1
|
Vaňková Hausnerová V, Shoman M, Kumar D, Schwarz M, Modrák M, Jirát Matějčková J, Mikesková E, Neva S, Herrmannová A, Šiková M, Halada P, Novotná I, Pajer P, Valášek LS, Převorovský M, Krásný L, Hnilicová J. RIP-seq reveals RNAs that interact with RNA polymerase and primary sigma factors in bacteria. Nucleic Acids Res 2024; 52:4604-4626. [PMID: 38348908 PMCID: PMC11077062 DOI: 10.1093/nar/gkae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 05/09/2024] Open
Abstract
Bacteria have evolved structured RNAs that can associate with RNA polymerase (RNAP). Two of them have been known so far-6S RNA and Ms1 RNA but it is unclear if any other types of RNAs binding to RNAP exist in bacteria. To identify all RNAs interacting with RNAP and the primary σ factors, we have established and performed native RIP-seq in Bacillus subtilis, Corynebacterium glutamicum, Streptomyces coelicolor, Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis. Besides known 6S RNAs in B. subtilis and Ms1 in M. smegmatis, we detected MTS2823, a homologue of Ms1, on RNAP in M. tuberculosis. In C. glutamicum, we discovered novel types of structured RNAs that associate with RNAP. Furthermore, we identified other species-specific RNAs including full-length mRNAs, revealing a previously unknown landscape of RNAs interacting with the bacterial transcription machinery.
Collapse
Affiliation(s)
- Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Mahmoud Shoman
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Dilip Kumar
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Marek Schwarz
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Martin Modrák
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Department of Bioinformatics, Second Faculty of Medicine, Charles University, Prague150 06, Czech Republic
| | - Jitka Jirát Matějčková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Eliška Mikesková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Silvia Neva
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Petr Halada
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Vestec252 50, Czech Republic
| | - Iva Novotná
- Military Health Institute, Military Medical Agency, Prague169 02, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Prague169 02, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Prague128 00, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague142 20, Czech Republic
- Laboratory of Regulatory RNAs, Faculty of Science, Charles University, Prague128 44, Czech Republic
| |
Collapse
|
2
|
Vaňková Hausnerová V, Marvalová O, Šiková M, Shoman M, Havelková J, Kambová M, Janoušková M, Kumar D, Halada P, Schwarz M, Krásný L, Hnilicová J, Pánek J. Ms1 RNA Interacts With the RNA Polymerase Core in Streptomyces coelicolor and Was Identified in Majority of Actinobacteria Using a Linguistic Gene Synteny Search. Front Microbiol 2022; 13:848536. [PMID: 35633709 PMCID: PMC9130861 DOI: 10.3389/fmicb.2022.848536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Bacteria employ small non-coding RNAs (sRNAs) to regulate gene expression. Ms1 is an sRNA that binds to the RNA polymerase (RNAP) core and affects the intracellular level of this essential enzyme. Ms1 is structurally related to 6S RNA that binds to a different form of RNAP, the holoenzyme bearing the primary sigma factor. 6S RNAs are widespread in the bacterial kingdom except for the industrially and medicinally important Actinobacteria. While Ms1 RNA was identified in Mycobacterium, it is not clear whether Ms1 RNA is present also in other Actinobacteria species. Here, using a computational search based on secondary structure similarities combined with a linguistic gene synteny approach, we identified Ms1 RNA in Streptomyces. In S. coelicolor, Ms1 RNA overlaps with the previously annotated scr3559 sRNA with an unknown function. We experimentally confirmed that Ms1 RNA/scr3559 associates with the RNAP core without the primary sigma factor HrdB in vivo. Subsequently, we applied the computational approach to other Actinobacteria and identified Ms1 RNA candidates in 824 Actinobacteria species, revealing Ms1 RNA as a widespread class of RNAP binding sRNAs, and demonstrating the ability of our multifactorial computational approach to identify weakly conserved sRNAs in evolutionarily distant genomes.
Collapse
Affiliation(s)
- Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Marvalová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Mahmoud Shoman
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Havelková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Milada Kambová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martina Janoušková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Dilip Kumar
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Halada
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czechia
| | - Marek Schwarz
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Josef Pánek
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Ganapathy S, Wiegard JC, Hartmann RK. Rapid preparation of 6S RNA-free B. subtilis σ A-RNA polymerase and σ A. J Microbiol Methods 2021; 190:106324. [PMID: 34506811 DOI: 10.1016/j.mimet.2021.106324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
The regulatory 6S-1 and 6S-2 RNAs of B. subtilis bind to the housekeeping RNA polymerase holoenzyme (σA-RNAP) with submicromolar affinity. We observed copurification of endogenous 6S RNAs from a published B. subtilis strain expressing a His-tagged RNAP. Such 6S RNA contaminations in σA-RNAP preparations reduce the fraction of enzymes that are accessible for binding to DNA promoters. In addition, this leads to background RNA synthesis by σA-RNAP utilizing copurified 6S RNA as template for the synthesis of short abortive transcripts termed product RNAs (pRNAs). To avoid this problem we constructed a B. subtilis strain expressing His-tagged RNAP but carrying deletions of the two 6S RNA genes. The His-tagged, 6S RNA-free σA-RNAP holoenzyme can be prepared with sufficient purity and activity by a single affinity step. We also report expression and separate purification of B. subtilis σA that can be added to the His-tagged RNAP to maximize the amount of holoenzyme and, by inference, in vitro transcription activity.
