID: 27480612 DOI: 10.1111/mmi.13472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 11/28/2022]
Abstract
The plasmids of the Rhizobiaceae family members and other Alphaproteobacteria are usually large, low copy-number and contain all elements necessary for active segregation and replication located in one operon comprising repABC genes. The genome of Rhizobium leguminosarum bv. trifolii TA1 (RtTA1) consists of a chromosome and four plasmids (pRleTA1a-d) with repABC operons. In this work, centromere-binding RepB proteins of four RtTA1 plasmids were studied. Stability assays of the truncated derivatives of repABC cassettes demonstrated that RepA, RepB proteins and parS-like elements constituted plasmid partitioning systems, while RepC were sufficient for their replication. Individual RepB proteins bound specifically to centromere-like parS elements of the parental plasmids, which was crucial step toward the proper segregation of plasmids into daughter cells. RtTA1 RepB proteins formed dimers and oligomers in the solution. The C-terminal part of RepB was responsible for dimerization, while the domain engaged in parS binding was located in the middle of the protein. It was concluded that the specific interaction between individual RepB proteins and their target sequences together with the substantial diversity of the Rep proteins and parS originating from different plasmids strongly contributed to the coexistence of several plasmids equipped with similar repABC cassettes in the multipartite bacterial genome.
Collapse
Affiliation(s)
- Piotr Koper
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Kamil Żebracki
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Małgorzata Marczak
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anna Skorupska
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
7
|
Wetzel ME, Olsen GJ, Chakravartty V, Farrand SK. The repABC Plasmids with Quorum-Regulated Transfer Systems in Members of the Rhizobiales Divide into Two Structurally and Separately Evolving Groups. Genome Biol Evol 2015; 7:3337-57. [PMID: 26590210 PMCID: PMC4700958 DOI: 10.1093/gbe/evv227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The large repABC plasmids of the order Rhizobiales with Class I quorum-regulated conjugative transfer systems often define the nature of the bacterium that harbors them. These otherwise diverse plasmids contain a core of highly conserved genes for replication and conjugation raising the question of their evolutionary relationships. In an analysis of 18 such plasmids these elements fall into two organizational classes, Group I and Group II, based on the sites at which cargo DNA is located. Cladograms constructed from proteins of the transfer and quorum-sensing components indicated that those of the Group I plasmids, while coevolving, have diverged from those coevolving proteins of the Group II plasmids. Moreover, within these groups the phylogenies of the proteins usually occupy similar, if not identical, tree topologies. Remarkably, such relationships were not seen among proteins of the replication system; although RepA and RepB coevolve, RepC does not. Nor do the replication proteins coevolve with the proteins of the transfer and quorum-sensing systems. Functional analysis was mostly consistent with phylogenies. TraR activated promoters from plasmids within its group, but not between groups and dimerized with TraR proteins from within but not between groups. However, oriT sequences, which are highly conserved, were processed by the transfer system of plasmids regardless of group. We conclude that these plasmids diverged into two classes based on the locations at which cargo DNA is inserted, that the quorum-sensing and transfer functions are coevolving within but not between the two groups, and that this divergent evolution extends to function.
