1
|
Beeby M, Daum B. How Does the Archaellum Work? Biomolecules 2025; 15:465. [PMID: 40305169 PMCID: PMC12024892 DOI: 10.3390/biom15040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 05/02/2025] Open
Abstract
The archaellum is the simplest known molecular propeller. An analogue of bacterial flagella, archaella are long helical tails found in Archaea that are rotated by cell-envelope-embedded rotary motors to exert thrust for cell motility. Despite their simplicity, however, they are less well studied, and how they work remains only partially understood. Here we describe four key aspects of their function: assembly, the transition from assembly to rotation, the mechanics of rotation, and how rotation generates thrust. We outline future research directions that will enhance our understanding of archaellar function.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter EX4 4SB, UK
| |
Collapse
|
2
|
Stöckl R, Nißl L, Reichelt R, Rachel R, Grohmann D, Grünberger F. The transcriptional regulator EarA and intergenic terminator sequences modulate archaellation in Pyrococcus furiosus. Front Microbiol 2023; 14:1241399. [PMID: 38029142 PMCID: PMC10665913 DOI: 10.3389/fmicb.2023.1241399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The regulation of archaellation, the formation of archaeal-specific cell appendages called archaella, is crucial for the motility, adhesion, and survival of archaeal organisms. Although the heavily archaellated and highly motile Pyrococcus furiosus is a key model organism for understanding the production and function of archaella in Euryarchaea, the transcriptional regulation of archaellum assembly is so far unknown. Here we show that the transcription factor EarA is the master regulator of the archaellum (arl) operon transcription, which is further modulated by intergenic transcription termination signals. EarA deletion or overexpression strains demonstrate that EarA is essential for archaellation in P. furiosus and governs the degree of archaellation. Providing a single-molecule update on the transcriptional landscape of the arl operon in P. furiosus, we identify sequence motifs for EarA binding upstream of the arl operon and intergenic terminator sequences as critical elements for fine-tuning the expression of the multicistronic arl cluster. Furthermore, transcriptome re-analysis across different Thermococcales species demonstrated a heterogeneous production of major archaellins, suggesting a more diverse composition of archaella than previously recognized. Overall, our study provides novel insights into the transcriptional regulation of archaellation and highlights the essential role of EarA in Pyrococcus furiosus. These findings advance our understanding of the mechanisms governing archaellation and have implications for the functional diversity of archaella.
Collapse
Affiliation(s)
- Richard Stöckl
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Laura Nißl
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Reinhard Rachel
- Centre for Electron Microscopy, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Dina Grohmann
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | - Felix Grünberger
- Institute of Microbiology and Archaea Centre, Faculty for Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Sivabalasarma S, de Sousa Machado JN, Albers SV, Jarrell KF. Archaella Isolation. Methods Mol Biol 2023; 2646:183-195. [PMID: 36842116 DOI: 10.1007/978-1-0716-3060-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Swimming archaea are propelled by a filamentous structure called the archaellum. The first step for the structural characterization of this filament is its isolation. Here we provide various methods that allow for the isolation of archaella filaments from well-studied archaeal model organisms. Archaella filaments have been successfully extracted from organisms belonging to different archaeal phyla, e.g., euryarchaeal methanogens such as Methanococcus voltae, and crenarchaeal hyperthermoacidophiles like Sulfolobus acidocaldarius. The filament isolation protocols that we provide in this chapter follow one of two strategies: either the filaments are sheared or extracted from whole cells by detergent extraction, prior to further final purification by centrifugation methods.
Collapse
Affiliation(s)
- Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - João N de Sousa Machado
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
4
|
Li J, Akinyemi TS, Shao N, Chen C, Dong X, Liu Y, Whitman WB. Genetic and Metabolic Engineering of Methanococcus spp. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Gu W, Müller AL, Deutzmann JS, Williamson JR, Spormann AM. Growth rate-dependent coordination of catabolism and anabolism in the archaeon Methanococcus maripaludis under phosphate limitation. THE ISME JOURNAL 2022; 16:2313-2319. [PMID: 35780255 PMCID: PMC9478154 DOI: 10.1038/s41396-022-01278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Catabolic and anabolic processes are finely coordinated in microorganisms to provide optimized fitness under varying environmental conditions. Understanding this coordination and the resulting physiological traits reveals fundamental strategies of microbial acclimation. Here, we characterized the system-level physiology of Methanococcus maripaludis, a niche-specialized methanogenic archaeon, at different dilution rates ranging from 0.09 to 0.003 h-1 in chemostat experiments under phosphate (i.e., anabolic) limitation. Phosphate was supplied as the limiting nutrient, while formate was supplied in excess as the catabolic substrate and carbon source. We observed a decoupling of catabolism and anabolism resulting in lower biomass yield relative to catabolically limited cells at the same dilution rates. In addition, the mass abundance of several coarse-grained proteome sectors (i.e., combined abundance of proteins grouped based on their function) exhibited a linear relationship with growth rate, mostly ribosomes and their biogenesis. Accordingly, cellular RNA content also correlated with growth rate. Although the methanogenesis proteome sector was invariant, the metabolic capacity for methanogenesis, measured as methane production rates immediately after transfer to batch culture, correlated with growth rate suggesting translationally independent regulation that allows cells to only increase catabolic activity under growth-permissible conditions. These observations are in stark contrast to the physiology of M. maripaludis under formate (i.e., catabolic) limitation, where cells keep an invariant proteome including ribosomal content and a high methanogenesis capacity across a wide range of growth rates. Our findings reveal that M. maripaludis employs fundamentally different strategies to coordinate global physiology during anabolic phosphate and catabolic formate limitation.
Collapse
Affiliation(s)
- Wenyu Gu
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Albert L Müller
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Jörg S Deutzmann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alfred M Spormann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Li J, Zhang L, Xu Q, Zhang W, Li Z, Chen L, Dong X. CRISPR-Cas9 Toolkit for Genome Editing in an Autotrophic CO 2-Fixing Methanogenic Archaeon. Microbiol Spectr 2022; 10:e0116522. [PMID: 35766512 PMCID: PMC9430280 DOI: 10.1128/spectrum.01165-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022] Open
Abstract
The CRISPR-Cas9 system is a robust genome editing tool that is widely applied in eukaryotes and bacteria. However, use of this technique has only been developed for one species of Archaea, a domain of life ranking in parallel with Eukarya and Bacteria. In this study, we applied the CRISPR-Cas9 genome editing technique to Methanococcus maripaludis, an autotrophic and hydrogenotrophic methanogenic archaeon with a remarkably polyploid genome comprising up to ~55 chromosomal copies per cell. An editing plasmid was designed that encodes small guide RNA (sgRNA), Cas9 protein and an ~1-kb repair template (donor). Highly efficient (75% to 100%) and precise genome editing was achieved following one-step transformation. Significantly, the Cas9-based system efficiently deleted one or two genes and a large DNA fragment (~9 kb) and even synchronously deleted 13 genes located at three loci in all chromosomal copies of M. maripaludis. Moreover, precise in situ genome modifications, such as gene tagging and multiple- and even single-nucleotide mutagenesis, were also introduced with high efficiency. Further, as a proof of concept, precise mutagenesis at the nucleotide level allowed the engineering of both transcriptional and translational activities. Mutations were introduced into an archaeal promoter BRE (transcription factor B [TFB] recognition element), a terminator U-tract region, and a gene coding region. Stop codon introduction into a gene through single-nucleotide substitution shut down its expression, providing an alternative strategy for gene inactivation. In conclusion, the robust CRISPR-Cas9 genetic toolkit developed in this investigation greatly facilitates the application of M. maripaludis as a model system in the study of archaeal biology and biotechnology development, particularly CO2-based biotechnologies. IMPORTANCE Archaea are prokaryotes with intriguing biological characteristics. They possess bacterial cell structures but eukaryotic homologous information processing machinery and eukaryotic featured proteins. Archaea also display excellent adaptability to extreme environments and play pivotal roles in ecological processes, thus exhibiting valuable biotechnological potential. However, the in-depth understanding and practical application of archaea are much lagging, because only a minority of pure cultures are available, and even worse, very few can be genetically manipulated. This work developed CRISPR-Cas9-based genome editing technology in Methanococcus maripaludis, a CO2-fixing methanogenic archaeon. The CRISPR-Cas9 approach developed in this study provides an elegant and efficient genome editing toolkit that can be applied in the knockout of single or multiple genes, in situ gene tagging, multiple- or single-nucleotide mutagenesis, and inactivation of gene expression by introduction of stop codons. The successful development of the CRISPR-Cas9 toolkit will facilitate the application of M. maripaludis in archaeal biology research and biotechnology development, particularly CO2-derived biotechnologies.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liuyang Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qing Xu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Wenting Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhihua Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Gendron A, Allen KD. Overview of Diverse Methyl/Alkyl-Coenzyme M Reductases and Considerations for Their Potential Heterologous Expression. Front Microbiol 2022; 13:867342. [PMID: 35547147 PMCID: PMC9081873 DOI: 10.3389/fmicb.2022.867342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Methyl-coenzyme M reductase (MCR) is an archaeal enzyme that catalyzes the final step of methanogenesis and the first step in the anaerobic oxidation of methane, the energy metabolisms of methanogens and anaerobic methanotrophs (ANME), respectively. Variants of MCR, known as alkyl-coenzyme M reductases, are involved in the anaerobic oxidation of short-chain alkanes including ethane, propane, and butane as well as the catabolism of long-chain alkanes from oil reservoirs. MCR is a dimer of heterotrimers (encoded by mcrABG) and requires the nickel-containing tetrapyrrole prosthetic group known as coenzyme F430. MCR houses a series of unusual post-translational modifications within its active site whose identities vary depending on the organism and whose functions remain unclear. Methanogenic MCRs are encoded in a highly conserved mcrBDCGA gene cluster, which encodes two accessory proteins, McrD and McrC, that are believed to be involved in the assembly and activation of MCR, respectively. The requirement of a unique and complex coenzyme, various unusual post-translational modifications, and many remaining questions surrounding assembly and activation of MCR largely limit in vitro experiments to native enzymes with recombinant methods only recently appearing. Production of MCRs in a heterologous host is an important step toward developing optimized biocatalytic systems for methane production as well as for bioconversion of methane and other alkanes into value-added compounds. This review will first summarize MCR catalysis and structure, followed by a discussion of advances and challenges related to the production of diverse MCRs in a heterologous host.