Collapse
Affiliation(s)
- Sweetha Ganapathy
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Jana Christin Wiegard
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany.
| |
Collapse
|
4
|
Wassarman KM. 6S RNA, a Global Regulator of Transcription. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0019-2018. [PMID: 29916345 PMCID: PMC6013841 DOI: 10.1128/microbiolspec.rwr-0019-2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/06/2023] Open
Abstract
6S RNA is a small RNA regulator of RNA polymerase (RNAP) that is present broadly throughout the bacterial kingdom. Initial functional studies in Escherichia coli revealed that 6S RNA forms a complex with RNAP resulting in regulation of transcription, and cells lacking 6S RNA have altered survival phenotypes. The last decade has focused on deepening the understanding of several aspects of 6S RNA activity, including (i) addressing questions of how broadly conserved 6S RNAs are in diverse organisms through continued identification and initial characterization of divergent 6S RNAs; (ii) the nature of the 6S RNA-RNAP interaction through examination of variant proteins and mutant RNAs, cross-linking approaches, and ultimately a cryo-electron microscopic structure; (iii) the physiological consequences of 6S RNA function through identification of the 6S RNA regulon and promoter features that determine 6S RNA sensitivity; and (iv) the mechanism and cellular impact of 6S RNA-directed synthesis of product RNAs (i.e., pRNA synthesis). Much has been learned about this unusual RNA, its mechanism of action, and how it is regulated; yet much still remains to be investigated, especially regarding potential differences in behavior of 6S RNAs in diverse bacteria.
Collapse
Affiliation(s)
- Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53562
| |
Collapse
|
5
|
Chen J, Wassarman KM, Feng S, Leon K, Feklistov A, Winkelman JT, Li Z, Walz T, Campbell EA, Darst SA. 6S RNA Mimics B-Form DNA to Regulate Escherichia coli RNA Polymerase. Mol Cell 2017; 68:388-397.e6. [PMID: 28988932 DOI: 10.1016/j.molcel.2017.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/11/2017] [Accepted: 09/05/2017] [Indexed: 01/25/2023]
Abstract
Noncoding RNAs (ncRNAs) regulate gene expression in all organisms. Bacterial 6S RNAs globally regulate transcription by binding RNA polymerase (RNAP) holoenzyme and competing with promoter DNA. Escherichia coli (Eco) 6S RNA interacts specifically with the housekeeping σ70-holoenzyme (Eσ70) and plays a key role in the transcriptional reprogramming upon shifts between exponential and stationary phase. Inhibition is relieved upon 6S RNA-templated RNA synthesis. We report here the 3.8 Å resolution structure of a complex between 6S RNA and Eσ70 determined by single-particle cryo-electron microscopy and validation of the structure using footprinting and crosslinking approaches. Duplex RNA segments have A-form C3' endo sugar puckers but widened major groove widths, giving the RNA an overall architecture that mimics B-form promoter DNA. Our results help explain the specificity of Eco 6S RNA for Eσ70 and show how an ncRNA can mimic B-form DNA to directly regulate transcription by the DNA-dependent RNAP.
Collapse
Affiliation(s)
- James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Shili Feng
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Katherine Leon
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Andrey Feklistov
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jared T Winkelman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zongli Li
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 10065, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA.
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
6
|
Santillán O, Ramírez-Romero MA, Lozano L, Checa A, Encarnación SM, Dávila G. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli. Front Microbiol 2016; 7:1078. [PMID: 27468278 PMCID: PMC4943231 DOI: 10.3389/fmicb.2016.01078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/27/2016] [Indexed: 11/13/2022] Open
Abstract
Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria.
Collapse
Affiliation(s)
- Orlando Santillán
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | | | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Alberto Checa
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Sergio M Encarnación
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Guillermo Dávila
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico; Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de MéxicoJuriquilla, Mexico
| |
Collapse
|
7
|
Abstract
Over the last decade, small (often noncoding) RNA molecules have been discovered as important regulators influencing myriad aspects of bacterial physiology and virulence. In particular, small RNAs (sRNAs) have been implicated in control of both primary and secondary metabolic pathways in many bacterial species. This chapter describes characteristics of the major classes of sRNA regulators, and highlights what is known regarding their mechanisms of action. Specific examples of sRNAs that regulate metabolism in gram-negative bacteria are discussed, with a focus on those that regulate gene expression by base pairing with mRNA targets to control their translation and stability.
Collapse
|
8
|
van Nues RW, Castro-Roa D, Yuzenkova Y, Zenkin N. Ribonucleoprotein particles of bacterial small non-coding RNA IsrA (IS61 or McaS) and its interaction with RNA polymerase core may link transcription to mRNA fate. Nucleic Acids Res 2015; 44:2577-92. [PMID: 26609136 PMCID: PMC4824073 DOI: 10.1093/nar/gkv1302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/08/2015] [Indexed: 11/23/2022] Open
Abstract
Coupled transcription and translation in bacteria are tightly regulated. Some small RNAs (sRNAs) control aspects of this coupling by modifying ribosome access or inducing degradation of the message. Here, we show that sRNA IsrA (IS61 or McaS) specifically associates with core enzyme of RNAP in vivo and in vitro, independently of σ factor and away from the main nucleic-acids-binding channel of RNAP. We also show that, in the cells, IsrA exists as ribonucleoprotein particles (sRNPs), which involve a defined set of proteins including Hfq, S1, CsrA, ProQ and PNPase. Our findings suggest that IsrA might be directly involved in transcription or can participate in regulation of gene expression by delivering proteins associated with it to target mRNAs through its interactions with transcribing RNAP and through regions of sequence-complementarity with the target. In this eukaryotic-like model only in the context of a complex with its target, IsrA and its associated proteins become active. In this manner, in the form of sRNPs, bacterial sRNAs could regulate a number of targets with various outcomes, depending on the set of associated proteins.