Collapse
Affiliation(s)
- Margaret E Wetzel
- Department of Microbiology, University of Illinois at Urbana-Champaign
| | - Gary J Olsen
- Department of Microbiology, University of Illinois at Urbana-Champaign Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| | | | - Stephen K Farrand
- Department of Microbiology, University of Illinois at Urbana-Champaign
| |
Collapse
|
8
|
Żebracki K, Koper P, Marczak M, Skorupska A, Mazur A. Plasmid-Encoded RepA Proteins Specifically Autorepress Individual repABC Operons in the Multipartite Rhizobium leguminosarum bv. trifolii Genome. PLoS One 2015; 10:e0131907. [PMID: 26147968 PMCID: PMC4492784 DOI: 10.1371/journal.pone.0131907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/08/2015] [Indexed: 12/05/2022] Open
Abstract
Rhizobia commonly have very complex genomes with a chromosome and several large plasmids that possess genes belonging to the repABC family. RepA and RepB are members of the ParA and ParB families of partitioning proteins, respectively, whereas RepC is crucial for plasmid replication. In the repABC replicons, partitioning and replication functions are transcriptionally linked resulting in complex regulation of rep gene expression. The genome of R. leguminosarum bv. trifolii TA1 (RtTA1) consists of a chromosome and four plasmids (pRleTA1a-d), equipped with functional repABC genes. In this work, the regulation of transcription of the individual repABC cassettes of the four RtTA1 plasmids was studied. The involvement of the RepA and RepB as well as parS-like centromere sites in this process was depicted, demonstrating some dissimilarity in expression of respective rep regions. RtTA1 repABC genes of individual plasmids formed operons, which were negatively regulated by RepA and RepB. Individual RepA were able to bind to DNA without added nucleotides, but in the presence of ADP, bound specifically to their own operator sequences containing imperfect palindromes, and caused operon autorepression, whereas the addition of ATP stimulated non-specific binding of RepA to DNA. The RepA proteins were able to dimerize/oligomerize: in general dimers formed independently of ATP or ADP, although ATP diminished the concentration of oligomers that were produced. By the comprehensive approach focusing on a set of plasmids instead of individual replicons, the work highlighted subtle differences between the organization and regulation of particular rep operons as well as the structures and specificity of RepA proteins, which contribute to the fine-tuned coexistence of several replicons with similar repABC cassettes in the complex bacterial genome.
Collapse
Affiliation(s)
- Kamil Żebracki
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Małgorzata Marczak
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anna Skorupska
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
- * E-mail:
| |
Collapse
|
9
|
Platt TG, Morton ER, Barton IS, Bever JD, Fuqua C. Ecological dynamics and complex interactions of Agrobacterium megaplasmids. FRONTIERS IN PLANT SCIENCE 2014; 5:635. [PMID: 25452760 PMCID: PMC4231840 DOI: 10.3389/fpls.2014.00635] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/27/2014] [Indexed: 05/15/2023]
Abstract
As with many pathogenic bacteria, agrobacterial plant pathogens carry most of their virulence functions on a horizontally transmissible genetic element. The tumor-inducing (Ti) plasmid encodes the majority of virulence functions for the crown gall agent Agrobacterium tumefaciens. This includes the vir genes which drive genetic transformation of host cells and the catabolic genes needed to utilize the opines produced by infected plants. The Ti plasmid also encodes, an opine-dependent quorum sensing system that tightly regulates Ti plasmid copy number and its conjugal transfer to other agrobacteria. Many natural agrobacteria are avirulent, lacking the Ti plasmid. The burden of harboring the Ti plasmid depends on the environmental context. Away from diseased hosts, plasmid costs are low but the benefit of the plasmid is also absent. Consequently, plasmidless genotypes are favored. On infected plants the costs of the Ti plasmid can be very high, but balanced by the opine benefits, locally favoring plasmid bearing cells. Cheating derivatives which do not incur virulence costs but can benefit from opines are favored on infected plants and in most other environments, and these are frequently isolated from nature. Many agrobacteria also harbor an At plasmid which can stably coexist with a Ti plasmid. At plasmid genes are less well characterized but in general facilitate metabolic activities in the rhizosphere and bulk soil, such as the ability to breakdown plant exudates. Examination of A. tumefaciens C58, revealed that harboring its At plasmid is much more costly than harboring it's Ti plasmid, but conversely the At plasmid is extremely difficult to cure. The interactions between these co-resident plasmids are complex, and depend on environmental context. However, the presence of a Ti plasmid appears to mitigate At plasmid costs, consistent with the high frequency with which they are found together.
