1
|
Tsevelkhoroloo M, Shim SH, Lee CR, Hong SK, Hong YS. LacI-Family Transcriptional Regulator DagR Acts as a Repressor of the Agarolytic Pathway Genes in Streptomyces coelicolor A3(2). Front Microbiol 2021; 12:658657. [PMID: 33889146 PMCID: PMC8055832 DOI: 10.3389/fmicb.2021.658657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/08/2021] [Indexed: 11/15/2022] Open
Abstract
Actinobacteria utilize various polysaccharides in the soil as carbon source by degrading them via extracellular hydrolytic enzymes. Agarose, a marine algal polysaccharide composed of D-galactose and 3,6-anhydro-L-galactose (AHG), is one of the carbon sources used by S. coelicolor A3(2). However, little is known about agar hydrolysis in S. coelicolor A3(2), except that the regulation of agar hydrolysis metabolism is strongly inhibited by glucose as in the catabolic pathways of other polysaccharides. In this study, we elucidated the role of DagR in regulating the expression of three agarase genes (dagA, dagB, and dagC) in S. coelicolor A3(2) by developing a dagR-deletion mutant (Δsco3485). We observed that the Δsco3485 mutant had increased mRNA level of the agarolytic pathway genes and 1.3-folds higher agarase production than the wild type strain, indicating that the dagR gene encodes a cluster-suited repressor. Electrophoretic mobility shift assay revealed that DagR bound to the upstream regions of the three agarase genes. DNase 1 footprinting analysis demonstrated that a palindromic sequence present in the upstream region of the three agarase genes was essential for DagR-binding. Uniquely, the DNA-binding activity of DagR was inhibited by AHG, one of the final degradation products of agarose. AHG-induced agarase production was not observed in the Δsco3485 mutant, as opposed to that in the wild type strain. Therefore, DagR acts as a repressor that binds to the promoter region of the agarase genes, inhibits gene expression at the transcriptional level, and is derepressed by AHG. This is the first report on the regulation of gene expression regarding agar metabolism in S. coelicolor A3(2).
Collapse
Affiliation(s)
- Maral Tsevelkhoroloo
- Department of Bioscience and Bioinformatics, Myong-Ji University, Yongin-si, South Korea
| | - So Heon Shim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, South Korea
| | - Chang-Ro Lee
- Department of Bioscience and Bioinformatics, Myong-Ji University, Yongin-si, South Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myong-Ji University, Yongin-si, South Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, South Korea
| |
Collapse
|
2
|
Wu Y, Kang Q, Zhang LL, Bai L. Subtilisin-Involved Morphology Engineering for Improved Antibiotic Production in Actinomycetes. Biomolecules 2020; 10:biom10060851. [PMID: 32503302 PMCID: PMC7356834 DOI: 10.3390/biom10060851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/27/2022] Open
Abstract
In the submerged cultivation of filamentous microbes, including actinomycetes, complex morphology is one of the critical process features for the production of secondary metabolites. Ansamitocin P-3 (AP-3), an antitumor agent, is a secondary metabolite produced by Actinosynnema pretiosum ATCC 31280. An excessive mycelial fragmentation of A. pretiosum ATCC 31280 was observed during the early stage of fermentation. Through comparative transcriptomic analysis, a subtilisin-like serine peptidase encoded gene APASM_4178 was identified to be responsible for the mycelial fragmentation. Mutant WYT-5 with the APASM_4178 deletion showed increased biomass and improved AP-3 yield by 43.65%. We also found that the expression of APASM_4178 is specifically regulated by an AdpA-like protein APASM_1021. Moreover, the mycelial fragmentation was alternatively alleviated by the overexpression of subtilisin inhibitor encoded genes, which also led to a 46.50 ± 0.79% yield increase of AP-3. Furthermore, APASM_4178 was overexpressed in salinomycin-producing Streptomyces albus BK 3-25 and validamycin-producing S. hygroscopicus TL01, which resulted in not only dispersed mycelia in both strains, but also a 33.80% yield improvement of salinomycin to 24.07 g/L and a 14.94% yield improvement of validamycin to 21.46 g/L. In conclusion, our work elucidates the involvement of a novel subtilisin-like serine peptidase in morphological differentiation, and modulation of its expression could be an effective strategy for morphology engineering and antibiotic yield improvement in actinomycetes.