Collapse
Affiliation(s)
- Rob W van Nues
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Daniel Castro-Roa
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| |
Collapse
|
9
|
Burenina OY, Elkina DA, Hartmann RK, Oretskaya TS, Kubareva EA. Small noncoding 6S RNAs of bacteria. BIOCHEMISTRY (MOSCOW) 2015; 80:1429-46. [DOI: 10.1134/s0006297915110048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Cavanagh AT, Wassarman KM. 6S RNA, a Global Regulator of Transcription inEscherichia coli,Bacillus subtilis, and Beyond. Annu Rev Microbiol 2014; 68:45-60. [DOI: 10.1146/annurev-micro-092611-150135] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amy T. Cavanagh
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706;
| | - Karen M. Wassarman
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706;
| |
Collapse
|
11
|
Identification of novel small RNAs and characterization of the 6S RNA of Coxiella burnetii. PLoS One 2014; 9:e100147. [PMID: 24949863 PMCID: PMC4064990 DOI: 10.1371/journal.pone.0100147] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/20/2014] [Indexed: 11/30/2022] Open
Abstract
Coxiella burnetii, an obligate intracellular bacterial pathogen that causes Q fever, undergoes a biphasic developmental cycle that alternates between a metabolically-active large cell variant (LCV) and a dormant small cell variant (SCV). As such, the bacterium undoubtedly employs complex modes of regulating its lifecycle, metabolism and pathogenesis. Small RNAs (sRNAs) have been shown to play important regulatory roles in controlling metabolism and virulence in several pathogenic bacteria. We hypothesize that sRNAs are involved in regulating growth and development of C. burnetii and its infection of host cells. To address the hypothesis and identify potential sRNAs, we subjected total RNA isolated from Coxiella cultured axenically and in Vero host cells to deep-sequencing. Using this approach, we identified fifteen novel C. burnetii sRNAs (CbSRs). Fourteen CbSRs were validated by Northern blotting. Most CbSRs showed differential expression, with increased levels in LCVs. Eight CbSRs were upregulated (≥2-fold) during intracellular growth as compared to growth in axenic medium. Along with the fifteen sRNAs, we also identified three sRNAs that have been previously described from other bacteria, including RNase P RNA, tmRNA and 6S RNA. The 6S regulatory sRNA of C. burnetii was found to accumulate over log phase-growth with a maximum level attained in the SCV stage. The 6S RNA-encoding gene (ssrS) was mapped to the 5′ UTR of ygfA; a highly conserved linkage in eubacteria. The predicted secondary structure of the 6S RNA possesses three highly conserved domains found in 6S RNAs of other eubacteria. We also demonstrate that Coxiella’s 6S RNA interacts with RNA polymerase (RNAP) in a specific manner. Finally, transcript levels of 6S RNA were found to be at much higher levels when Coxiella was grown in host cells relative to axenic culture, indicating a potential role in regulating the bacterium’s intracellular stress response by interacting with RNAP during transcription.
Collapse
|
12
|
Mikulík K, Bobek J, Zídková J, Felsberg J. 6S RNA modulates growth and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol 2014; 98:7185-97. [DOI: 10.1007/s00253-014-5806-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/26/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
13
|
Steuten B, Hoch PG, Damm K, Schneider S, Köhler K, Wagner R, Hartmann RK. Regulation of transcription by 6S RNAs: insights from the Escherichia coli and Bacillus subtilis model systems. RNA Biol 2014; 11:508-21. [PMID: 24786589 DOI: 10.4161/rna.28827] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Whereas, the majority of bacterial non-coding RNAs and functional RNA elements regulate post-transcriptional processes, either by interacting with other RNAs via base-pairing or through binding of small ligands (riboswitches), 6S RNAs affect transcription itself by binding to the housekeeping holoenzyme of RNA polymerase (RNAP). Remarkably, 6S RNAs serve as RNA templates for bacterial RNAP, giving rise to the de novo synthesis of short transcripts, termed pRNAs (product RNAs). Hence, 6S RNAs prompt the enzyme to act as an RNA-dependent RNA polymerase (RdRP). Synthesis of pRNAs exceeding a certain length limit (~13 nt) persistently rearrange the 6S RNA structure, which in turn, disrupts the 6S RNA:RNAP complex. This pRNA synthesis-mediated "reanimation" of sequestered RNAP molecules represents the conceivably fastest mechanism for resuming transcription in cells that enter a new exponential growth phase. The many different 6S RNAs found in a wide variety of bacteria do not share strong sequence homology but have in common a conserved rod-shaped structure with a large internal loop, termed the central bulge; this architecture mediates specific binding to the active site of RNAP. In this article, we summarize the overall state of knowledge as well as very recent findings on the structure, function, and physiological effects of 6S RNA examples from the two model organisms, Escherichia coli and Bacillus subtilis. Comparison of the presently known properties of 6S RNAs in the two organisms highlights common principles as well as diverse features.
Collapse
Affiliation(s)
- Benedikt Steuten
- Heinrich-Heine-Universität Düsseldorf; Institut für Physikalische Biologie Universitätsstr; Düsseldorf, Germany
| | | | - Katrin Damm
- Philipps-Universität Marburg; Marburg, Germany
| | - Sabine Schneider
- Heinrich-Heine-Universität Düsseldorf; Institut für Physikalische Biologie Universitätsstr; Düsseldorf, Germany
| | | | - Rolf Wagner
- Heinrich-Heine-Universität Düsseldorf; Institut für Physikalische Biologie Universitätsstr; Düsseldorf, Germany
| | | |
Collapse
|
14
|
Nitzan M, Wassarman KM, Biham O, Margalit H. Global regulation of transcription by a small RNA: a quantitative view. Biophys J 2014; 106:1205-14. [PMID: 24606944 DOI: 10.1016/j.bpj.2014.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/02/2014] [Accepted: 01/10/2014] [Indexed: 11/16/2022] Open
Abstract
Small RNAs are integral regulators of bacterial gene expression, the majority of which act posttranscriptionally by basepairing with target mRNAs, altering translation or mRNA stability. 6S RNA, however, is a small RNA that is a transcriptional regulator, acting by binding directly to σ(70)-RNA polymerase (σ(70)-RNAP) and preventing its binding to gene promoters. At the transition from exponential to stationary phase, 6S RNA accumulates and globally downregulates the transcription of hundreds of genes. At the transition from stationary to exponential phase (outgrowth), 6S RNA is released from σ(70)-RNAP, resulting in a fast increase in free σ(70)-RNAP and transcription of many genes. The transition from stationary to exponential phase is sharp, and is thus accessible for experimental study. However, the transition from exponential to stationary phase is gradual and complicated by changes in other factors, making it more difficult to isolate 6S RNA effects experimentally at this transition. Here, we use mathematical modeling and simulation to study the dynamics of 6S RNA-dependent regulation, focusing on transitions in growth mediated by altered nutrient availability. We first show that our model reproduces the sharp increase in σ(70)-RNAP at outgrowth, as well as the behavior of two experimentally tested mutants, thus justifying its use for characterizing the less accessible dynamics of the transition from exponential to stationary phase. We characterize the dynamics of the two transitions for Escherichia coli wild-type, as well as for mutants with various 6S RNA-RNAP affinities, demonstrating that the 6S RNA regulation mechanism is generally robust to a wide range of such mutations, although the level of regulation at single promoters and their resulting expression fold change will be altered with changes in affinity. Our results provide insight into the potential advantage of transcription regulation by 6S RNA, as it enables storage and efficient release of σ(70)-RNAP during transitions in nutrient availability, which is likely to give a competitive advantage to cells encountering diverse environmental conditions.