Collapse
Affiliation(s)
| | | | | | | | - Clay Fuqua
- Department of Biology, Indiana UniversityBloomington, IN, USA
| |
Collapse
|
10
|
RepA and RepB exert plasmid incompatibility repressing the transcription of the repABC operon. Plasmid 2013; 70:362-76. [PMID: 24016735 DOI: 10.1016/j.plasmid.2013.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/06/2013] [Accepted: 08/16/2013] [Indexed: 11/22/2022]
Abstract
Rhizobium etli CFN42 has a multipartite genome composed of one chromosome and six large plasmids with low copy numbers, all belonging to the repABC plasmid family. All elements essential for replication and segregation of these plasmids are encoded within the repABC operon. RepA and RepB direct plasmid segregation and are involved in the transcriptional regulation of the operon, and RepC is the initiator protein of the plasmid. Here we show that in addition to RepA (repressor) and RepB (corepressor), full transcriptional repression of the operon located in the symbiotic plasmid (pRetCFN42d) of this strain requires parS, the centromere-like sequence, and the operator sequence. However, the co-expression of RepA and RepB is sufficient to induce the displacement of the parental plasmid. RepA is a Walker-type ATPase that self associates in vivo and in vitro and binds specifically to the operator region in its RepA-ADP form. In contrast, RepA-ATP is capable of binding to non-specific DNA. RepA and RepB form high molecular weight DNA-protein complexes in the presence of ATP and ADP. RepA carrying ATP-pocket motif mutations induce full repression of the repABC operon without the participation of RepB and parS. These mutants specifically bind the operator sequence in their ATP or ADP bound forms. In addition, their expression in trans exerts plasmid incompatibility against the parental plasmid. RepA and RepB expressed in trans induce plasmid incompatibility because of their ability to repress the repABC operon and not only by their capacity to distort the plasmid segregation process.
Collapse
|
11
|
Pinto UM, Pappas KM, Winans SC. The ABCs of plasmid replication and segregation. Nat Rev Microbiol 2013; 10:755-65. [PMID: 23070556 DOI: 10.1038/nrmicro2882] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To ensure faithful transmission of low-copy plasmids to daughter cells, these plasmids must replicate once per cell cycle and distribute the replicated DNA to the nascent daughter cells. RepABC family plasmids are found exclusively in alphaproteobacteria and carry a combined replication and partitioning locus, the repABC cassette, which is also found on secondary chromosomes in this group. RepC and a replication origin are essential for plasmid replication, and RepA, RepB and the partitioning sites distribute the replicons to predivisional cells. Here, we review our current understanding of the transcriptional and post-transcriptional regulation of the Rep proteins and of their functions in plasmid replication and partitioning.
Collapse
Affiliation(s)
- Uelinton M Pinto
- Departamento de Alimentos, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais 35400-000, Brazil
| | | | | |
Collapse
|
12
|
The repAC replication system of the Rhizobium leguminosarum pRL7 plasmid is functional: Implications regarding the origin and evolution of repABC plasmids. Plasmid 2013; 69:49-57. [DOI: 10.1016/j.plasmid.2012.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/21/2012] [Accepted: 08/26/2012] [Indexed: 11/19/2022]
|
13
|
Abstract
AbstractSoil bacteria, collectively named rhizobia, can establish mutualistic relationships with legume plants. Rhizobia often have multipartite genome architecture with a chromosome and several extrachromosomal replicons making these bacteria a perfect candidate for plasmid biology studies. Rhizobial plasmids are maintained in the cells using a tightly controlled and uniquely organized replication system. Completion of several rhizobial genome-sequencing projects has changed the view that their genomes are simply composed of the chromosome and cryptic plasmids. The genetic content of plasmids and the presence of some important (or even essential) genes contribute to the capability of environmental adaptation and competitiveness with other bacteria. On the other hand, their mosaic structure results in the plasticity of the genome and demonstrates a complex evolutionary history of plasmids. In this review, a genomic perspective was employed for discussion of several aspects regarding rhizobial plasmids comprising structure, replication, genetic content, and biological role. A special emphasis was placed on current post-genomic knowledge concerning plasmids, which has enriched the view of the entire bacterial genome organization by the discovery of plasmids with a potential chromosome-like role.