Collapse
Affiliation(s)
- Yuanting Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Li Zhang
- College of Life Science, Tarim University, Alar 843300, China;
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Tarim University, Alar 843300, China;
- Correspondence:
| |
Collapse
|
3
|
Wang R, Kong F, Wu H, Hou B, Kang Y, Cao Y, Duan S, Ye J, Zhang H. Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction. Synth Syst Biotechnol 2020; 5:37-48. [DOI: doi.org/10.1016/j.synbio.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023] Open
|
4
|
Complete genome sequence of high-yield strain S. lincolnensis B48 and identification of crucial mutations contributing to lincomycin overproduction. Synth Syst Biotechnol 2020; 5:37-48. [PMID: 32322696 PMCID: PMC7160387 DOI: 10.1016/j.synbio.2020.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 02/08/2023] Open
Abstract
The lincosamide family antibiotic lincomycin is a widely used antibacterial pharmaceutical generated by Streptomyces lincolnensis, and the high-yield strain B48 produces 2.5 g/L lincomycin, approximately 30-fold as the wild-type strain NRRL 2936. Here, the genome of S. lincolnensis B48 was completely sequenced, revealing a ~10.0 Mb single chromosome with 71.03% G + C content. Based on the genomic information, lincomycin-related primary metabolism network was constructed and the secondary metabolic potential was analyzed. In order to dissect the overproduction mechanism, a comparative genomic analysis with NRRL 2936 was performed. Three large deletions (LDI-III), one large inverted duplication (LID), one long inversion and 80 small variations (including 50 single nucleotide variations, 13 insertions and 17 deletions) were found in B48 genome. Then several crucial mutants contributing to higher production phenotype were validated. Deleting of a MarR-type regulator-encoding gene slinc377 from LDI, and the whole 24.7 kb LDII in NRRL 2936 enhanced lincomycin titer by 244% and 284%, respectively. Besides, lincomycin production of NRRL 2936 was increased to 7.7-fold when a 71 kb supercluster BGC33 from LDIII was eliminated. As for the duplication region, overexpression of the cluster situated genes lmbB2 and lmbU, as well as two novel transcriptional regulator-encoding genes (slinc191 and slinc348) elevated lincomycin titer by 77%, 75%, 114% and 702%, respectively. Furthermore, three negative correlation genes (slinc6156, slinc4481 and slinc6011) on lincomycin biosynthesis, participating in regulation were found out. And surprisingly, inactivation of RNase J-encoding gene slinc6156 and TPR (tetratricopeptide repeat) domain-containing protein-encoding gene slinc4481 achieved lincomycin titer equivalent to 83% and 68% of B48, respectively, to 22.4 and 18.4-fold compared to NRRL 2936. Therefore, the comparative genomics approach combined with confirmatory experiments identified that large fragment deletion, long sequence duplication, along with several mutations of genes, especially regulator genes, are crucial for lincomycin overproduction.
Collapse
|
5
|
Safety evaluation of β-agarase preparations from Streptomyces coelicolor A3(2). Regul Toxicol Pharmacol 2019; 101:142-155. [DOI: 10.1016/j.yrtph.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022]
|
6
|
Gullón S, Mellado RP. The Cellular Mechanisms that Ensure an Efficient Secretion in Streptomyces. Antibiotics (Basel) 2018; 7:E33. [PMID: 29661993 PMCID: PMC6022935 DOI: 10.3390/antibiotics7020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
Gram-positive soil bacteria included in the genus Streptomyces produce a large variety of secondary metabolites in addition to extracellular hydrolytic enzymes. From the industrial and commercial viewpoints, the S. lividans strain has generated greater interest as a host bacterium for the overproduction of homologous and heterologous hydrolytic enzymes as an industrial application, which has considerably increased scientific interest in the characterization of secretion routes in this bacterium. This review will focus on the secretion machinery in S. lividans.