Collapse
Affiliation(s)
- Mor Nitzan
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel; Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Ofer Biham
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
| | - Hanah Margalit
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
15
|
Kang Z, Zhang C, Zhang J, Jin P, Zhang J, Du G, Chen J. Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 2014; 98:3413-24. [DOI: 10.1007/s00253-014-5569-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 12/17/2022]
|
16
|
Steuten B, Schneider S, Wagner R. 6S RNA: recent answers--future questions. Mol Microbiol 2014; 91:641-8. [PMID: 24308327 DOI: 10.1111/mmi.12484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2013] [Indexed: 01/31/2023]
Abstract
6S RNA is a non-coding RNA, found in almost all phylogenetic branches of bacteria. Through its conserved secondary structure, resembling open DNA promoters, it binds to RNA polymerase and interferes with transcription at many promoters. That way, it functions as transcriptional regulator facilitating adaptation to stationary phase conditions. Strikingly, 6S RNA acts as template for the synthesis of small RNAs (pRNA), which trigger the disintegration of the inhibitory RNA polymerase-6S RNA complex releasing 6S RNA-dependent repression. The regulatory implications of 6S RNAs vary among different bacterial species depending on the lifestyle and specific growth conditions that they have to face. The influence of 6S RNA can be seen on many different processes including stationary growth, sporulation, light adaptation or intracellular growth of pathogenic bacteria. Recent structural and functional studies have yielded details of the interaction between E. coli 6S RNA and RNA polymerase. Genome-wide transcriptome analyses provided insight into the functional diversity of 6S RNAs. Moreover, the mechanism and physiological consequences of pRNA synthesis have been explored in several systems. A major function of 6S RNA as a guardian regulating the economic use of cellular resources under limiting conditions and stress emerges as a common perception from numerous recent studies.
Collapse
Affiliation(s)
- Benedikt Steuten
- Molecular Biology of Bacteria, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | | | | |
Collapse
|
17
|
Mapping the Spatial Neighborhood of the Regulatory 6S RNA Bound to Escherichia coli RNA Polymerase Holoenzyme. J Mol Biol 2013; 425:3649-61. [DOI: 10.1016/j.jmb.2013.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/28/2013] [Accepted: 07/04/2013] [Indexed: 11/15/2022]
|
18
|
Abstract
Besides canonical double-strand DNA promoters, multisubunit RNAPs (RNA polymerases) recognize a number of specific single-strand DNA and RNA templates, resulting in synthesis of various types of RNA transcripts. The general recognition principles and the mechanisms of transcription initiation on these templates are not fully understood. To investigate further the molecular mechanisms underlying the transcription of single-strand templates by bacterial RNAP, we selected high-affinity single-strand DNA aptamers that are specifically bound by RNAP holoenzyme, and characterized a novel class of aptamer-based transcription templates. The aptamer templates have a hairpin structure that mimics the upstream part of the open promoter bubble with accordingly placed specific promoter elements. The affinity of the RNAP holoenzyme to such DNA structures probably underlies its promoter-melting activity. Depending on the template structure, the aptamer templates can direct synthesis of productive RNA transcripts or effectively trap RNAP in the process of abortive synthesis, involving DNA scrunching, and competitively inhibit promoter recognition. The aptamer templates provide a novel tool for structure-function studies of transcription initiation by bacterial RNAP and its inhibition.
Collapse
|
19
|
Cabrera-Ostertag IJ, Cavanagh AT, Wassarman KM. Initiating nucleotide identity determines efficiency of RNA synthesis from 6S RNA templates in Bacillus subtilis but not Escherichia coli. Nucleic Acids Res 2013; 41:7501-11. [PMID: 23761441 PMCID: PMC3753640 DOI: 10.1093/nar/gkt517] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 6S RNA is a non-coding small RNA that binds within the active site of housekeeping forms of RNA polymerases (e.g. Eσ70 in Escherichia coli, EσA in Bacillus subtilis) and regulates transcription. Efficient release of RNA polymerase from 6S RNA regulation during outgrowth from stationary phase is dependent on use of 6S RNA as a template to generate a product RNA (pRNA). Interestingly, B. subtilis has two 6S RNAs, 6S-1 and 6S-2, but only 6S-1 RNA appears to be used efficiently as a template for pRNA synthesis during outgrowth. Here, we demonstrate that the identity of the initiating nucleotide is particularly important for the B. subtilis RNA polymerase to use RNA templates. Specifically, initiation with guanosine triphosphate (GTP) is required for efficient pRNA synthesis, providing mechanistic insight into why 6S-2 RNA does not support robust pRNA synthesis as it initiates with adenosine triphosphate (ATP). Intriguingly, E. coli RNA polymerase does not have a strong preference for initiating nucleotide identity. These observations highlight an important difference in biochemical properties of B. subtilis and E. coli RNA polymerases, specifically in their ability to use RNA templates efficiently, which also may reflect the differences in GTP and ATP metabolism in these two organisms.