Collapse
|
14
|
Pinto UM, Flores-Mireles AL, Costa ED, Winans SC. RepC protein of the octopine-type Ti plasmid binds to the probable origin of replication within repC and functions only in cis. Mol Microbiol 2011; 81:1593-606. [PMID: 21883520 DOI: 10.1111/j.1365-2958.2011.07789.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Vegetative replication and partitioning of many plasmids and some chromosomes of alphaproteobacteria are directed by their repABC operons. RepA and RepB proteins direct the partitioning of replicons to daughter cells, while RepC proteins are replication initiators, although they do not resemble any characterized replication initiation protein. Here we show that the replication origin of an Agrobacterium tumefaciens Ti plasmid resides fully within its repC gene. Purified RepC bound to a site within repC with moderate affinity, high specificity and with twofold cooperativity. The binding site was localized to an AT-rich region that contains a large number of GANTC sites, which have been implicated in replication regulation in related organisms. A fragment of RepC containing residues 26-158 was sufficient to bind DNA, although with limited sequence specificity. This portion of RepC is predicted to have structural homology to members of the MarR family of transcription factors. Overexpression of RepC in A. tumefaciens caused large increases in copy number in cis but did not change the copy number of plasmids containing the same oriV sequence in trans, confirming other observations that RepC functions only in cis.
Collapse
Affiliation(s)
- Uelinton M Pinto
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
15
|
Cervantes-Rivera R, Pedraza-López F, Pérez-Segura G, Cevallos MA. The replication origin of a repABC plasmid. BMC Microbiol 2011; 11:158. [PMID: 21718544 PMCID: PMC3155836 DOI: 10.1186/1471-2180-11-158] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/30/2011] [Indexed: 11/21/2022] Open
Abstract
Background repABC operons are present on large, low copy-number plasmids and on some secondary chromosomes in at least 19 α-proteobacterial genera, and are responsible for the replication and segregation properties of these replicons. These operons consist, with some variations, of three genes: repA, repB, and repC. RepA and RepB are involved in plasmid partitioning and in the negative regulation of their own transcription, and RepC is the limiting factor for replication. An antisense RNA encoded between the repB-repC genes modulates repC expression. Results To identify the minimal region of the Rhizobium etli p42d plasmid that is capable of autonomous replication, we amplified different regions of the repABC operon using PCR and cloned the regions into a suicide vector. The resulting vectors were then introduced into R. etli strains that did or did not contain p42d. The minimal replicon consisted of a repC open reading frame under the control of a constitutive promoter with a Shine-Dalgarno sequence that we designed. A sequence analysis of repC revealed the presence of a large A+T-rich region but no iterons or DnaA boxes. Silent mutations that modified the A+T content of this region eliminated the replication capability of the plasmid. The minimal replicon could not be introduced into R. etli strain containing p42d, but similar constructs that carried repC from Sinorhizobium meliloti pSymA or the linear chromosome of Agrobacterium tumefaciens replicated in the presence or absence of p42d, indicating that RepC is an incompatibility factor. A hybrid gene construct expressing a RepC protein with the first 362 amino acid residues from p42d RepC and the last 39 amino acid residues of RepC from SymA was able to replicate in the presence of p42d. Conclusions RepC is the only element encoded in the repABC operon of the R. etli p42d plasmid that is necessary and sufficient for plasmid replication and is probably the initiator protein. The oriV of this plasmid resides within the repC gene and is located close to or inside of a large A+T region. RepC can act as an incompatibility factor, and the last 39 amino acid residues of the carboxy-terminal region of this protein are involved in promoting this phenotype.