Collapse
Affiliation(s)
| | - Kylie D. Allen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
8
|
Nuno de Sousa Machado J, Albers SV, Daum B. Towards Elucidating the Rotary Mechanism of the Archaellum Machinery. Front Microbiol 2022; 13:848597. [PMID: 35387068 PMCID: PMC8978795 DOI: 10.3389/fmicb.2022.848597] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Motile archaea swim by means of a molecular machine called the archaellum. This structure consists of a filament attached to a membrane-embedded motor. The archaellum is found exclusively in members of the archaeal domain, but the core of its motor shares homology with the motor of type IV pili (T4P). Here, we provide an overview of the different components of the archaellum machinery and hypothetical models to explain how rotary motion of the filament is powered by the archaellum motor.
Collapse
Affiliation(s)
- João Nuno de Sousa Machado
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
9
|
Gambelli L, Isupov MN, Conners R, McLaren M, Bellack A, Gold V, Rachel R, Daum B. An archaellum filament composed of two alternating subunits. Nat Commun 2022; 13:710. [PMID: 35132062 PMCID: PMC8821640 DOI: 10.1038/s41467-022-28337-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Archaea use a molecular machine, called the archaellum, to swim. The archaellum consists of an ATP-powered intracellular motor that drives the rotation of an extracellular filament composed of multiple copies of proteins named archaellins. In many species, several archaellin homologs are encoded in the same operon; however, previous structural studies indicated that archaellum filaments mainly consist of only one protein species. Here, we use electron cryo-microscopy to elucidate the structure of the archaellum from Methanocaldococcus villosus at 3.08 Å resolution. The filament is composed of two alternating archaellins, suggesting that the architecture and assembly of archaella is more complex than previously thought. Moreover, we identify structural elements that may contribute to the filament’s flexibility. The archaellum is a molecular machine used by archaea to swim, consisting of an intracellular motor that drives the rotation of an extracellular filament composed of multiple copies of proteins named archaellins. Here, the authors use electron cryo-microscopy to elucidate the structure of an archaellum, and find that the filament is composed of two alternating archaellins.
Collapse
Affiliation(s)
- Lavinia Gambelli
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.,College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Michail N Isupov
- Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Rebecca Conners
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.,College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.,College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Annett Bellack
- Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Vicki Gold
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.,College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Reinhard Rachel
- Institute of Microbiology and Archaea Centre, University of Regensburg, 93053, Regensburg, Germany
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK. .,College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
10
|
Patro M, van Wolferen M, Ye X, Albers SV, Quax TEF. Methods to Analyze Motility in Eury- and Crenarchaea. Methods Mol Biol 2022; 2522:373-385. [PMID: 36125764 DOI: 10.1007/978-1-0716-2445-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many archaea display swimming motility in liquid medium, which is empowered by the archaellum. Directional movement requires a functional archaellum and a sensing system, such as the chemotaxis system that is used by Euryarchaea. Two well-studied models are the euryarchaeon Haloferax volcanii and the crenarchaeon Sulfolobus acidocaldarius. In this chapter we describe two methods to analyze their swimming behavior and directional movement: (a) time-lapse microscopy under native temperatures and (b) spotting on semi-solid agar or gelrite plates. Whereas the first method allows for deep analysis of swimming behavior, the second method is suited for high throughput comparison of multiple strains.
Collapse
Affiliation(s)
- Megha Patro
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Marleen van Wolferen
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Xing Ye
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany.
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany.
- Biology of Archaea and Viruses, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
de Sousa Machado JN, Vollmar L, Schimpf J, Chaudhury P, Kumariya R, van der Does C, Hugel T, Albers SV. Autophosphorylation of the KaiC-like protein ArlH inhibits oligomerization and interaction with ArlI, the motor ATPase of the archaellum. Mol Microbiol 2021; 116:943-956. [PMID: 34219289 DOI: 10.1111/mmi.14781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022]
Abstract
Motile archaea are propelled by the archaellum, whose motor complex consists of the membrane protein ArlJ, the ATPase ArlI, and the ATP-binding protein ArlH. Despite its essential function and the existence of structural and biochemical data on ArlH, the role of ArlH in archaellum assembly and function remains elusive. ArlH is a structural homolog of KaiC, the central component of the cyanobacterial circadian clock. Since autophosphorylation and dephosphorylation of KaiC are central properties for the function of KaiC, we asked whether autophosphorylation is also a property of ArlH proteins. We observed that both ArlH from the euryarchaeon Pyrococcus furiosus (PfArlH) and from the crenarchaeon Sulfolobus acidocaldarius (SaArlH) have autophosphorylation activity. Using a combination of single-molecule fluorescence measurements and biochemical assays, we show that autophosphorylation of ArlH is closely linked to its oligomeric state when bound to hexameric ArlI. These experiments also strongly suggest that ArlH is a hexamer in its ArlI-bound state. Mutagenesis of the putative catalytic residue (Glu-57 in SaArlH) in ArlH results in a reduced autophosphorylation activity and abolished archaellation and motility in S. acidocaldarius, indicating that optimum phosphorylation activity of ArlH is essential for archaellation and motility.
Collapse
Affiliation(s)
- J Nuno de Sousa Machado
- Molecular Biology of Archaea and Signaling Research Centre BIOSS, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Leonie Vollmar
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Institute of Physical Chemistry and Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Julia Schimpf
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Institute of Physical Chemistry and Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Paushali Chaudhury
- Molecular Biology of Archaea and Signaling Research Centre BIOSS, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Rashmi Kumariya
- Molecular Biology of Archaea and Signaling Research Centre BIOSS, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Chris van der Does
- Molecular Biology of Archaea and Signaling Research Centre BIOSS, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea and Signaling Research Centre BIOSS, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Jarrell KF, Albers SV, Machado JNDS. A comprehensive history of motility and Archaellation in Archaea. FEMS MICROBES 2021; 2:xtab002. [PMID: 37334237 PMCID: PMC10117864 DOI: 10.1093/femsmc/xtab002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 08/24/2023] Open
Abstract
Each of the three Domains of life, Eukarya, Bacteria and Archaea, have swimming structures that were all originally called flagella, despite the fact that none were evolutionarily related to either of the other two. Surprisingly, this was true even in the two prokaryotic Domains of Bacteria and Archaea. Beginning in the 1980s, evidence gradually accumulated that convincingly demonstrated that the motility organelle in Archaea was unrelated to that found in Bacteria, but surprisingly shared significant similarities to type IV pili. This information culminated in the proposal, in 2012, that the 'archaeal flagellum' be assigned a new name, the archaellum. In this review, we provide a historical overview on archaella and motility research in Archaea, beginning with the first simple observations of motile extreme halophilic archaea a century ago up to state-of-the-art cryo-tomography of the archaellum motor complex and filament observed today. In addition to structural and biochemical data which revealed the archaellum to be a type IV pilus-like structure repurposed as a rotating nanomachine (Beeby et al. 2020), we also review the initial discoveries and subsequent advances using a wide variety of approaches to reveal: complex regulatory events that lead to the assembly of the archaellum filaments (archaellation); the roles of the various archaellum proteins; key post-translational modifications of the archaellum structural subunits; evolutionary relationships; functions of archaella other than motility and the biotechnological potential of this fascinating structure. The progress made in understanding the structure and assembly of the archaellum is highlighted by comparing early models to what is known today.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sonja-Verena Albers
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | - J Nuno de Sousa Machado
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany
| |
Collapse
|
13
|
de Sousa Machado JN, Vollmar L, Schimpf J, Chaudhury P, Kumariya R, van der Does C, Hugel T, Albers S. Autophosphorylation of the KaiC-like protein ArlH inhibits oligomerisation and interaction with ArlI, the motor ATPase of the archaellum.. [DOI: 10.1101/2021.03.19.436134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Motile archaea are propelled by the archaellum, whose motor complex consists of the membrane protein ArlJ, the ATPase ArlI, and the ATP-binding protein ArlH. Despite its essential function and the existence of structural and biochemical data on ArlH, the role of ArlH in archaellum assembly and function remains elusive. ArlH is a structural homolog of KaiC, the central component of the cyanobacterial circadian clock. Similar to KaiC, ArlH exhibits autophosphorylation activity, which was observed for both ArlH of the euryarchaeonPyrococcus furiosus (PfArlH)and the crenarchaeonSulfolobus acidocaldarius(SaArlH). Using a combination of single molecule fluorescence measurements and biochemical assays, it is shown that autophosphorylation of ArlH is closely linked to the oligomeric state of ArlH bound to ArlI. These experiments also strongly suggest that ArlH is a hexamer in its functional ArlI bound state. Mutagenesis of the putative catalytic residue Glu-57 inSaArlH results in a reduced autophosphorylation activity and abolished archaellation and motility, suggesting that optimum phosphorylation activity of ArlH is essential for both archaellation and motility.