Collapse
Affiliation(s)
- Sonia Gullón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain.
| | - Rafael P Mellado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
7
|
Filippova SN, Vinogradova KA. Programmed cell death as one of the stages of streptomycete differentiation. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717040075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Kim SH, Traag BA, Hasan AH, McDowall KJ, Kim BG, van Wezel GP. Transcriptional analysis of the cell division-related ssg genes in Streptomyces coelicolor reveals direct control of ssgR by AtrA. Antonie van Leeuwenhoek 2015; 108:201-13. [PMID: 26002075 PMCID: PMC4457907 DOI: 10.1007/s10482-015-0479-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/11/2015] [Indexed: 11/26/2022]
Abstract
SsgA-like proteins are a family of actinomycete-specific regulatory proteins that control cell division and spore maturation in streptomycetes. SsgA and SsgB together activate sporulation-specific cell division by controlling the localization of FtsZ. Here we report the identification of novel regulators that control the transcription of the ssgA-like genes. Transcriptional regulators controlling ssg gene expression were identified using a DNA-affinity capture assay. Supporting transcriptional and DNA binding studies showed that the ssgA activator gene ssgR is controlled by the TetR-family regulator AtrA, while the γ-butyrolactone-responsive AdpA (SCO2792) and SlbR (SCO0608) and the metabolic regulator Rok7B7 (SCO6008) were identified as candidate regulators for the cell division genes ssgA, ssgB and ssgG. Transcription of the cell division gene ssgB depended on the sporulation genes whiA and whiH, while ssgR, ssgA and ssgD were transcribed independently of the whi genes. Our work sheds new light on the mechanisms by which sporulation-specific cell division is controlled in Streptomyces.
Collapse
Affiliation(s)
- Songhee H. Kim
- />School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University, Kwanak-gu, Seoul, 151-744 Korea
| | - Bjørn A. Traag
- />Bayer CropScience LP, Biologics, 890 Embarcadero Drive, West Sacramento, CA 95605 USA
| | - Ayad H. Hasan
- />Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Kenneth J. McDowall
- />Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Byung-Gee Kim
- />School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University, Kwanak-gu, Seoul, 151-744 Korea
| | - Gilles P. van Wezel
- />Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| |
Collapse
|
9
|
Abstract
Kalan and colleagues describe an unusual way of activating a "silent" gene cluster for the biosynthesis of a new antibiotic by analyzing and curing the aerial growth defect of an old Streptomyces isolate, Streptomyces calvus. This commentary addresses the broad scientific and historical context and practical and biological significance of this finding.
Collapse
Affiliation(s)
- Keith F Chater
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
10
|
Chandra G, Chater KF. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol Rev 2014; 38:345-79. [PMID: 24164321 PMCID: PMC4255298 DOI: 10.1111/1574-6976.12047] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022] Open
Abstract
To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes.
Collapse
|
11
|
Konovalova A, Søgaard-Andersen L, Kroos L. Regulated proteolysis in bacterial development. FEMS Microbiol Rev 2013; 38:493-522. [PMID: 24354618 DOI: 10.1111/1574-6976.12050] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
Bacteria use proteases to control three types of events temporally and spatially during the processes of morphological development. These events are the destruction of regulatory proteins, activation of regulatory proteins, and production of signals. While some of these events are entirely cytoplasmic, others involve intramembrane proteolysis of a substrate, transmembrane signaling, or secretion. In some cases, multiple proteolytic events are organized into pathways, for example turnover of a regulatory protein activates a protease that generates a signal. We review well-studied and emerging examples and identify recurring themes and important questions for future research. We focus primarily on paradigms learned from studies of model organisms, but we note connections to regulated proteolytic events that govern bacterial adaptation, biofilm formation and disassembly, and pathogenesis.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | | |
Collapse
|
12
|
Salerno P, Persson J, Bucca G, Laing E, Ausmees N, Smith CP, Flärdh K. Identification of new developmentally regulated genes involved in Streptomyces coelicolor sporulation. BMC Microbiol 2013; 13:281. [PMID: 24308424 PMCID: PMC3878966 DOI: 10.1186/1471-2180-13-281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/26/2013] [Indexed: 11/10/2022] Open
Abstract
Background The sporulation of aerial hyphae of Streptomyces coelicolor is a complex developmental process. Only a limited number of the genes involved in this intriguing morphological differentiation programme are known, including some key regulatory genes. The aim of this study was to expand our knowledge of the gene repertoire involved in S. coelicolor sporulation. Results We report a DNA microarray-based investigation of developmentally controlled gene expression in S. coelicolor. By comparing global transcription patterns of the wild-type parent and two mutants lacking key regulators of aerial hyphal sporulation, we found a total of 114 genes that had significantly different expression in at least one of the two mutants compared to the wild-type during sporulation. A whiA mutant showed the largest effects on gene expression, while only a few genes were specifically affected by whiH mutation. Seven new sporulation loci were investigated in more detail with respect to expression patterns and mutant phenotypes. These included SCO7449-7451 that affect spore pigment biogenesis; SCO1773-1774 that encode an L-alanine dehydrogenase and a regulator-like protein and are required for maturation of spores; SCO3857 that encodes a protein highly similar to a nosiheptide resistance regulator and affects spore maturation; and four additional loci (SCO4421, SCO4157, SCO0934, SCO1195) that show developmental regulation but no overt mutant phenotype. Furthermore, we describe a new promoter-probe vector that takes advantage of the red fluorescent protein mCherry as a reporter of cell type-specific promoter activity. Conclusion Aerial hyphal sporulation in S. coelicolor is a technically challenging process for global transcriptomic investigations since it occurs only as a small fraction of the colony biomass and is not highly synchronized. Here we show that by comparing a wild-type to mutants lacking regulators that are specifically affecting processes in aerial hypha, it is possible to identify previously unknown genes with important roles in sporulation. The transcriptomic data reported here should also serve as a basis for identification of further developmentally important genes in future functional studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Klas Flärdh
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden.