Collapse
|
20
|
Trigui H, Mendis N, Li L, Saad M, Faucher SP. Facets of small RNA-mediated regulation in Legionella pneumophila. Curr Top Microbiol Immunol 2013; 376:53-80. [PMID: 23918178 DOI: 10.1007/82_2013_347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Legionella pneumophila is a water-borne pathogen that causes a severe lung infection in humans. It is able to replicate inside amoeba in the water environment, and inside lung macrophages in humans. Efficient regulation of gene expression is critical for responding to the conditions that L. pneumophila encounters and for intracellular multiplication in host cells. In the last two decades, many reports have contributed to our understanding of the critical importance of small regulatory RNAs (sRNAs) in the regulatory network of bacterial species. This report presents the current state of knowledge about the sRNAs expressed by L. pneumophila and discusses a few regulatory pathways in which sRNAs should be involved in this pathogen.
Collapse
Affiliation(s)
- Hana Trigui
- Faculty of Agricultural and Environmental Sciences, Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada,
| | | | | | | | | |
Collapse
|
21
|
Panchapakesan SSS, Unrau PJ. E. coli 6S RNA release from RNA polymerase requires σ70 ejection by scrunching and is orchestrated by a conserved RNA hairpin. RNA (NEW YORK, N.Y.) 2012; 18:2251-9. [PMID: 23118417 PMCID: PMC3504675 DOI: 10.1261/rna.034785.112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The 6S RNA in Escherichia coli suppresses housekeeping transcription by binding to RNA polymerase holoenzyme (core polymerase + σ⁷⁰) under low nutrient conditions and rescues σ⁷⁰-dependent transcription in high nutrient conditions by the synthesis of a short product RNA (pRNA) using itself as a template. Here we characterize a kinetic intermediate that arises during 6S RNA release. This state, consisting of 6S RNA and core polymerase, is related to the formation of a top-strand "release" hairpin that is conserved across the γ-proteobacteria. Deliberately slowing the intrinsic 6S RNA release rate by nucleotide feeding experiments reveals that σ⁷⁰ ejection occurs abruptly once a pRNA length of 9 nucleotides (nt) is reached. After σ⁷⁰ ejection, an additional 4 nt of pRNA synthesis is required before the 6S:pRNA complex is finally released from core polymerase. Changing the E. coli 6S RNA sequence to preclude formation of the release hairpin dramatically slows the speed of 6S RNA release but, surprisingly, does not alter the abruptness of σ⁷⁰ ejection. Rather, the pRNA size required to trigger σ⁷⁰ release increases from 9 nt to 14 nt. That a precise pRNA length is required to trigger σ⁷⁰ release either with or without a hairpin implicates an intrinsic "scrunching"-type release mechanism. We speculate that the release hairpin serves two primary functions in the γ-proteobacteria: First, its formation strips single-stranded "-10" 6S RNA interactions away from σ⁷⁰. Second, the formation of the hairpin accumulates RNA into a region of the polymerase complex previously associated with DNA scrunching, further destabilizing the 6S:pRNA:polymerase complex.
Collapse
Affiliation(s)
- Shanker Shyam S Panchapakesan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
22
|
ncRNAs and thermoregulation: a view in prokaryotes and eukaryotes. FEBS Lett 2012; 586:4061-9. [PMID: 23098758 DOI: 10.1016/j.febslet.2012.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 11/24/2022]
Abstract
During cellular stress response, a widespread inhibition of transcription and blockade of splicing and other post-transcriptional processing is detected, while certain specific genes are induced. In particular, free-living cells constantly monitor temperature. When the thermal condition changes, they activate a set of genes coding for proteins that participate in the response. Non-coding RNAs, ncRNAs, and conformational changes in specific regions of mRNAs seem also to be crucial regulators that enable the cell to adjust its physiology to environmental changes. They exert their effects following the same principles in all organisms and may affect all steps of gene expression. These ncRNAs and structural elements as related to thermal stress response in bacteria are reviewed. The resemblances to eukaryotic ncRNAs are highlighted.
Collapse
|
23
|
Brouwers E, Ma I, Thomas NA. Dual temporal transcription activation mechanisms control cesT expression in enteropathogenic Escherichia coli. Microbiology (Reading) 2012; 158:2246-2261. [DOI: 10.1099/mic.0.059444-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Erin Brouwers
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Irene Ma
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Nikhil A. Thomas
- Department of Medicine (Division of Infectious Diseases), Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
24
|
Rediger A, Geißen R, Steuten B, Heilmann B, Wagner R, Axmann IM. 6S RNA - an old issue became blue-green. MICROBIOLOGY-SGM 2012; 158:2480-2491. [PMID: 22767549 DOI: 10.1099/mic.0.058958-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
6S RNA from Escherichia coli acts as a versatile transcriptional regulator by binding to the RNA polymerase and changing promoter selectivity. Although homologous 6S RNA structures exist in a wide range of bacteria, including cyanobacteria, our knowledge of 6S RNA function results almost exclusively from studies with E. coli. To test for potential structural and functional conservation, we selected four predicted cyanobacterial 6S RNAs (Synechocystis, Synechococcus, Prochlorococcus and Nostoc), which we compared with their E. coli counterpart. Temperature-gradient gel electrophoresis revealed similar thermodynamic transition profiles for all 6S RNAs, indicating basically similar secondary structures. Subtle differences in melting behaviour of the different RNAs point to minor structural variations possibly linked to differences in optimal growth temperature. Secondary structural analysis of three cyanobacterial 6S RNAs employing limited enzymic hydrolysis and in-line probing supported the predicted high degree of secondary structure conservation. Testing for functional homology we found that all cyanobacterial 6S RNAs were active in binding E. coli RNA polymerase and transcriptional inhibition, and had the ability to act as template for transcription of product RNAs (pRNAs). Deletion of the 6S RNA gene in Synechocystis did not significantly affect cell growth in liquid media but reduced fitness during growth on solid agar. While our study shows that basic 6S RNA functions are conserved in species as distantly related as E. coli and cyanobacteria, we also noted a subtle degree of divergence, which might reflect fundamental differences in transcriptional regulation and lifestyle, thus providing the first evidence for a possible physiological role in cyanobacteria.