Collapse
|
14
|
Li Z, Rodriguez‐Franco M, Albers S, Quax TEF. The switch complex ArlCDE connects the chemotaxis system and the archaellum. Mol Microbiol 2020; 114:468-479. [PMID: 32416640 PMCID: PMC7534055 DOI: 10.1111/mmi.14527] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022]
Abstract
Cells require a sensory system and a motility structure to achieve directed movement. Bacteria and archaea possess rotating filamentous motility structures that work in concert with the sensory chemotaxis system. This allows microorganisms to move along chemical gradients. The central response regulator protein CheY can bind to the motor of the motility structure, the flagellum in bacteria, and the archaellum in archaea. Both motility structures have a fundamentally different protein composition and structural organization. Yet, both systems receive input from the chemotaxis system. So far, it was unknown how the signal is transferred from the archaeal CheY to the archaellum motor to initiate motor switching. We applied a fluorescent microscopy approach in the model euryarchaeon Haloferax volcanii and shed light on the sequence order in which signals are transferred from the chemotaxis system to the archaellum. Our findings indicate that the euryarchaeal-specific ArlCDE are part of the archaellum motor and that they directly receive input from the chemotaxis system via the adaptor protein CheF. Hence, ArlCDE are an important feature of the archaellum of euryarchaea, are essential for signal transduction during chemotaxis and represent the archaeal switch complex.
Collapse
Affiliation(s)
- Zhengqun Li
- Molecular Biology of Archaea, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | | | - Sonja‐Verena Albers
- Molecular Biology of Archaea, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Tessa E. F. Quax
- Archaeal Virus–Host Interactions, Faculty of BiologyUniversity of FreiburgFreiburgGermany
| |
Collapse
|
15
|
Kelly JF, Vinogradov E, Stupak J, Robotham AC, Logan SM, Berezuk A, Khursigara CM, Jarrell KF. Identification of a novel N-linked glycan on the archaellins and S-layer protein of the thermophilic methanogen, Methanothermococcus thermolithotrophicus. J Biol Chem 2020; 295:14618-14629. [PMID: 32817340 DOI: 10.1074/jbc.ra120.012790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/28/2020] [Indexed: 01/25/2023] Open
Abstract
Motility in archaea is facilitated by a unique structure termed the archaellum. N-Glycosylation of the major structural proteins (archaellins) is important for their subsequent incorporation into the archaellum filament. The identity of some of these N-glycans has been determined, but archaea exhibit extensive variation in their glycans, meaning that further investigations can shed light not only on the specific details of archaellin structure and function, but also on archaeal glycobiology in general. Here we describe the structural characterization of the N-linked glycan modifications on the archaellins and S-layer protein of Methanothermococcus thermolithotrophicus, a methanogen that grows optimally at 65 °C. SDS-PAGE and MS analysis revealed that the sheared archaella are composed principally of two of the four predicted archaellins, FlaB1 and FlaB3, which are modified with a branched, heptameric glycan at all N-linked sequons except for the site closest to the N termini of both proteins. NMR analysis of the purified glycan determined the structure to be α-d-glycero-d-manno-Hep3OMe6OMe-(1-3)-[α-GalNAcA3OMe-(1-2)-]-β-Man-(1-4)-[β-GalA3OMe4OAc6CMe-(1-4)-α-GalA-(1-2)-]-α-GalAN-(1-3)-β-GalNAc-Asn. A detailed investigation by hydrophilic interaction liquid ion chromatography-MS discovered the presence of several, less abundant glycan variants, related to but distinct from the main heptameric glycan. In addition, we confirmed that the S-layer protein is modified with the same heptameric glycan, suggesting a common N-glycosylation pathway. The M. thermolithotrophicus archaellin N-linked glycan is larger and more complex than those previously identified on the archaellins of related mesophilic methanogens, Methanococcus voltae and Methanococcus maripaludis This could indicate that the nature of the glycan modification may have a role to play in maintaining stability at elevated temperatures.
Collapse
Affiliation(s)
- John F Kelly
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada.
| | - Evgeny Vinogradov
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Jacek Stupak
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Anna C Robotham
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Susan M Logan
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Alison Berezuk
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
16
|
Pyatibratov MG, Syutkin AS, Quax TEF, Melnik TN, Papke RT, Gogarten JP, Kireev II, Surin AK, Beznosov SN, Galeva AV, Fedorov OV. Interaction of two strongly divergent archaellins stabilizes the structure of the Halorubrum archaellum. Microbiologyopen 2020; 9:e1047. [PMID: 32352651 PMCID: PMC7349177 DOI: 10.1002/mbo3.1047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022] Open
Abstract
Halophilic archaea from the genus Halorubrum possess two extraordinarily diverged archaellin genes, flaB1 and flaB2. To clarify roles for each archaellin, we compared two natural Halorubrum lacusprofundi strains: One of them contains both archaellin genes, and the other has the flaB2 gene only. Both strains synthesize functional archaella; however, the strain, where both archaellins are present, is more motile. In addition, we expressed these archaellins in a Haloferax volcanii strain from which the endogenous archaellin genes were deleted. Three Hfx. volcanii strains expressing Hrr. lacusprofundi archaellins produced functional filaments consisting of only one (FlaB1 or FlaB2) or both (FlaB1/FlaB2) archaellins. All three strains were motile, although there were profound differences in the efficiency of motility. Both native and recombinant FlaB1/FlaB2 filaments have greater thermal stability and resistance to low salinity stress than single‐component filaments. Functional supercoiled Hrr. lacusprofundi archaella can be composed of either single archaellin: FlaB2 or FlaB1; however, the two divergent archaellin subunits provide additional stabilization to the archaellum structure and thus adaptation to a wider range of external conditions. Comparative genomic analysis suggests that the described combination of divergent archaellins is not restricted to Hrr. lacusprofundi, but is occurring also in organisms from other haloarchaeal genera.
Collapse
Affiliation(s)
- Mikhail G Pyatibratov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexey S Syutkin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Tatjana N Melnik
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Igor I Kireev
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey K Surin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.,Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.,State Research Center for Applied Microbiology & Biotechnology, Obolensk, Moscow Region, Russia
| | - Sergei N Beznosov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Anna V Galeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Oleg V Fedorov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
17
|
Beeby M, Ferreira JL, Tripp P, Albers SV, Mitchell DR. Propulsive nanomachines: the convergent evolution of archaella, flagella and cilia. FEMS Microbiol Rev 2020; 44:253-304. [DOI: 10.1093/femsre/fuaa006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Echoing the repeated convergent evolution of flight and vision in large eukaryotes, propulsive swimming motility has evolved independently in microbes in each of the three domains of life. Filamentous appendages – archaella in Archaea, flagella in Bacteria and cilia in Eukaryotes – wave, whip or rotate to propel microbes, overcoming diffusion and enabling colonization of new environments. The implementations of the three propulsive nanomachines are distinct, however: archaella and flagella rotate, while cilia beat or wave; flagella and cilia assemble at their tips, while archaella assemble at their base; archaella and cilia use ATP for motility, while flagella use ion-motive force. These underlying differences reflect the tinkering required to evolve a molecular machine, in which pre-existing machines in the appropriate contexts were iteratively co-opted for new functions and whose origins are reflected in their resultant mechanisms. Contemporary homologies suggest that archaella evolved from a non-rotary pilus, flagella from a non-rotary appendage or secretion system, and cilia from a passive sensory structure. Here, we review the structure, assembly, mechanism and homologies of the three distinct solutions as a foundation to better understand how propulsive nanomachines evolved three times independently and to highlight principles of molecular evolution.
Collapse
Affiliation(s)
- Morgan Beeby
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Josie L Ferreira
- Department of Life Sciences, Frankland Road, Imperial College of London, London, SW7 2AZ, UK
| | - Patrick Tripp
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Schaenzlestrasse 1, 79211 Freiburg, Germany
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| |
Collapse
|
18
|
Stachler AE, Schwarz TS, Schreiber S, Marchfelder A. CRISPRi as an efficient tool for gene repression in archaea. Methods 2020; 172:76-85. [DOI: 10.1016/j.ymeth.2019.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 11/30/2022] Open
|
19
|
The structure of the periplasmic FlaG-FlaF complex and its essential role for archaellar swimming motility. Nat Microbiol 2019; 5:216-225. [PMID: 31844299 DOI: 10.1038/s41564-019-0622-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/23/2019] [Indexed: 11/08/2022]
Abstract
Motility structures are vital in all three domains of life. In Archaea, motility is mediated by the archaellum, a rotating type IV pilus-like structure that is a unique nanomachine for swimming motility in nature. Whereas periplasmic FlaF binds the surface layer (S-layer), the structure, assembly and roles of other periplasmic components remain enigmatic, limiting our knowledge of the archaellum's functional interactions. Here, we find that the periplasmic protein FlaG and the association with its paralogue FlaF are essential for archaellation and motility. Therefore, we determine the crystal structure of Sulfolobus acidocaldarius soluble FlaG (sFlaG), which reveals a β-sandwich fold resembling the S-layer-interacting FlaF soluble domain (sFlaF). Furthermore, we solve the sFlaG2-sFlaF2 co-crystal structure, define its heterotetrameric complex in solution by small-angle X-ray scattering and find that mutations that disrupt the complex abolish motility. Interestingly, the sFlaF and sFlaG of Pyrococcus furiosus form a globular complex, whereas sFlaG alone forms a filament, indicating that FlaF can regulate FlaG filament assembly. Strikingly, Sulfolobus cells that lack the S-layer component bound by FlaF assemble archaella but cannot swim. These collective results support a model where a FlaG filament capped by a FlaG-FlaF complex anchors the archaellum to the S-layer to allow motility.