Collapse
Affiliation(s)
- Ramón Cervantes-Rivera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, México
| | | | | | | |
Collapse
|
16
|
Mazur A, Majewska B, Stasiak G, Wielbo J, Skorupska A. repABC-based replication systems of Rhizobium leguminosarum bv. trifolii TA1 plasmids: incompatibility and evolutionary analyses. Plasmid 2011; 66:53-66. [PMID: 21620885 DOI: 10.1016/j.plasmid.2011.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 11/15/2022]
Abstract
Soil bacteria of the genus Rhizobium possess complex genomes consisting of a chromosome and in addition, often, multiple extrachromosomal replicons, which are usually equipped with repABC genes that control their replication and partition. The replication regions of four plasmids of Rhizobium leguminosarum bv. trifolii TA1 (RtTA1) were identified and characterized. They all contained a complete set of repABC genes. The structural diversity of the rep regions of RtTA1 plasmids was demonstrated for parS and incα elements, and this was especially apparent in the case of symbiotic plasmid (pSym). Incompatibility assays with recombinant constructs containing parS or incα demonstrated that RtTA1 plasmids belong to different incompatibility groups. Horizontal acquisition was plausibly the main contributor to the origin of RtTA1 plasmids and pSym is probably the newest plasmid of this strain. Phylogenetic and incompatibility analyses of repABC regions of three closely related strains: RtTA1, R. leguminosarum bv. viciae 3841 and Rhizobium etli CFN42, provided data on coexistence of their replicons in a common genomic framework.
Collapse
Affiliation(s)
- Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, University of Maria Curie-Skłodowska, Lublin, Poland.
| | | | | | | | | |
Collapse
|
17
|
Plasmids of the Rhizobiaceae and Their Role in Interbacterial and Transkingdom Interactions. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-14512-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
18
|
Castillo-Ramírez S, Vázquez-Castellanos JF, González V, Cevallos MA. Horizontal gene transfer and diverse functional constrains within a common replication-partitioning system in Alphaproteobacteria: the repABC operon. BMC Genomics 2009; 10:536. [PMID: 19919719 PMCID: PMC2783167 DOI: 10.1186/1471-2164-10-536] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 11/18/2009] [Indexed: 11/24/2022] Open
Abstract
Background The repABC plasmid family, which is extensively present within Alphaproteobacteria, and some secondary chromosomes of the Rhizobiales have the particular feature that all the elements involved in replication and partitioning reside within one transcriptional unit, the repABC operon. Given the functional interactions among the elements of the repABC operon, and the fact that they all reside in the same operon, a common evolutionary history would be expected if the entire operon had been horizontally transferred. Here, we tested whether there is a common evolutionary history within the repABC operon. We further examined different incompatibility groups in terms of their differentiation and degree of adaptation to their host. Results We did not find a single evolutionary history within the repABC operon. Each protein had a particular phylogeny, horizontal gene transfer events of the individual genes within the operon were detected, and different functional constraints were found within and between the Rep proteins. When different repABC operons coexisted in the same genome, they were well differentiated from one another. Finally, we found different levels of adaptation to the host genome within and between repABC operons coexisting in the same species. Conclusion Horizontal gene transfer with conservation of the repABC operon structure provides a highly dynamic operon in which each member of this operon has its own evolutionary dynamics. In addition, it seems that different incompatibility groups present in the same species have different degrees of adaptation to their host genomes, in proportion to the amount of time the incompatibility group has coexisted with the host genome.
Collapse
Affiliation(s)
- Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | | | | | | |
Collapse
|
19
|
Petersen J, Brinkmann H, Pradella S. Diversity and evolution ofrepABCtype plasmids inRhodobacterales. Environ Microbiol 2009; 11:2627-38. [DOI: 10.1111/j.1462-2920.2009.01987.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Cell-cell signaling and the Agrobacterium tumefaciens Ti plasmid copy number fluctuations. Plasmid 2008; 60:89-107. [PMID: 18664372 DOI: 10.1016/j.plasmid.2008.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 05/15/2008] [Indexed: 11/20/2022]
Abstract
The Agrobacterium tumefaciens oncogenic Ti plasmids replicate and segregate to daughter cells via repABC cassettes, in which repA and repB are plasmid partitioning genes and repC encodes the replication initiator protein. repABC cassettes are encountered in a growing number of plasmids and chromosomes of the alpha-proteobacteria, and findings from particular representatives of agrobacteria, rhizobia and Paracoccus have began to shed light on their structure and functions. Amongst repABC replicons, Ti plasmids and particularly the octopine-type Ti have recently stood as model in regulation of repABC basal expression, which acts in plasmid copy number control, but also appear to undergo pronounced up-regulation of repABC, upon interbacterial and host-bacterial signaling. The last results in considerable Ti copy number increase and collective elevation of Ti gene expression. Inhibition of the Ti repABC is in turn conferred by a plant defense compound, which primarily affects Agrobacterium virulence and interferes with cell-density perception. Altogether, the above suggest that the entire Ti gene pool is subjected to the bacterium-eukaryote signaling network, a phenomenon quite unprecedented for replicons thought of as stringently controlled. It remains to be seen whether similar copy number variations characterize related replicons or if they are of even broader significance in plasmid biology.