Collapse
Affiliation(s)
- Anne Rediger
- Institute for Theoretical Biology, Charité-Universitätsmedizin, Invalidenstraße 43, D-10115 Berlin, Germany
| | - René Geißen
- Molecular Biology of Bacteria, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Benedikt Steuten
- Molecular Biology of Bacteria, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Beate Heilmann
- Institute for Theoretical Biology, Charité-Universitätsmedizin, Invalidenstraße 43, D-10115 Berlin, Germany
| | - Rolf Wagner
- Molecular Biology of Bacteria, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Ilka M Axmann
- Institute for Theoretical Biology, Charité-Universitätsmedizin, Invalidenstraße 43, D-10115 Berlin, Germany
| |
Collapse
|
25
|
Affiliation(s)
- Valley Stewart
- Department of Microbiology, University of California Davis, Davis, California, United States of America
- * E-mail: (VS); (Hvt)
| | | |
Collapse
|
26
|
Wassarman KM. Native gel electrophoresis to study the binding and release of RNA polymerase by 6S RNA. Methods Mol Biol 2012; 905:259-271. [PMID: 22736010 DOI: 10.1007/978-1-61779-949-5_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA-protein interactions are critical in diverse aspects of gene expression and often serve to mediate regulatory events. Many procedures are available to gain information about RNA-protein interactions. They span from initial identification of an interaction, such as through co-immunoprecipitation studies, to highly detailed atomic resolution definition of the interaction gained from crystallographic and NMR studies. One of the most versatile techniques uses native gel electrophoresis to study RNA-protein complexes, which is often called band shift, gel retardation, or electrophoretic mobility shift assays. Gel shift assays have been used to study a plethora of RNA-protein interactions in all organisms, but here we will use the 6S RNA:RNA polymerase interaction from Escherichia coli as an example to direct discussion of questions that can be addressed, including the ability to follow the dynamics of complexes over time.
Collapse
Affiliation(s)
- Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
27
|
Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003798. [PMID: 20980440 DOI: 10.1101/cshperspect.a003798] [Citation(s) in RCA: 554] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Small RNA regulators (sRNAs) have been identified in a wide range of bacteria and found to play critical regulatory roles in many processes. The major families of sRNAs include true antisense RNAs, synthesized from the strand complementary to the mRNA they regulate, sRNAs that also act by pairing but have limited complementarity with their targets, and sRNAs that regulate proteins by binding to and affecting protein activity. The sRNAs with limited complementarity are akin to eukaryotic microRNAs in their ability to modulate the activity and stability of multiple mRNAs. In many bacterial species, the RNA chaperone Hfq is required to promote pairing between these sRNAs and their target mRNAs. Understanding the evolution of regulatory sRNAs remains a challenge; sRNA genes show evidence of duplication and horizontal transfer but also could be evolved from tRNAs, mRNAs or random transcription.
Collapse
|
28
|
Abstract
Small non-coding RNA molecules (sRNA) are key regulators participating in complex networks, which adapt metabolism in response to environmental changes. In this issue of Molecular Microbiology, and in a related paper in Proc. Natl. Acad. Sci. USA, Moreno et al. (2011) and Sonnleitner et al. (2009) report on novel sRNAs, which act as decoys to inhibit the activity of the master post-transcriptional regulatory protein Crc. Crc is a key protein involved in carbon catabolite repression that optimizes metabolism improving the adaptation of the bacteria to their diverse habitats. Crc is a novel RNA-binding protein that regulates translation of multiple target mRNAs. Two regulatory sRNAs in Pseudomonas putida mimic the natural mRNA targets of Crc and counteract the action of Crc by sequestrating the protein when catabolite repression is absent. Crc trapping by a sRNA is a mechanism reminiscent to the regulation of the repressor of secondary metabolites (RsmA) in Pseudomonas, and highlights the suitability of RNA-dependent regulation to rapidly adjust cell growth in response to environmental changes.
Collapse
Affiliation(s)
- S Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, F-67084 Strasbourg, France
| | | |
Collapse
|
29
|
Cavanagh AT, Sperger JM, Wassarman KM. Regulation of 6S RNA by pRNA synthesis is required for efficient recovery from stationary phase in E. coli and B. subtilis. Nucleic Acids Res 2011; 40:2234-46. [PMID: 22102588 PMCID: PMC3299989 DOI: 10.1093/nar/gkr1003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
6S RNAs function through interaction with housekeeping forms of RNA polymerase holoenzyme (Eσ70 in Escherichia coli, EσA in Bacillus subtilis). Escherichia coli 6S RNA accumulates to high levels during stationary phase, and has been shown to be released from Eσ70 during exit from stationary phase by a process in which 6S RNA serves as a template for Eσ70 to generate product RNAs (pRNAs). Here, we demonstrate that not only does pRNA synthesis occur, but it is an important mechanism for regulation of 6S RNA function that is required for cells to exit stationary phase efficiently in both E. coli and B. subtilis. Bacillus subtilis has two 6S RNAs, 6S-1 and 6S-2. Intriguingly, 6S-2 RNA does not direct pRNA synthesis under physiological conditions and its non-release from EσA prevents efficient outgrowth in cells lacking 6S-1 RNA. The behavioral differences in the two B. subtilis RNAs clearly demonstrate that they act independently, revealing a higher than anticipated diversity in 6S RNA function globally. Overexpression of a pRNA-synthesis-defective 6S RNA in E. coli leads to decreased cell viability, suggesting pRNA synthesis-mediated regulation of 6S RNA function is important at other times of growth as well.