Collapse
|
20
|
Abstract
Cells from all three domains of life on Earth utilize motile macromolecular devices that protrude from the cell surface to generate forces that allow them to swim through fluid media. Research carried out on archaea during the past decade or so has led to the recognition that, despite their common function, the motility devices of the three domains display fundamental differences in their properties and ancestry, reflecting a striking example of convergent evolution. Thus, the flagella of bacteria and the archaella of archaea employ rotary filaments that assemble from distinct subunits that do not share a common ancestor and generate torque using energy derived from distinct fuel sources, namely chemiosmotic ion gradients and FlaI motor-catalyzed ATP hydrolysis, respectively. The cilia of eukaryotes, however, assemble via kinesin-2-driven intraflagellar transport and utilize microtubules and ATP-hydrolyzing dynein motors to beat in a variety of waveforms via a sliding filament mechanism. Here, with reference to current structural and mechanistic information about these organelles, we briefly compare the evolutionary origins, assembly and tactic motility of archaella, flagella and cilia.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California @ Davis, CA 95616, USA.
| |
Collapse
|
21
|
Meshcheryakov VA, Shibata S, Schreiber MT, Villar-Briones A, Jarrell KF, Aizawa SI, Wolf M. High-resolution archaellum structure reveals a conserved metal-binding site. EMBO Rep 2019; 20:embr.201846340. [PMID: 30898768 PMCID: PMC6500986 DOI: 10.15252/embr.201846340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 01/09/2023] Open
Abstract
Many archaea swim by means of archaella. While the archaellum is similar in function to its bacterial counterpart, its structure, composition, and evolution are fundamentally different. Archaella are related to archaeal and bacterial type IV pili. Despite recent advances, our understanding of molecular processes governing archaellum assembly and stability is still incomplete. Here, we determine the structures of Methanococcus archaella by X‐ray crystallography and cryo‐EM. The crystal structure of Methanocaldococcus jannaschii FlaB1 is the first and only crystal structure of any archaellin to date at a resolution of 1.5 Å, which is put into biological context by a cryo‐EM reconstruction from Methanococcus maripaludis archaella at 4 Å resolution created with helical single‐particle analysis. Our results indicate that the archaellum is predominantly composed of FlaB1. We identify N‐linked glycosylation by cryo‐EM and mass spectrometry. The crystal structure reveals a highly conserved metal‐binding site, which is validated by mass spectrometry and electron energy‐loss spectroscopy. We show in vitro that the metal‐binding site, which appears to be a widespread property of archaellin, is required for filament integrity.
Collapse
Affiliation(s)
- Vladimir A Meshcheryakov
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Kunigami, Okinawa, Japan
| | - Satoshi Shibata
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Kunigami, Okinawa, Japan
| | - Makoto Tokoro Schreiber
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Kunigami, Okinawa, Japan
| | - Alejandro Villar-Briones
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Onna, Kunigami, Okinawa, Japan
| | - Kenneth F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Shin-Ichi Aizawa
- Department of Life Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, Japan
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Kunigami, Okinawa, Japan
| |
Collapse
|
22
|
Abstract
Microorganisms can move towards favorable growth conditions as a response to environmental stimuli. This process requires a motility structure and a system to direct the movement. For swimming motility, archaea employ a rotating filament, the archaellum. This archaea-specific structure is functionally equivalent, but structurally different, from the bacterial flagellum. To control the directionality of movement, some archaea make use of the chemotaxis system, which is used for the same purpose by bacteria. Over the past decades, chemotaxis has been studied in detail in several model bacteria. In contrast, archaeal chemotaxis is much less explored and largely restricted to analyses in halophilic archaea. In this review, we summarize the available information on archaeal taxis. We conclude that archaeal chemotaxis proteins function similarly as their bacterial counterparts. However, because the motility structures are fundamentally different, an archaea-specific docking mechanism is required, for which initial experimental data have only recently been obtained.
Collapse
|
23
|
Sharma S, Ding Y, Jarrell KF, Brockhausen I. Identification and characterization of the 4-epimerase AglW from the archaeon Methanococcus maripaludis. Glycoconj J 2018; 35:525-535. [PMID: 30293150 DOI: 10.1007/s10719-018-9845-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 11/27/2022]
Abstract
Archaea are ubiquitous single-cell microorganisms that have often adapted to harsh conditions and play important roles in biogeochemical cycles with potential applications in biotechnology. Methanococcus maripaludis, a methane-producing archaeon, is motile through multiple archaella on its cell surface. The major structural proteins (archaellins) of the archaellum are glycoproteins, modified with N-linked tetrasaccharides that are essential for the proper assembly and function of archaella. The aglW gene, encoding the putative 4-epimerase AglW, plays a key role in the synthesis of the tetrasaccharide. The goal of our work was to biochemically demonstrate the 4-epimerase activity of AglW, and to develop assays to determine its substrate specificity and properties. We carried out assays using UDP-Galactose, UDP-Glucose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and N-acetylglucosamine/N-acetylgalactosamine-diphosphate - lipid as substrates, coupled with specific glycosyltransferases. We showed that AglW has a broad specificity towards UDP-sugars and that Tyr151 within a conserved YxxxK sequon is essential for the 4-epimerase function of AglW. The glycosyltransferase-coupled assays are generally useful for the identification and specificity studies of novel 4-epimerases.
Collapse
Affiliation(s)
- Sulav Sharma
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
24
|
Chaudhury P, van der Does C, Albers SV. Characterization of the ATPase FlaI of the motor complex of the Pyrococcus furiosus archaellum and its interactions between the ATP-binding protein FlaH. PeerJ 2018; 6:e4984. [PMID: 29938130 PMCID: PMC6011876 DOI: 10.7717/peerj.4984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/25/2018] [Indexed: 01/09/2023] Open
Abstract
The archaellum, the rotating motility structure of archaea, is best studied in the crenarchaeon Sulfolobus acidocaldarius. To better understand how assembly and rotation of this structure is driven, two ATP-binding proteins, FlaI and FlaH of the motor complex of the archaellum of the euryarchaeon Pyrococcus furiosus, were overexpressed, purified and studied. Contrary to the FlaI ATPase of S. acidocaldarius, which only forms a hexamer after binding of nucleotides, FlaI of P. furiosus formed a hexamer in a nucleotide independent manner. In this hexamer only 2 of the ATP binding sites were available for binding of the fluorescent ATP-analog MANT-ATP, suggesting a twofold symmetry in the hexamer. P. furiosus FlaI showed a 250-fold higher ATPase activity than S. acidocaldarius FlaI. Interaction studies between the isolated N- and C-terminal domains of FlaI showed interactions between the N- and C-terminal domains and strong interactions between the N-terminal domains not previously observed for ATPases involved in archaellum assembly. These interactions played a role in oligomerization and activity, suggesting a conformational state of the hexamer not observed before. Further interaction studies show that the C-terminal domain of PfFlaI interacts with the nucleotide binding protein FlaH. This interaction stimulates the ATPase activity of FlaI optimally at a 1:1 stoichiometry, suggesting that hexameric PfFlaI interacts with hexameric PfFlaH. These data help to further understand the complex interactions that are required to energize the archaellar motor.
Collapse
Affiliation(s)
- Paushali Chaudhury
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Chris van der Does
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Kinosita Y, Nishizaka T. Cross-kymography analysis to simultaneously quantify the function and morphology of the archaellum. Biophys Physicobiol 2018; 15:121-128. [PMID: 29955563 PMCID: PMC6018435 DOI: 10.2142/biophysico.15.0_121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
In many microorganisms helical structures are important for motility, e.g., bacterial flagella and kink propagation in Spiroplasma eriocheiris. Motile archaea also form a helical-shaped filament called the ‘archaellum’ that is functionally equivalent to the bacterial flagellum, but structurally resembles type IV pili. The archaellum motor consists of 6–8 proteins called fla accessory genes, and the filament assembly is driven by ATP hydrolysis at catalytic sites in FlaI. Remarkably, previous research using a dark-field microscopy showed that right-handed filaments propelled archaeal cells forwards or backwards by clockwise or counterclockwise rotation, respectively. However, the shape and rotational rate of the archaellum during swimming remained unclear, due to the low signal and lack of temporal resolution. Additionally, the structure and the motor properties of the archaellum and bacterial flagellum have not been precisely determined during swimming because they move freely in three-dimensional space. Recently, we developed an advanced method called “cross-kymography analysis”, which enables us to be a long-term observation and simultaneously quantify the function and morphology of helical structures using a total internal reflection fluorescence microscope. In this review, we introduce the basic idea of this analysis, and summarize the latest information in structural and functional characterization of the archaellum motor.
Collapse
Affiliation(s)
- Yoshiaki Kinosita
- Department of Physics, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | - Takayuki Nishizaka
- Department of Physics, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
26
|
Albers SV, Jarrell KF. The Archaellum: An Update on the Unique Archaeal Motility Structure. Trends Microbiol 2018; 26:351-362. [PMID: 29452953 DOI: 10.1016/j.tim.2018.01.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/08/2018] [Accepted: 01/19/2018] [Indexed: 11/24/2022]
Abstract
Each of the three domains of life exhibits a unique motility structure: while Bacteria use flagella, Eukarya employ cilia, and Archaea swim using archaella. Since the new name for the archaeal motility structure was proposed, in 2012, a significant amount of new data on the regulation of transcription of archaella operons, the structure and function of archaellum subunits, their interactions, and cryo-EM data on in situ archaellum complexes in whole cells have been obtained. These data support the notion that the archaellum is evolutionary and structurally unrelated to the flagellum, but instead is related to archaeal and bacterial type IV pili and emphasize that it is a motility structure unique to the Archaea.
Collapse
Affiliation(s)
- Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II - Microbiology, University of Freiburg, 79104 Freiburg, Germany.
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
27
|
Abstract
Motility is a central feature of many microorganisms and provides an efficient strategy to respond to environmental changes. Bacteria and archaea have developed fundamentally different rotary motors enabling their motility, termed flagellum and archaellum, respectively. Bacterial motility along chemical gradients, called chemotaxis, critically relies on the response regulator CheY, which, when phosphorylated, inverses the rotational direction of the flagellum via a switch complex at the base of the motor. The structural difference between archaellum and flagellum and the presence of functional CheY in archaea raises the question of how the CheY protein changed to allow communication with the archaeal motility machinery. Here we show that archaeal CheY shares the overall structure and mechanism of magnesium-dependent phosphorylation with its bacterial counterpart. However, bacterial and archaeal CheY differ in the electrostatic potential of the helix α4. The helix α4 is important in bacteria for interaction with the flagellar switch complex, a structure that is absent in archaea. We demonstrated that phosphorylation-dependent activation, and conserved residues in the archaeal CheY helix α4, are important for interaction with the archaeal-specific adaptor protein CheF. This forms a bridge between the chemotaxis system and the archaeal motility machinery. Conclusively, archaeal CheY proteins conserved the central mechanistic features between bacteria and archaea, but differ in the helix α4 to allow binding to an archaellum-specific interaction partner.