| |
Collapse
|
13
|
Guyet A, Gominet M, Benaroudj N, Mazodier P. Regulation of the clpP1clpP2 operon by the pleiotropic regulator AdpA in Streptomyces lividans. Arch Microbiol 2013; 195:831-41. [PMID: 24196782 DOI: 10.1007/s00203-013-0918-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 06/26/2013] [Accepted: 07/26/2013] [Indexed: 11/28/2022]
Abstract
Insertion of an apramycin resistance cassette in the clpP1clpP2 operon (encoding the ClpP1 and ClpP2 peptidase subunits) affects morphological and physiological differentiation of Streptomyces lividans. Another key factor controlling Streptomyces differentiation is the pleiotropic transcriptional regulator AdpA. We have identified a spontaneous missense mutation (-1 frameshift) in the adpA (bldH) open reading frame in a clpP1clpP2 mutant that led to the synthesis of a non-functional AdpA protein. Electrophoretic mobility shift assays showed that AdpA bound directly to clpP1clpP2 promoter region. Quantitative real-time PCR analysis showed that AdpA regulated the clpP1clpP2 operon expression at specific growth times. In vitro, AdpA and ClgR, a transcriptional activator of clpP1clpP2 operon and other genes, were able to bind simultaneously to clpP1 promoter, which suggests that AdpA binding to clpP1 promoter did not affect that of ClgR. This study allowed to uncover an interplay between the ClpP peptidases and AdpA in S. lividans.
Collapse
Affiliation(s)
- Aurélie Guyet
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | |
Collapse
|
14
|
Translocase and major signal peptidase malfunctions affect aerial mycelium formation in Streptomyces lividans. J Biotechnol 2012; 160:112-22. [DOI: 10.1016/j.jbiotec.2012.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/17/2022]
|
15
|
McCormick JR, Flärdh K. Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 2012; 36:206-31. [PMID: 22092088 PMCID: PMC3285474 DOI: 10.1111/j.1574-6976.2011.00317.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 10/29/2011] [Accepted: 10/30/2011] [Indexed: 12/16/2022] Open
Abstract
Streptomyces coelicolor is the genetically best characterized species of a populous genus belonging to the gram-positive Actinobacteria. Streptomycetes are filamentous soil organisms, well known for the production of a plethora of biologically active secondary metabolic compounds. The Streptomyces developmental life cycle is uniquely complex and involves coordinated multicellular development with both physiological and morphological differentiation of several cell types, culminating in the production of secondary metabolites and dispersal of mature spores. This review presents a current appreciation of the signaling mechanisms used to orchestrate the decision to undergo morphological differentiation, and the regulators and regulatory networks that direct the intriguing development of multigenomic hyphae first to form specialized aerial hyphae and then to convert them into chains of dormant spores. This current view of S. coelicolor development is destined for rapid evolution as data from '-omics' studies shed light on gene regulatory networks, new genetic screens identify hitherto unknown players, and the resolution of our insights into the underlying cell biological processes steadily improve.