Collapse
Affiliation(s)
- Amy T Cavanagh
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
30
|
Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011; 43:880-91. [PMID: 21925377 PMCID: PMC3176440 DOI: 10.1016/j.molcel.2011.08.022] [Citation(s) in RCA: 888] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 11/24/2022]
Abstract
Research on the discovery and characterization of small, regulatory RNAs in bacteria has exploded in recent years. These sRNAs act by base pairing with target mRNAs with which they share limited or extended complementarity, or by modulating protein activity, in some cases by mimicking other nucleic acids. Mechanistic insights into how sRNAs bind mRNAs and proteins, how they compete with each other, and how they interface with ribonucleases are active areas of discovery. Current work also has begun to illuminate how sRNAs modulate expression of distinct regulons and key transcription factors, thus integrating sRNA activity into extensive regulatory networks. In addition, the application of RNA deep sequencing has led to reports of hundreds of additional sRNA candidates in a wide swath of bacterial species. Most importantly, recent studies have served to clarify the abundance of remaining questions about how, when, and why sRNA-mediated regulation is of such importance to bacterial lifestyles.
Collapse
Affiliation(s)
- Gisela Storz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 18 Library Drive, Bethesda, MD 20892-5430, USA.
| | | | | |
Collapse
|
31
|
Bonocora RP, Decker PK, Glass S, Knipling L, Hinton DM. Bacteriophage T4 MotA activator and the β-flap tip of RNA polymerase target the same set of σ70 carboxyl-terminal residues. J Biol Chem 2011; 286:39290-6. [PMID: 21911499 DOI: 10.1074/jbc.m111.278762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sigma factors, the specificity subunits of RNA polymerase, are involved in interactions with promoter DNA, the core subunits of RNA polymerase, and transcription factors. The bacteriophage T4-encoded activator, MotA, is one such factor, which engages the C terminus of the Escherichia coli housekeeping sigma factor, σ(70). MotA functions in concert with a phage-encoded co-activator, AsiA, as a molecular switch. This process, termed sigma appropriation, inhibits host transcription while activating transcription from a class of phage promoters. Previous work has demonstrated that MotA contacts the C terminus of σ(70), H5, a region that is normally bound within RNA polymerase by its interaction with the β-flap tip. To identify the specific σ(70) residues responsible for interacting with MotA and the β-flap tip, we generated single substitutions throughout the C terminus of σ(70). We find that MotA targets H5 residues that are normally engaged by the β-flap. In two-hybrid assays, the interaction of σ(70) with either the β-flap tip or MotA is impaired by alanine substitutions at residues Leu-607, Arg-608, Phe-610, Leu-611, and Asp-613. Transcription assays identify Phe-610 and Leu-611 as the key residues for MotA/AsiA-dependent transcription. Phe-610 is a crucial residue in the H5/β-flap tip interaction using promoter clearance assays with RNA polymerase alone. Our results show how the actions of small transcriptional factors on a defined local region of RNA polymerase can fundamentally change the specificity of polymerase.
Collapse
Affiliation(s)
- Richard P Bonocora
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
32
|
Cavanagh AT, Chandrangsu P, Wassarman KM. 6S RNA regulation of relA alters ppGpp levels in early stationary phase. MICROBIOLOGY-SGM 2010; 156:3791-3800. [PMID: 20829285 PMCID: PMC3068707 DOI: 10.1099/mic.0.043992-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
6S RNA is a small, non-coding RNA that interacts directly with σ70-RNA polymerase and regulates transcription at many σ70-dependent promoters. Here, we demonstrate that 6S RNA regulates transcription of relA, which encodes a ppGpp synthase. The 6S RNA-dependent regulation of relA expression results in increased ppGpp levels during early stationary phase in cells lacking 6S RNA. These changes in ppGpp levels, although modest, are sufficient to result in altered regulation of transcription from σ70-dependent promoters sensitive to ppGpp, including those promoting expression of genes involved in amino acid biosynthesis and rRNA. These data place 6S RNA as another player in maintaining appropriate gene expression as cells transition into stationary phase. Independent of this ppGpp-mediated 6S RNA-dependent regulation, we also demonstrate that in later stationary phase, 6S RNA continues to downregulate transcription in general, and specifically at a subset of the amino acid promoters, but through a mechanism that is independent of ppGpp and which we hypothesize is through direct regulation. In addition, 6S RNA-dependent regulation of σS activity is not mediated through observed changes in ppGpp levels. We suggest a role for 6S RNA in modulating transcription of several global regulators directly, including relA, to downregulate expression of key pathways in response to changing environmental conditions.
Collapse
Affiliation(s)
- Amy T Cavanagh
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | - Pete Chandrangsu
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | - Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| |
Collapse
|
33
|
Wurm R, Neußer T, Wagner R. 6S RNA-dependent inhibition of RNA polymerase is released by RNA-dependent synthesis of small de novo products. Biol Chem 2010; 391:187-196. [PMID: 20030589 DOI: 10.1515/bc.2010.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
6S RNA from Escherichia coli is known to bind to RNA polymerase, preventing interaction with many promoters during stationary growth. The resulting repression is released under conditions of nutritional upshift, when the growth situation improves. 6S RNA, which binds to the active site of RNA polymerase, has the particularly interesting feature to act as a template, causing the transcription of defined de novo RNAs (dnRNA) that are complementary to a specific sequence region of the 6S RNA. We analyzed the conditions of dnRNA synthesis and determined their effect on the 6S RNA-mediated inhibition of RNA polymerase in vitro and in vivo. Upon nutritional upshift the RNA polymerase/6S RNA complex induces the rapid synthesis of dnRNAs, which form stable hybrids with the 6S RNA template. The resulting structural change destabilizes the inactivated RNA polymerase complex, causing sigma subunit release. Both dnRNA and 6S RNA are rapidly degraded after complex disintegration. Experiments using the transcriptional inhibitor rifampicin demonstrate that active transcription is required for the disintegration of the RNA polymerase/6S RNA complex. Our results support the conclusion that 6S RNA not only inhibits transcription during stationary growth but also enables cells to resume rapid growth after starvation and help to escape from stationary phase.