Collapse
|
28
|
Chaudhury P, Quax TEF, Albers SV. Versatile cell surface structures of archaea. Mol Microbiol 2017; 107:298-311. [PMID: 29194812 DOI: 10.1111/mmi.13889] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 11/27/2022]
Abstract
Archaea are ubiquitously present in nature and colonize environments with broadly varying growth conditions. Several surface appendages support their colonization of new habitats. A hallmark of archaea seems to be the high abundance of type IV pili (T4P). However, some unique non T4 filaments are present in a number of archaeal species. Archaeal surface structures can mediate different processes such as cellular surface adhesion, DNA exchange, motility and biofilm formation and represent an initial attachment site for infecting viruses. In addition to the functionally characterized archaeal T4P, archaeal genomes encode a large number of T4P components that might form yet undiscovered surface structures with novel functions. In this review, we summarize recent advancement in structural and functional characterizations of known archaeal surface structures and highlight the diverse processes in which they play a role.
Collapse
Affiliation(s)
- Paushali Chaudhury
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Tessa E F Quax
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
29
|
Ding Y, Berezuk A, Khursigara CM, Jarrell KF. Bypassing the Need for the Transcriptional Activator EarA through a Spontaneous Deletion in the BRE Portion of the fla Operon Promoter in Methanococcus maripaludis. Front Microbiol 2017; 8:1329. [PMID: 28769898 PMCID: PMC5512572 DOI: 10.3389/fmicb.2017.01329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/30/2017] [Indexed: 11/13/2022] Open
Abstract
In Methanococcus maripaludis, the euryarchaeal archaellum regulator A (EarA) is required for the transcription of the fla operon, which is comprised of a series of genes which encode most of the proteins needed for the formation of the archaeal swimming organelle, the archaellum. In mutants deleted for earA (ΔearA), there is almost undetectable transcription of the fla operon, Fla proteins are not synthesized and the cells are non-archaellated. In this study, we have isolated a spontaneous mutant of a ΔearA mutant in which the restoration of the transcription and translation of the fla operon (using flaB2, the second gene of the operon, as a reporter), archaella formation and swarming motility were all restored even in the absence of EarA. Analysis of the DNA sequence from the fla promoter of this spontaneous mutant revealed a deletion of three adenines within a string of seven adenines in the transcription factor B recognition element (BRE). When the three adenine deletion in the BRE was regenerated in a stock culture of the ΔearA mutant, very similar phenotypes to that of the spontaneous mutant were observed. Deletion of the three adenines in the fla promoter BRE resulted in the mutant BRE having high sequence identity to BREs from promoters that have strong basal transcription level in Mc. maripaludis and Methanocaldococcus jannaschii. These data suggest that EarA may help recruit transcription factor B to a weak BRE in the fla promoter of wild-type cells but is not required for transcription from the fla promoter with a strong BRE, as in the three adenine deletion version in the spontaneous mutant.
Collapse
Affiliation(s)
- Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, KingstonON, Canada
| | - Alison Berezuk
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, GuelphON, Canada
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, KingstonON, Canada
| |
Collapse
|
30
|
Phylogenetic distribution of the euryarchaeal archaellum regulator EarA and complementation of a Methanococcus maripaludis ∆earA mutant with heterologous earA homologues. Microbiology (Reading) 2017; 163:804-815. [DOI: 10.1099/mic.0.000464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
31
|
Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. ISME JOURNAL 2017; 11:1118-1129. [PMID: 28085154 DOI: 10.1038/ismej.2016.189] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/10/2016] [Accepted: 11/19/2016] [Indexed: 01/14/2023]
Abstract
Genomic bins belonging to multiple archaeal lineages were recovered from distinct redox regimes in sediments of the White Oak River estuary. The reconstructed archaeal genomes were identified as belonging to the rice cluster subgroups III and V (RC-III, RC-V), the Marine Benthic Group D (MBG-D), and a newly described archaeal class, the Theionarchaea. The metabolic capabilities of these uncultured archaea were inferred and indicated a common capability for extracellular protein degradation, supplemented by other pathways. The multiple genomic bins within the MBG-D archaea shared a nearly complete reductive acetyl-CoA pathway suggesting acetogenic capabilities. In contrast, the RC-III metabolism appeared centered on the degradation of detrital proteins and production of H2, whereas the RC-V archaea lacked capabilities for protein degradation and uptake, and appeared to be specialized on carbohydrate fermentation. The Theionarchaea appeared as complex metabolic hybrids; encoding a complete tricarboxylic acid cycle permitting carbon (acetyl-CoA) oxidation, together with a complete reductive acetyl-CoA pathway and sulfur reduction by a sulfhydrogenase. The differentiated inferred capabilities of these uncultured archaeal lineages indicated lineage-specific linkages with the nitrogen, carbon and sulfur cycles. The predicted metabolisms of these archaea suggest preferences for distinct geochemical niches within the estuarine sedimentary environment.
Collapse
|
32
|
Poweleit N, Ge P, Nguyen HH, Ogorzalek Loo RR, Gunsalus RP, Zhou ZH. CryoEM structure of the Methanospirillum hungatei archaellum reveals structural features distinct from the bacterial flagellum and type IV pilus. Nat Microbiol 2016; 2:16222. [PMID: 27922015 PMCID: PMC5695567 DOI: 10.1038/nmicrobiol.2016.222] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/07/2016] [Indexed: 11/08/2022]
Abstract
Archaea use flagella known as archaella-distinct both in protein composition and structure from bacterial flagella-to drive cell motility, but the structural basis of this function is unknown. Here, we report an atomic model of the archaella, based on the cryo electron microscopy (cryoEM) structure of the Methanospirillum hungatei archaellum at 3.4 Å resolution. Each archaellum contains ∼61,500 archaellin subunits organized into a curved helix with a diameter of 10 nm and average length of 10,000 nm. The tadpole-shaped archaellin monomer has two domains, a β-barrel domain and a long, mildly kinked α-helix tail. Our structure reveals multiple post-translational modifications to the archaella, including six O-linked glycans and an unusual N-linked modification. The extensive interactions among neighbouring archaellins explain how the long but thin archaellum maintains the structural integrity required for motility-driving rotation. These extensive inter-subunit interactions and the absence of a central pore in the archaellum distinguish it from both the bacterial flagellum and type IV pili.
Collapse
Affiliation(s)
- Nicole Poweleit
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- Electron Imaging Center for Nanomachines, California Nano Systems Institute, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Peng Ge
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- Electron Imaging Center for Nanomachines, California Nano Systems Institute, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Hong H. Nguyen
- Department of Chemistry and Biochemistry, UCLA, Los Angeles 90095, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, UCLA, Los Angeles 90095, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Robert P. Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- The UCLA-DOE Institute, UCLA, Los Angeles, California 90095, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- Electron Imaging Center for Nanomachines, California Nano Systems Institute, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| |
Collapse
|
33
|
Complementation of an aglB Mutant of Methanococcus maripaludis with Heterologous Oligosaccharyltransferases. PLoS One 2016; 11:e0167611. [PMID: 27907170 PMCID: PMC5131992 DOI: 10.1371/journal.pone.0167611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/17/2016] [Indexed: 01/04/2023] Open
Abstract
The oligosaccharyltransferase is the signature enzyme for N-linked glycosylation in all domains of life. In Archaea, this enzyme termed AglB, is responsible for transferring lipid carrier-linked glycans to select asparagine residues in a variety of target proteins including archaellins, S-layer proteins and pilins. This study investigated the ability of a variety of AglBs to compensate for the oligosaccharyltransferase activity in Methanococcus maripaludis deleted for aglB, using archaellin FlaB2 as the reporter protein since all archaellins in Mc. maripaludis are modified at multiple sites by an N-linked tetrasaccharide and this modification is required for archaellation. In the Mc. maripaludis ΔaglB strain FlaB2 runs as at a smaller apparent molecular weight in western blots and is nonarchaellated. We demonstrate that AglBs from Methanococcus voltae and Methanothermococcus thermolithotrophicus functionally replaced the oligosaccharyltransferase activity missing in the Mc. maripaludis ΔaglB strain, both returning the apparent molecular weight of FlaB2 to wildtype size and restoring archaellation. This demonstrates that AglB from Mc. voltae has a relaxed specificity for the linking sugar of the transferred glycan since while the N-linked glycan present in Mc. voltae is similar to that of Mc. maripaludis, the Mc. voltae glycan uses N-acetylglucosamine as the linking sugar. In Mc. maripaludis that role is held by N-acetylgalactosamine. This study also identifies aglB from Mtc. thermolithotrophicus for the first time by its activity. Attempts to use AglB from Methanocaldococcus jannaschii, Haloferax volcanii or Sulfolobus acidocaldarius to functionally replace the oligosaccharyltransferase activity missing in the Mc. maripaludis ΔaglB strain were unsuccessful.
Collapse
|
34
|
Haurat MF, Figueiredo AS, Hoffmann L, Li L, Herr K, J Wilson A, Beeby M, Schaber J, Albers SV. ArnS, a kinase involved in starvation-induced archaellum expression. Mol Microbiol 2016; 103:181-194. [PMID: 27731916 DOI: 10.1111/mmi.13550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Organisms have evolved motility organelles that allow them to move to favourable habitats. Cells integrate environmental stimuli into intracellular signals to motility machineries to direct this migration. Many motility organelles are complex surface appendages that have evolved a tight, hierarchical regulation of expression. In the crenearchaeon Sulfolobus acidocaldarius, biosynthesis of the archaellum is regulated by regulatory network proteins that control expression of archaellum components in a phosphorylation-dependent manner. A major trigger for archaellum expression is nutrient starvation, but although some components are known, the regulatory cascade triggered by starvation is poorly understood. In this work, the starvation-induced Ser/Thr protein kinase ArnS (Saci_1181) which is located proximally to the archaellum operon was identified. Deletion of arnS results in reduced motility, though the archaellum is properly assembled. Therefore, our experimental and modelling results indicate that ArnS plays an essential role in the precisely controlled expression of archaellum components during starvation-induced motility in Sulfolobus acidocaldarius. Furthermore they combined in vivo experiments and mathematical models to describe for the first time in archaea the dynamics of key regulators of archaellum expression.