Collapse
|
21
|
Abstract
repABC plasmids are widely distributed among alpha-proteobacteria. They are especially common in Rhizobiales. Some strains of this bacterial order can contain multiple repABC replicons indicating that this plasmid family includes several incompatibility groups. The replication and stable maintenance of these replicons depend on the presence of a repABC operon. The repABC operons sequenced to date share some general characteristics. All of them contain at least three protein-encoding genes: repA, repB and repC. The first two genes encode proteins involved in plasmid segregation, whereas repC encodes a protein crucial for replication. The origin of replication maps within the repC gene. In contrast, the centromere-like sequence (parS) can be located at various positions in the operon. In this review we will summarize current knowledge about this plasmid family, with special emphasis on their structural diversity and their complex genetic regulation. Finally, we will examine some ideas about their evolutionary origin and trends.
Collapse
|
22
|
Livny J, Yamaichi Y, Waldor MK. Distribution of centromere-like parS sites in bacteria: insights from comparative genomics. J Bacteriol 2007; 189:8693-703. [PMID: 17905987 PMCID: PMC2168934 DOI: 10.1128/jb.01239-07] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Partitioning of low-copy-number plasmids to daughter cells often depends on ParA and ParB proteins acting on centromere-like parS sites. Similar chromosome-encoded par loci likely also contribute to chromosome segregation. Here, we used bioinformatic approaches to search for chromosomal parS sites in 400 prokaryotic genomes. Although the consensus sequence matrix used to search for parS sites was derived from two gram-positive species, putative parS sites were identified on the chromosomes of 69% of strains from all branches of bacteria. Strains that were not found to contain parS sites clustered among relatively few branches of the prokaryotic evolutionary tree. In the vast majority of cases, parS sites were identified in origin-proximal regions of chromosomes. The widespread conservation of parS sites across diverse bacteria suggests that par loci evolved very early in the evolution of bacterial chromosomes and that the absence of parS, parA, and/or parB in certain strains likely reflects the loss of one of more of these loci much later in evolution. Moreover, the highly conserved origin-proximal position of parS suggests par loci are primarily devoted to regulating processes that involve the origin region of bacterial chromosomes. In species containing multiple chromosomes, the parS sites found on secondary chromosomes diverge significantly from those found on their primary chromosomes, suggesting that chromosome segregation of multipartite genomes requires distinct replicon-specific par loci. Furthermore, parS sites on secondary chromosomes are not well conserved among different species, suggesting that the evolutionary histories of secondary chromosomes are more diverse than those of primary chromosomes.
Collapse
Affiliation(s)
- Jonathan Livny
- Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue, Boston MA 02115, USA
| | | | | |
Collapse
|
23
|
White CE, Winans SC. Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Philos Trans R Soc Lond B Biol Sci 2007; 362:1135-48. [PMID: 17360279 PMCID: PMC2435578 DOI: 10.1098/rstb.2007.2040] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The plant pathogen Agrobacterium tumefaciens induces the formation of crown gall tumours at wound sites on host plants by directly transforming plant cells. This disease strategy benefits the bacteria as the infected plant tissue produces novel nutrients, called opines, that the colonizing bacteria can use as nutrients. Almost all of the genes that are required for virulence, and all of the opine uptake and utilization genes, are carried on large tumour-inducing (Ti) plasmids. The observation more than 25 years ago that specific opines are required for Ti plasmid conjugal transfer led to the discovery of a cell-cell signalling system on these plasmids that is similar to the LuxR-LuxI system first described in Vibrio fischeri. All Ti plasmids that have been described to date carry a functional LuxI-type N-acylhomoserine lactone synthase (TraI), and a LuxR-type signal receptor and transcriptional regulator called TraR. The traR genes are expressed only in the presence of specific opines called conjugal opines. The TraR-TraI system provides an important model for LuxR-LuxI-type systems, especially those found in the agriculturally important Rhizobiaceae family. In this review, we discuss current advances in the biochemistry and structural biology of the TraR-TraI system.