Collapse
Affiliation(s)
| | - Klas Flärdh
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Rabyk M, Ostash B, Rebets Y, Walker S, Fedorenko V. Streptomyces ghanaensis pleiotropic regulatory gene wblA(gh) influences morphogenesis and moenomycin production. Biotechnol Lett 2011; 33:2481-6. [PMID: 21858667 DOI: 10.1007/s10529-011-0728-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
The wblA(gh) gene, encoding a homologue of the WhiB-family of proteins, was identified in the sequenced genome of moenomycin producer Streptomyces ghanaensis. Deletion of the gene blocked aerial mycelium sporulation and caused a 230% increase in moenomycins production. S. ghanaensis overexpressing SSFG-01620: a homologue of extracellular protease inhibitor SCO0762, whose expression in Streptomyces coelicolor is down-regulated by wblA: showed deficiencies in sporulation similar to that of wblA(gh) knockout strain. The wblA(gh) gene of S. ghanaensis appears to play a negative role in the control of moenomycin biosynthesis and is essential for sporulation.
Collapse
Affiliation(s)
- Mariia Rabyk
- Department of Genetic and Biotechnology, Ivan Franko National University of Lviv, Grushevskogo St. 4, Lviv 79005, Ukraine.
| | | | | | | | | |
Collapse
|
17
|
Fowler-Goldsworthy K, Gust B, Mouz S, Chandra G, Findlay KC, Chater KF. The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). MICROBIOLOGY-SGM 2011; 157:1312-1328. [PMID: 21330440 DOI: 10.1099/mic.0.047555-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Streptomyces coelicolor A3(2) sporulation gene whiB is the paradigm of a family of genes (wbl, whiB-like) that are confined to actinobacteria. The chromosome of S. coelicolor contains 11 wbl genes, among which five are conserved in many actinobacteria: whiB itself; whiD, a sporulation gene; wblC, which is required for multi-drug resistance; and wblA and wblE, whose roles had previously been little studied. We succeeded in disrupting wblA and the six non-conserved genes, but could not disrupt wblE. Although mutations in the six non-conserved wbl genes (including some multiple wbl mutants) produced no readily detectable phenotype, mutations in wblA had novel and complex effects. The aerial mycelium of wblA mutants was coloured red, because of the ectopic presence of pigmented antibiotics (actinorhodin and undecylprodigiosin) normally confined to lower parts of wild-type colonies, and consisted almost entirely of non-sporulating, thin, straight filaments, often bundled together in a fibrillar matrix. Rare spore chains were also formed, which exhibited wild-type properties but were genetically still wblA mutants. A wblA mutant achieved higher biomass than the wild-type. Microarray analysis indicated major transcriptional changes in a wblA mutant: using a relatively stringent cut-off, 183 genes were overexpressed, including genes for assimilative primary metabolism and actinorhodin biosynthesis, and 103 were underexpressed, including genes associated with stages of aerial hyphal growth. We suggest that WblA is important in both the slow-down of biomass accumulation and the change from aerial hyphal initial cells to the subapical stem and apical compartments that precede sporulation; and that the mutant aerial mycelium consists of recapitulated defective aerial hyphal initial cells.
Collapse
Affiliation(s)
- Kay Fowler-Goldsworthy
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Bertolt Gust
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Sébastien Mouz
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| |
Collapse
|
18
|
Willey JM, Gaskell AA. Morphogenetic Signaling Molecules of the Streptomycetes. Chem Rev 2010; 111:174-87. [DOI: 10.1021/cr1000404] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joanne M. Willey
- Department of Biology, Hofstra University, Hempstead, New York 11549, United States, and Hofstra University-North Shore-Long Island Jewish School of Medicine, Hempstead, New York 11549, United States
| | - Alisa A. Gaskell
- Department of Biology, Hofstra University, Hempstead, New York 11549, United States, and Hofstra University-North Shore-Long Island Jewish School of Medicine, Hempstead, New York 11549, United States
| |
Collapse
|
19
|
Den Hengst CD, Tran NT, Bibb MJ, Chandra G, Leskiw BK, Buttner MJ. Genes essential for morphological development and antibiotic production in Streptomyces coelicolor are targets of BldD during vegetative growth. Mol Microbiol 2010; 78:361-79. [DOI: 10.1111/j.1365-2958.2010.07338.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H. The complex extracellular biology ofStreptomyces. FEMS Microbiol Rev 2010; 34:171-98. [DOI: 10.1111/j.1574-6976.2009.00206.x] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
21
|
Kurucová A, Farkasová E, Varecka L, Simkovic M. Spontaneous and protein-induced secretion of proteinases from Saccharomyces cerevisiae. J Basic Microbiol 2010; 49:545-52. [PMID: 19810045 DOI: 10.1002/jobm.200900068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many fungi are capable of secreting the wide spectrum of hydrolytic enzymes. We characterized an inducible proteinase secretion in yeasts, Saccharomyces cerevisiae. The proteinase secretion by S. cerevisiae was induced in the presence of yeast extract, or of purified proteins, such as bovine serum albumin, casein, or ovalbumin, and some proteolytic activity was present also without protein inducer. We found that properties of proteinases induced under cultivation conditions were different in various aspects (temperature- and pH-dependencies, substrate specificities, sensitivities to proteinase inhibitors). Proteinase activities were also characterized by gelatin zymography. Multiple proteinase bands with wide-molecular weights (ranging from 45 to 240 kDa) were detected and patterns of proteinase bands were different. S. cerevisiae cells were able to retain the information about previous contacts with protein inducer resulting in faster and more intensive proteinase secretion response after repeated induction.