Collapse
Affiliation(s)
- M Florencia Haurat
- Molecular Biology of Archaea, Institute of Biology II University of Freiburg, Schänzlestrasse 1, Freiburg, 79104, Germany
| | - Ana Sofia Figueiredo
- Institute for Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Pfälzer Platz 2, Magdeburg, 39106, Germany
| | - Lena Hoffmann
- Molecular Biology of Archaea, Institute of Biology II University of Freiburg, Schänzlestrasse 1, Freiburg, 79104, Germany
| | - Lingling Li
- Molecular Biology of Archaea, Institute of Biology II University of Freiburg, Schänzlestrasse 1, Freiburg, 79104, Germany
| | - Katharina Herr
- Molecular Biology of Archaea, Institute of Biology II University of Freiburg, Schänzlestrasse 1, Freiburg, 79104, Germany
| | - Amanda J Wilson
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jörg Schaber
- Institute for Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Pfälzer Platz 2, Magdeburg, 39106, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II University of Freiburg, Schänzlestrasse 1, Freiburg, 79104, Germany
| |
Collapse
|
35
|
Ding Y, Nash J, Berezuk A, Khursigara CM, Langelaan DN, Smith SP, Jarrell KF. Identification of the first transcriptional activator of an archaellum operon in a euryarchaeon. Mol Microbiol 2016; 102:54-70. [PMID: 27314758 DOI: 10.1111/mmi.13444] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 12/21/2022]
Abstract
The archaellum is the swimming organelle of the third domain, the Archaea. In the euryarchaeon Methanococcus maripaludis, genes involved in archaella formation, including the three archaellins flaB1, flaB2 and flaB3, are mainly located in the fla operon. Previous studies have shown that transcription of fla genes and expression of Fla proteins are regulated under different growth conditions. In this study, we identify MMP1718 as the first transcriptional activator that directly regulates the fla operon in M. maripaludis. Mutants carrying an in-frame deletion in mmp1718 did not express FlaB2 detected by western blotting. Quantitative reverse transcription PCR analysis of purified RNA from the Δmmp1718 mutant showed that transcription of flaB2 was negligible compared to wildtype cells. In addition, no archaella were observed on the cell surface of the Δmmp1718 mutant. FlaB2 expression and archaellation were restored when the Δmmp1718 mutant was complemented with mmp1718 in trans. Electrophoretic motility shift assay and isothermal titration calorimetry results demonstrated the specific binding of purified MMP1718 to DNA fragments upstream of the fla promoter. Four 6 bp consensus sequences were found immediately upstream of the fla promoter and are considered the putative MMP1718-binding sites. Herein, we designate MMP1718 as EarA, the first euryarchaeal archaellum regulator.
Collapse
Affiliation(s)
- Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - John Nash
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, N1G 3W4, Canada
| | - Alison Berezuk
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - David N Langelaan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
36
|
Makarova KS, Koonin EV, Albers SV. Diversity and Evolution of Type IV pili Systems in Archaea. Front Microbiol 2016; 7:667. [PMID: 27199977 PMCID: PMC4858521 DOI: 10.3389/fmicb.2016.00667] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/21/2016] [Indexed: 12/25/2022] Open
Abstract
Many surface structures in archaea including various types of pili and the archaellum (archaeal flagellum) are homologous to bacterial type IV pili systems (T4P). The T4P consist of multiple proteins, often with poorly conserved sequences, complicating their identification in sequenced genomes. Here we report a comprehensive census of T4P encoded in archaeal genomes using sensitive methods for protein sequence comparison. This analysis confidently identifies as T4P components about 5000 archaeal gene products, 56% of which are currently annotated as hypothetical in public databases. Combining results of this analysis with a comprehensive comparison of genomic neighborhoods of the T4P, we present models of organization of 10 most abundant variants of archaeal T4P. In addition to the differentiation between major and minor pilins, these models include extra components, such as S-layer proteins, adhesins and other membrane and intracellular proteins. For most of these systems, dedicated major pilin families are identified including numerous stand alone major pilin genes of the PilA family. Evidence is presented that secretion ATPases of the T4P and cognate TadC proteins can interact with different pilin sets. Modular evolution of T4P results in combinatorial variability of these systems. Potential regulatory or modulating proteins for the T4P are identified including KaiC family ATPases, vWA domain-containing proteins and the associated MoxR/GvpN ATPase, TFIIB homologs and multiple unrelated transcription regulators some of which are associated specific T4P. Phylogenomic analysis suggests that at least one T4P system was present in the last common ancestor of the extant archaea. Multiple cases of horizontal transfer and lineage-specific duplication of T4P loci were detected. Generally, the T4P of the archaeal TACK superphylum are more diverse and evolve notably faster than those of euryarchaea. The abundance and enormous diversity of T4P in hyperthermophilic archaea present a major enigma. Apparently, fundamental aspects of the biology of hyperthermophiles remain to be elucidated.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine - National Institutes of Health Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine - National Institutes of Health Bethesda, MD, USA
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg Freiburg, Germany
| |
Collapse
|
37
|
Meshcheryakov VA, Wolf M. Crystal structure of the flagellar accessory protein FlaH of Methanocaldococcus jannaschii suggests a regulatory role in archaeal flagellum assembly. Protein Sci 2016; 25:1147-55. [PMID: 27060465 DOI: 10.1002/pro.2932] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 11/11/2022]
Abstract
Archaeal flagella are unique structures that share functional similarity with bacterial flagella, but are structurally related to bacterial type IV pili. The flagellar accessory protein FlaH is one of the conserved components of the archaeal motility system. However, its function is not clearly understood. Here, we present the 2.2 Å resolution crystal structure of FlaH from the hyperthermophilic archaeon, Methanocaldococcus jannaschii. The protein has a characteristic RecA-like fold, which has been found previously both in archaea and bacteria. We show that FlaH binds to immobilized ATP-however, it lacks ATPase activity. Surface plasmon resonance analysis demonstrates that ATP affects the interaction between FlaH and the archaeal motor protein FlaI. In the presence of ATP, the FlaH-FlaI interaction becomes significantly weaker. A database search revealed similarity between FlaH and several DNA-binding proteins of the RecA superfamily. The closest structural homologs of FlaH are KaiC-like proteins, which are archaeal homologs of the circadian clock protein KaiC from cyanobacteria. We propose that one of the functions of FlaH may be the regulation of archaeal motor complex assembly.
Collapse
Affiliation(s)
- Vladimir A Meshcheryakov
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami, Okinawa 904-0495, Japan
| | - Matthias Wolf
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami, Okinawa 904-0495, Japan
| |
Collapse
|
38
|
Effects of growth conditions on archaellation and N-glycosylation in Methanococcus maripaludis. Microbiology (Reading) 2016; 162:339-350. [DOI: 10.1099/mic.0.000221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
39
|
Ding Y, Jones GM, Brimacombe C, Uchida K, Aizawa SI, Logan SM, Kelly JF, Jarrell KF. Identification of a gene involved in the biosynthesis pathway of the terminal sugar of the archaellin N-linked tetrasaccharide in Methanococcus maripaludis. Antonie van Leeuwenhoek 2015; 109:131-48. [PMID: 26590834 DOI: 10.1007/s10482-015-0615-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
In Methanococcus maripaludis, the three archaellins which comprise the archaellum are modified at multiple sites with an N-linked tetrasaccharide with the structure of Sug-4-β-ManNAc3NAmA6Thr-4-β-GlcNAc3NAcA-3-β-GalNAc, where Sug is a unique sugar (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-L-erythro-hexos-5-ulo-1,5-pyranose, so far found exclusively in this species. In this study, a six-gene cluster mmp1089-1094, neighboring one of the genomic regions already known to contain genes involved with the archaellin N-glycosylation pathway, was examined for its potential involvement in the archaellin N-glycosylation or sugar biosynthesis pathway. The co-transcription of these six genes was demonstrated by RT-PCR. Mutants carrying an in-frame deletion in mmp1090, mmp1091 or mmp1092 were successfully generated. The Δmmp1090 deletion mutant was archaellated when examined by electron microscopy and mass spectrometry analysis of purified archaella showed that the archaellins were modified with a truncated N-glycan in which the terminal sugar residue and the threonine linked to the third sugar residue were missing. Both gene annotation and bioinformatic analyses indicate that MMP1090 is a UDP-glucose 4-epimerase, suggesting that the unique terminal sugar of the archaellin N-glycan might be synthesised from UDP-glucose or UDP-N-acetylglucosamine with an essential early step in synthesis catalysed by MMP1090. In contrast, no detectable phenotype related to archaellin glycosylation was observed in mutants deleted for either mmp1091 or mmp1092 while attempts to delete mmp1089, mmp1093 and mmp1094 were unsuccessful. Based on its demonstrated involvement in the archaellin N-glycosylation pathway, we designated mmp1090 as aglW.
Collapse
Affiliation(s)
- Yan Ding
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada
| | - Gareth M Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada
| | - Cedric Brimacombe
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada
| | - Kaoru Uchida
- Department of Life Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, 727-0023, Japan
| | - Shin-Ichi Aizawa
- Department of Life Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, 727-0023, Japan
| | - Susan M Logan
- Human Health Therapeutics Portfolio, National Research Council, Ottawa, K1A 0R6, Canada
| | - John F Kelly
- Human Health Therapeutics Portfolio, National Research Council, Ottawa, K1A 0R6, Canada.