Collapse
|
24
|
Cho H, Winans SC. TraA, TraC and TraD autorepress two divergent quorum-regulated promoters near the transfer origin of the Ti plasmid of Agrobacterium tumefaciens. Mol Microbiol 2007; 63:1769-82. [PMID: 17367394 DOI: 10.1111/j.1365-2958.2007.05624.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Whole-genome transcriptional profiling experiments were performed to identify the complete set of TraR-regulated genes in isogenic A. tumefaciens strains containing an octopine-type or nopaline-type Ti plasmid. Most of the known TraR-regulated genes as well as a number of new inducible genes were identified. Surprisingly, some known members of this regulon showed both weaker induction and weak levels of expression than we had predicted based upon earlier studies. In particular, traA was expressed at surprisingly weak levels. Genetic analysis showed that the traAFBH operon is repressed by formation of a putative relaxosome at oriT consisting the TraA, TraC and TraD. These proteins also repressed the divergent traCDGyci operon. TraA was essential for oriT processing, and both TraC and TraD were necessary for the efficient processing, although some processing occurred in their absence. Likewise, Ti plasmid conjugation required TraA, TraF and TraG, and occurred at reduced levels in the absence of TraC or TraD. TraA preferentially acted in cis in repressing the traA and traC promoters and in the processing of oriT, which explains the very high activity of plasmid-borne traA-lacZ fusions reported in previous studies.
Collapse
Affiliation(s)
- Hongbaek Cho
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| | | |
Collapse
|
25
|
MacLellan SR, Zaheer R, Sartor AL, MacLean AM, Finan TM. Identification of a megaplasmid centromere reveals genetic structural diversity within the repABC family of basic replicons. Mol Microbiol 2006; 59:1559-75. [PMID: 16468995 DOI: 10.1111/j.1365-2958.2006.05040.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The basic replication unit of many plasmids and second chromosomes in the alpha-proteobacteria consists of a repABC locus that encodes the trans- and cis-acting components required for both semiautonomous replication and replicon maintenance in a cell population. In terms of physical genetic organization and at the nucleotide sequence level, repABC loci are well conserved across various genera. As with all repABC-type replicons that have been genetically characterized, the 1.4 Mb pSymA and 1.7 Mb pSymB megaplasmids from the plant endosymbiont Sinorhizobium meliloti encode strong incompatibility (inc) determinants. We have identified a novel inc sequence upstream of the repA2 gene in pSymA that is not present on pSymB and not reported in other repABC plasmids that have been characterized. This region, in concert with the repA and repB genes, stabilizes a test plasmid indicating that it constitutes a partitioning (par) system for the megaplasmid. Purified RepB binds to this sequence and binding may be enhanced by RepA. We have isolated 19 point mutations that eliminate incompatibility, reduce RepB binding or the stabilization phenotype associated with this sequence and all of these map to a 16-nucleotide palindromic sequence centred 330 bp upstream of the repA2 gene. An additional five near-perfect repeats of this palindrome are located further upstream of the repA2 gene and we show that they share some conservation with known RepB binding sites in different locations on other repABC plasmids and to two sequences found on the tumour inducing plasmid of Agrobacterium tumefaciens. These additional palindromes also bind RepB but one of them does not display obvious incompatibility effects. A heterogenic distribution of par sequences demonstrates unexpected diversity in the structural genetic organization of repABC loci, despite their obvious levels of similarity.
Collapse
Affiliation(s)
- Shawn R MacLellan
- Centre for Environmental Genomics, Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|