Collapse
Affiliation(s)
- Anita Kurucová
- Department of Biochemistry and Microbiology, Institute of Biochemistry, Nutrition and Health Protection, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
22
|
Xu W, Huang J, Lin R, Shi J, Cohen SN. Regulation of morphological differentiation in S. coelicolor by RNase III (AbsB) cleavage of mRNA encoding the AdpA transcription factor. Mol Microbiol 2010; 75:781-91. [PMID: 20059679 PMCID: PMC2936110 DOI: 10.1111/j.1365-2958.2009.07023.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNase III family enzymes, which are perhaps the most widely conserved of all ribonucleases, are known primarily for their role in the processing and maturation of small RNAs. The RNase III gene of Streptomyces coelicolor, which was discovered initially as a global regulator of antibiotic production in this developmentally complex bacterial species and named absB (antibiotic biosynthesis gene B), has subsequently also been found to modulate the cellular abundance of multiple messenger RNAs implicated in morphological differentiation. We report here that regulation of differentiation-related mRNAs by the S. coelicolor AbsB/RNase III enzyme occurs largely by ribonucleolytic cleavage of transcripts encoding the pleiotropic transcription factor, AdpA, and that AdpA and AbsB participate in a novel feedback-control loop that reciprocally regulates the cellular levels of both proteins. Our results reveal a previously unsuspected mechanism for global ribonuclease-mediated control of gene expression in streptomycetes.
Collapse
Affiliation(s)
- Weijing Xu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
23
|
Worrall JAR, Vijgenboom E. Copper mining in Streptomyces: enzymes, natural products and development. Nat Prod Rep 2010; 27:742-56. [DOI: 10.1039/b804465c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Akanuma G, Hara H, Ohnishi Y, Horinouchi S. Dynamic changes in the extracellular proteome caused by absence of a pleiotropic regulator AdpA in Streptomyces griseus. Mol Microbiol 2009; 73:898-912. [PMID: 19678896 DOI: 10.1111/j.1365-2958.2009.06814.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Streptomyces griseus, A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) triggers morphological development and secondary metabolism by inducing a pleiotropic transcriptional regulator AdpA. Extracellular proteome analysis of the wild-type and DeltaadpA strains grown to the end of the exponential phase in liquid minimal medium revealed that 38 secreted proteins, including many catabolic enzymes, such as protease, glycosyl hydrolase and esterase, were produced in an AdpA-dependent manner. Transcriptome analysis showed that almost all of these AdpA-dependent secreted proteins were regulated at the transcriptional level. In vitro AdpA-binding assays and determination of transcriptional start sites led to identification of 11 promoters as novel targets of AdpA. Viability staining revealed that some hyphae lysed during the exponential growth phase, which could explain the detection of 3 and 23 cytoplasmic proteins in the culture media of the wild-type and DeltaadpA strains respectively. In the wild-type strain, due to high protease activity in the culture medium, cytoplasmic proteins that leaked from dead cells seemed to be degraded and reused for the further growth. The existence of many AdpA-dependent (i.e. A-factor-inducible) secreted catabolic enzymes, which are likely involved in the assimilation of material that leaked from dead cells, reemphasizes the importance of A-factor in the morphological differentiation of S. griseus.
Collapse
Affiliation(s)
- Genki Akanuma
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|