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada.
| |
Collapse
|
40
|
Chaudhury P, Neiner T, D'Imprima E, Banerjee A, Reindl S, Ghosh A, Arvai AS, Mills DJ, van der Does C, Tainer JA, Vonck J, Albers SV. The nucleotide-dependent interaction of FlaH and FlaI is essential for assembly and function of the archaellum motor. Mol Microbiol 2015; 99:674-85. [PMID: 26508112 PMCID: PMC5019145 DOI: 10.1111/mmi.13260] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 12/24/2022]
Abstract
The motor of the membrane-anchored archaeal motility structure, the archaellum, contains FlaX, FlaI and FlaH. FlaX forms a 30 nm ring structure that acts as a scaffold protein and was shown to interact with the bifunctional ATPase FlaI and FlaH. However, the structure and function of FlaH has been enigmatic. Here we present structural and functional analyses of isolated FlaH and archaellum motor subcomplexes. The FlaH crystal structure reveals a RecA/Rad51 family fold with an ATP bound on a conserved and exposed surface, which presumably forms an oligomerization interface. FlaH does not hydrolyze ATP in vitro, but ATP binding to FlaH is essential for its interaction with FlaI and for archaellum assembly. FlaH interacts with the C-terminus of FlaX, which was earlier shown to be essential for FlaX ring formation and to mediate interaction with FlaI. Electron microscopy reveals that FlaH assembles as a second ring inside the FlaX ring in vitro. Collectively these data reveal central structural mechanisms for FlaH interactions in mediating archaellar assembly: FlaH binding within the FlaX ring and nucleotide-regulated FlaH binding to FlaI form the archaellar basal body core.
Collapse
Affiliation(s)
- Paushali Chaudhury
- Molecular Biology of Archaea, University of Freiburg, Institute of Biology II, Schaenzlestr.1, 79104, Freiburg, Germany
| | - Tomasz Neiner
- Molecular Biology of Archaea, University of Freiburg, Institute of Biology II, Schaenzlestr.1, 79104, Freiburg, Germany
| | - Edoardo D'Imprima
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt, Germany
| | - Ankan Banerjee
- FB- Chemie-Biochemie, AG-Essen, Philipps Universität Marburg, Hans-Meerwein-Straße 4, 35039, Marburg, Germany
| | - Sophia Reindl
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Abhrajyoti Ghosh
- Molecular Biology of Archaea, University of Freiburg, Institute of Biology II, Schaenzlestr.1, 79104, Freiburg, Germany
| | - Andrew S Arvai
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt, Germany
| | - Chris van der Does
- Molecular Biology of Archaea, University of Freiburg, Institute of Biology II, Schaenzlestr.1, 79104, Freiburg, Germany
| | - John A Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, University of Freiburg, Institute of Biology II, Schaenzlestr.1, 79104, Freiburg, Germany
| |
Collapse
|
41
|
Syutkin AS, Pyatibratov MG, Fedorov OV. Flagella of halophilic archaea: differences in supramolecular organization. BIOCHEMISTRY (MOSCOW) 2015; 79:1470-82. [PMID: 25749160 DOI: 10.1134/s0006297914130033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Archaeal flagella are similar functionally to bacterial flagella, but structurally they are completely different. Helical archaeal flagellar filaments are formed of protein subunits called flagellins (archaellins). Notwithstanding progress in studies of archaeal flagella achieved in recent years, many problems in this area are still unsolved. In this review, we analyze the formation of these supramolecular structures by the example of flagellar filaments of halophilic archaea. Recent data on the structure of the flagellar filaments demonstrate that their supramolecular organization differs considerably in different haloarchaeal species.
Collapse
Affiliation(s)
- A S Syutkin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
42
|
FlaF Is a β-Sandwich Protein that Anchors the Archaellum in the Archaeal Cell Envelope by Binding the S-Layer Protein. Structure 2015; 23:863-872. [PMID: 25865246 PMCID: PMC4425475 DOI: 10.1016/j.str.2015.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/19/2015] [Accepted: 03/06/2015] [Indexed: 11/25/2022]
Abstract
Archaea employ the archaellum, a type IV pilus-like nanomachine, for swimming motility. In the crenarchaeon Sulfolobus acidocaldarius, the archaellum consists of seven proteins: FlaB/X/G/F/H/I/J. FlaF is conserved and essential for archaellum assembly but no FlaF structures exist. Here, we truncated the FlaF N terminus and solved 1.5-Å and 1.65-Å resolution crystal structures of this monotopic membrane protein. Structures revealed an N-terminal α-helix and an eight-strand β-sandwich, immunoglobulin-like fold with striking similarity to S-layer proteins. Crystal structures, X-ray scattering, and mutational analyses suggest dimer assembly is needed for in vivo function. The sole cell envelope component of S. acidocaldarius is a paracrystalline S-layer, and FlaF specifically bound to S-layer protein, suggesting that its interaction domain is located in the pseudoperiplasm with its N-terminal helix in the membrane. From these data, FlaF may act as the previously unknown archaellum stator protein that anchors the rotating archaellum to the archaeal cell envelope. This is the first structural and functional study of an archaellum stator component sFlaF is a β-sandwich, immunoglobulin-like dimeric protein FlaF resembles and binds to the S-layer protein FlaF exerts its function in the pseudoperiplasm
Collapse
|
43
|
Evidence that biosynthesis of the second and third sugars of the archaellin Tetrasaccharide in the archaeon Methanococcus maripaludis occurs by the same pathway used by Pseudomonas aeruginosa to make a di-N-acetylated sugar. J Bacteriol 2015; 197:1668-80. [PMID: 25733616 DOI: 10.1128/jb.00040-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/24/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Methanococcus maripaludis has two surface appendages, archaella and type IV pili, which are composed of glycoprotein subunits. Archaellins are modified with an N-linked tetrasaccharide with the structure Sug-1,4-β-ManNAc3NAmA6Thr-1,4-β-GlcNAc3NAcA-1,3-β-GalNAc, where Sug is (5S)-2-acetamido-2,4-dideoxy-5-O-methyl-α-L-erythro-hexos-5-ulo-1,5-pyranose. The pilin glycan has an additional hexose attached to GalNAc. In this study, genes located in two adjacent, divergently transcribed operons (mmp0350-mmp0354 and mmp0359-mmp0355) were targeted for study based on annotations suggesting their involvement in biosynthesis of N-glycan sugars. Mutants carrying deletions in mmp0350, mmp0351, mmp0352, or mmp0353 were nonarchaellated and synthesized archaellins modified with a 1-sugar glycan, as estimated from Western blots. Mass spectroscopy analysis of pili purified from the Δmmp0352 strain confirmed a glycan with only GalNAc, suggesting mmp0350 to mmp0353 were all involved in biosynthesis of the second sugar (GlcNAc3NAcA). The Δmmp0357 mutant was archaellated and had archaellins with a 2-sugar glycan, as confirmed by mass spectroscopy of purified archaella, indicating a role for MMP0357 in biosynthesis of the third sugar (ManNAc3NAmA6Thr). M. maripaludis mmp0350, mmp0351, mmp0352, mmp0353, and mmp0357 are proposed to be functionally equivalent to Pseudomonas aeruginosa wbpABEDI, involved in converting UDP-N-acetylglucosamine to UDP-2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, an O5-specific antigen sugar. Cross-domain complementation of the final step of the P. aeruginosa pathway with mmp0357 supports this hypothesis. IMPORTANCE This work identifies a series of genes in adjacent operons that are shown to encode the enzymes that complete the entire pathway for generation of the second and third sugars of the N-linked tetrasaccharide that modifies archaellins of Methanococcus maripaludis. This posttranslational modification of archaellins is important, as it is necessary for archaellum assembly. Pilins are modified with a different N-glycan consisting of the archaellin tetrasaccharide but with an additional hexose attached to the linking sugar. Mass spectrometry analysis of the pili of one mutant strain provided insight into how this different glycan might ultimately be assembled. This study includes a rare example of an archaeal gene functionally replacing a bacterial gene in a complex sugar biosynthesis pathway.
Collapse
|
44
|
Ding Y, Uchida K, Aizawa SI, Murphy K, Berezuk A, Khursigara CM, Chong JPJ, Jarrell KF. Effects of N-glycosylation site removal in archaellins on the assembly and function of archaella in Methanococcus maripaludis. PLoS One 2015; 10:e0116402. [PMID: 25700084 PMCID: PMC4336324 DOI: 10.1371/journal.pone.0116402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/09/2014] [Indexed: 12/22/2022] Open
Abstract
In Methanococcus maripaludis S2, the swimming organelle, the archaellum, is composed of three archaellins, FlaB1S2, FlaB2S2 and FlaB3S2. All three are modified with an N-linked tetrasaccharide at multiple sites. Disruption of the N-linked glycosylation pathway is known to cause defects in archaella assembly or function. Here, we explored the potential requirement of N-glycosylation of archaellins on archaellation by investigating the effects of eliminating the 4 N-glycosylation sites in the wildtype FlaB2S2 protein in all possible combinations either by Asn to Glu (N to Q) substitution or Asn to Asp (N to D) substitutions of the N-glycosylation sequon asparagine. The ability of these mutant derivatives to complement a non-archaellated ΔflaB2S2 strain was examined by electron microscopy (for archaella assembly) and swarm plates (for analysis of swimming). Western blot results showed that all mutated FlaB2S2 proteins were expressed and of smaller apparent molecular mass compared to wildtype FlaB2S2, consistent with the loss of glycosylation sites. In the 8 single-site mutant complements, archaella were observed on the surface of Q2, D2 and D4 (numbers after N or Q refer to the 1st to 4th glycosylation site). Of the 6 double-site mutation complementations all were archaellated except D1,3. Of the 4 triple-site mutation complements, only D2,3,4 was archaellated. Elimination of all 4 N-glycosylation sites resulted in non-archaellated cells, indicating some minimum amount of archaellin glycosylation was necessary for their incorporation into stable archaella. All complementations that led to a return of archaella also resulted in motile cells with the exception of the D4 version. In addition, a series of FlaB2S2 scanning deletions each missing 10 amino acids was also generated and tested for their ability to complement the ΔflaB2S2 strain. While most variants were expressed, none of them restored archaellation, although FlaB2S2 harbouring a smaller 3-amino acid deletion was able to partially restore archaellation.
Collapse
Affiliation(s)
- Yan Ding
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Kaoru Uchida
- Department of Life Sciences, Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima, Japan
| | - Shin-Ichi Aizawa
- Department of Life Sciences, Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima, Japan
| | - Kathleen Murphy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alison Berezuk
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Cezar M. Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - James P. J. Chong
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Ken F. Jarrell
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
45
|
Abstract
Recent studies on archaeal motility have shown that the archaeal motility structure is unique in several aspects. Although it fulfills the same swimming function as the bacterial flagellum, it is evolutionarily and structurally related to the type IV pilus. This was the basis for the recent proposal to term the archaeal motility structure the "archaellum." This review illustrates the key findings that led to the realization that the archaellum was a novel motility structure and presents the current knowledge about the structural composition, mechanism of assembly and regulation, and the posttranslational modifications of archaella.
Collapse
Affiliation(s)
- Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, University of Freiburg , Freiburg, Germany ; Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology , Marburg, Germany
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, ON, Canada
| |
Collapse
|
46
|
Nair DB, Jarrell KF. Pilin Processing Follows a Different Temporal Route than That of Archaellins in Methanococcus maripaludis. Life (Basel) 2015; 5:85-101. [PMID: 25569238 PMCID: PMC4390842 DOI: 10.3390/life5010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/26/2014] [Indexed: 11/16/2022] Open
Abstract
Methanococcus maripaludis has two different surface appendages: type IV-like pili and archaella. Both structures are believed to be assembled using a bacterial type IV pilus mechanism. Each structure is composed of multiple subunits, either pilins or archaellins. Both pilins and archaellins are made initially as preproteins with type IV pilin-like signal peptides, which must be removed by a prepilin peptidase-like enzyme. This enzyme is FlaK for archaellins and EppA for pilins. In addition, both pilins and archaellins are modified with N-linked glycans. The archaellins possess an N-linked tetrasaccharide while the pilins have a pentasaccharide which consists of the archaellin tetrasaccharide but with an additional sugar, an unidentified hexose, attached to the linking sugar. In this report, we show that archaellins can be processed by FlaK in the absence of N-glycosylation and N-glycosylation can occur on archaellins that still retain their signal peptides. In contrast, pilins are not glycosylated unless they have been acted on by EppA to have the signal peptide removed. However, EppA can still remove signal peptides from non-glycosylated pilins. These findings indicate that there is a difference in the order of the posttranslational modifications of pilins and archaellins even though both are type IV pilin-like proteins.
Collapse
Affiliation(s)
- Divya B Nair
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
47
|
Näther-Schindler DJ, Schopf S, Bellack A, Rachel R, Wirth R. Pyrococcus furiosus flagella: biochemical and transcriptional analyses identify the newly detected flaB0 gene to encode the major flagellin. Front Microbiol 2014; 5:695. [PMID: 25566211 PMCID: PMC4263178 DOI: 10.3389/fmicb.2014.00695] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/24/2014] [Indexed: 11/13/2022] Open
Abstract
We have described previously that the flagella of the Euryarchaeon Pyrococcus furiosus are multifunctional cell appendages used for swimming, adhesion to surfaces and formation of cell-cell connections. Here, we characterize these organelles with respect to their biochemistry and transcription. Flagella were purified by shearing from cells followed by CsCl-gradient centrifugation and were found to consist mainly of a ca. 30 kDa glycoprotein. Polymerization studies of denatured flagella resulted in an ATP-independent formation of flagella-like filaments. The N-terminal sequence of the main flagellin was determined by Edman degradation, but none of the genes in the complete genome code for a protein with that N-terminus. Therefore, we resequenced the respective region of the genome, thereby discovering that the published genome sequence is not correct. A total of 771 bp are missing in the data base, resulting in the correction of the previously unusual N-terminal sequence of flagellin FlaB1 and in the identification of a third flagellin. To keep in line with the earlier nomenclature we call this flaB0. Very interestingly, the previously not identified flaB0 codes for the major flagellin. Transcriptional analyses of the revised flagellar operon identified various different cotranscripts encoding only a single protein in case of FlaB0 and FlaJ or up to five proteins (FlaB0-FlaD). Analysing the RNA of cells from different growth phases, we found that the length and number of detected cotranscript increased over time suggesting that the flagellar operon is transcribed mostly in late exponential and stationary growth phase.
Collapse
Affiliation(s)
- Daniela J Näther-Schindler
- Institute of Microbiology and Archaea Center, University of Regensburg Regensburg, Germany ; Plant Development, Department of Biology I, Biocenter of the Ludwig Maximilian University of Munich Planegg-Martinsried, Germany
| | - Simone Schopf
- Institute of Microbiology and Archaea Center, University of Regensburg Regensburg, Germany ; Department of Biology - Section Environmental Microbiology, Technical University Freiberg Freiberg, Germany
| | - Annett Bellack
- Institute of Microbiology and Archaea Center, University of Regensburg Regensburg, Germany
| | - Reinhard Rachel
- Institute of Microbiology and Archaea Center, University of Regensburg Regensburg, Germany
| | - Reinhard Wirth
- Institute of Microbiology and Archaea Center, University of Regensburg Regensburg, Germany
| |
Collapse
|
48
|
Nair DB, Uchida K, Aizawa SI, Jarrell KF. Genetic analysis of a type IV pili-like locus in the archaeon Methanococcus maripaludis. Arch Microbiol 2014; 196:179-91. [PMID: 24493292 DOI: 10.1007/s00203-014-0956-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/28/2013] [Accepted: 01/24/2014] [Indexed: 12/29/2022]
Abstract
Methanococcus maripaludis is a stringently anaerobic archaeon with two studied surface structures, archaella and type IV pili. Previously, it was shown that three pilin genes (mmp0233 [epdA], mmp0236 [epdB] and mmp0237 [epdC]) located within an 11 gene cluster in the genome were necessary for normal piliation. This study focused on analysis of the remaining genes to determine their potential involvement in piliation. Reverse transcriptase PCR experiments demonstrated the 11 genes formed a single transcriptional unit. Deletions were made in all the non-pilin genes except mmp0231. Electron microscopy revealed that all the genes in the locus except mmp0235 and mmp0238 were essential for piliation. Complementation with a plasmid-borne wild-type copy of the deleted gene restored at least some piliation. We identified genes for an assembly ATPase and two versions of the conserved pilin platform forming protein necessary for pili assembly at a separate genetic locus.
Collapse
Affiliation(s)
- Divya B Nair
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | | | | |
Collapse
|
49
|
Shahapure R, Driessen RP, Haurat MF, Albers SV, Dame RT. The archaellum: a rotating type IV pilus. Mol Microbiol 2014; 91:716-23. [DOI: 10.1111/mmi.12486] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Rajesh Shahapure
- Leiden Institute of Chemistry; Gorlaeus Laboratories; Laboratory of Molecular Genetics and Cell Observatory; Leiden University; Leiden The Netherlands
| | - Rosalie P.C. Driessen
- Leiden Institute of Chemistry; Gorlaeus Laboratories; Laboratory of Molecular Genetics and Cell Observatory; Leiden University; Leiden The Netherlands
| | - M. Florencia Haurat
- Molecular Biology of Archaea; Max Planck Institute for terrestrial Microbiology; Karl-von-Frisch Straße 10 35043 Marburg Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea; Max Planck Institute for terrestrial Microbiology; Karl-von-Frisch Straße 10 35043 Marburg Germany
| | - Remus Th. Dame
- Leiden Institute of Chemistry; Gorlaeus Laboratories; Laboratory of Molecular Genetics and Cell Observatory; Leiden University; Leiden The Netherlands
| |
Collapse
|
50
|
Nair DB, Chung DKC, Schneider J, Uchida K, Aizawa SI, Jarrell KF. Identification of an additional minor pilin essential for piliation in the archaeon Methanococcus maripaludis. PLoS One 2013; 8:e83961. [PMID: 24386316 PMCID: PMC3875500 DOI: 10.1371/journal.pone.0083961] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/11/2013] [Indexed: 11/19/2022] Open
Abstract
Methanococcus maripaludis is an archaeon with two studied surface appendages, archaella and type IV-like pili. Previously, the major structural pilin was identified as MMP1685 and three additional proteins were designated as minor pilins (EpdA, EpdB and EpdC). All of the proteins are likely processed by the pilin-specific prepilin peptidase EppA. Six other genes were identified earlier as likely encoding pilin proteins processed also by EppA. In this study, each of the six genes (mmp0528, mmp0600, mmp0601, mmp0709, mmp0903 and mmp1283) was deleted and the mutants examined by electron microscopy to determine their essentiality for pili formation. While mRNA transcripts of all genes were detected by RT-PCR, only the deletion of mmp1283 led to nonpiliated cells. This strain could be complemented back to a piliated state by supplying a wildtype copy of the mmp1283 gene in trans. This study adds to the complexity of the type IV pili system in M. maripaludis and raises questions about the functions of the remaining five pilin-like genes and whether M. maripaludis under other growth conditions may be able to assemble additional pili-like structures.
Collapse
Affiliation(s)
- Divya B Nair
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Daniel K C Chung
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - James Schneider
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kaoru Uchida
- Department of Life Sciences, Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima, Japan
| | - Shin-Ichi Aizawa
- Department of Life Sciences, Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima, Japan
| | - Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|