Collapse
Affiliation(s)
- Reinhild Wurm
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Thomas Neußer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Rolf Wagner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
34
|
Goodrich JA, Kugel JF. Dampening DNA binding: a common mechanism of transcriptional repression for both ncRNAs and protein domains. RNA Biol 2010; 7:305-9. [PMID: 20436282 DOI: 10.4161/rna.7.3.11910] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
With eukaryotic non-coding RNAs (ncRNAs) now established as critical regulators of cellular transcription, the true diversity with which they can elicit biological effects is beginning to be appreciated. Two ncRNAs, mouse B2 RNA and human Alu RNA, have been found to repress mRNA transcription in response to heat shock. They do so by binding directly to RNA polymerase II, assembling into complexes on promoter DNA, and disrupting contacts between the polymerase and the DNA. Such a mechanism of repression had not previously been observed for a eukaryotic ncRNA; however, there are examples of eukaryotic protein domains that repress transcription by blocking essential protein-DNA interactions. Comparing the mechanism of transcriptional repression utilized by these protein domains to that used by B2 and Alu RNAs raises intriguing questions regarding transcriptional control, and how B2 and Alu RNAs might themselves be regulated.
Collapse
Affiliation(s)
- James A Goodrich
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA.
| | | |
Collapse
|
35
|
Shephard L, Dobson N, Unrau PJ. Binding and release of the 6S transcriptional control RNA. RNA (NEW YORK, N.Y.) 2010; 16:885-92. [PMID: 20354151 PMCID: PMC2856883 DOI: 10.1261/rna.2036210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
6S RNA is an important noncoding RNA that regulates eubacterial transcription. In Escherichia coli this RNA binds to the sigma(70) RNA polymerase holoenzyme and is released by the synthesis of a short product RNA. In order to determine how binding and release are controlled by the 6S RNA sequence, we used in vitro selection to screen a high diversity library containing approximately 4 x 10(12) sequences for functional 6S RNA variants. Residues critical for binding were found to be located in a "-35" region upstream of the 6S RNA transcription bubble mimic structure. Mutating these phylogenetically conserved residues invariably led to decreases in binding and removing them abolished binding, implicating these nucleotides in a biologically important interaction with the Esigma(70) complex. Interestingly, mutation of phylogenetically conserved "-10" residues that were also upstream of the site of pRNA synthesis was found to influence 6S RNA release rates in addition to modulating -35 binding. These results indicate how 6S RNA -35 binding to sigma(70) RNA polymerase holoenzyme can regulate expression from "strong" and "weak" -35 DNA promoters and suggest that 6S RNA release rates have been fine tuned over evolutionary time so as to correctly regulate cellular levels of transcription.
Collapse
Affiliation(s)
- Lindsay Shephard
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | |
Collapse
|
36
|
Sharma UK, Chatterji D. Transcriptional switching in Escherichia coli during stress and starvation by modulation of sigma activity. FEMS Microbiol Rev 2010; 34:646-57. [PMID: 20491934 DOI: 10.1111/j.1574-6976.2010.00223.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
During active growth of Escherichia coli, majority of the transcriptional activity is carried out by the housekeeping sigma factor (sigma(70)), whose association with core RNAP is generally favoured because of its higher intracellular level and higher affinity to core RNAP. In order to facilitate transcription by alternative sigma factors during nutrient starvation, the bacterial cell uses multiple strategies by which the transcriptional ability of sigma(70) is diminished in a reversible manner. The facilitators of shifting the balance in favour of alternative sigma factors happen to be as diverse as a small molecule (p)ppGpp (represents ppGpp or pppGpp), proteins (DksA, Rsd) and a species of RNA (6S RNA). Although 6S RNA and (p)ppGpp were known in literature for a long time, their role in transcriptional switching has been understood only in recent years. With the elucidation of function of DksA, a new dimension has been added to the phenomenon of stringent response. As the final outcome of actions of (p)ppGpp, DksA, 6S RNA and Rsd is similar, there is a need to analyse these mechanisms in a collective manner. We review the recent trends in understanding the regulation of sigma(70) by (p)ppGpp, DksA, Rsd and 6S RNA and present a case for evolving a unified model of RNAP redistribution during starvation by modulation of sigma(70) activity in E. coli.
Collapse
Affiliation(s)
- Umender K Sharma
- AstraZeneca R&D, 'Avishkar', Bellary Road, Hebbal, Bangalore 560 024, India.
| | | |
Collapse
|
37
|
Neusser T, Polen T, Geissen R, Wagner R. Depletion of the non-coding regulatory 6S RNA in E. coli causes a surprising reduction in the expression of the translation machinery. BMC Genomics 2010; 11:165. [PMID: 20222947 PMCID: PMC2848244 DOI: 10.1186/1471-2164-11-165] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 03/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 6S RNA from E. coli is known to bind to RNA polymerase interfering with transcription initiation. Because 6S RNA concentrations are maximal at stationary phase and binding occurs preferentially to the holoenzyme associated with sigma(70) (Esigma(70)) it is believed that 6S RNA supports adjustment to stationary phase transcription. Previous studies have also suggested that inhibition is specific for sigma(70)-dependent promoters characterized by a weak -35 recognition motif or extended -10 promoters. There are many exceptions to this precept, showing that other types of promoters, including stationary phase-specific (sigma(38)-dependent) promoters are inhibited. RESULTS To solve this apparent ambiguity and to better understand the role of 6S RNA in stationary phase transition we have performed a genome-wide transcriptional analysis of wild-type and 6S RNA deficient cells growing to mid-log or early stationary phase. We found 245 genes at the exponential growth phase and 273 genes at the early stationary phase to be > or = 1.5-fold differentially expressed. Up- and down-regulated genes include many transcriptional regulators, stress-related proteins, transporters and several enzymes involved in purine metabolism. As the most striking result during stationary phase, however, we obtained in the 6S RNA deficient strain a concerted expression reduction of genes constituting the translational apparatus. In accordance, primer extension analysis showed that transcription of ribosomal RNAs, representing the key molecules for ribosome biogenesis, is also significantly reduced under the same conditions. Consistent with this finding biochemical analysis of the 6S RNA deficient strain indicates that the lack of 6S RNA is apparently compensated by an increase of the basal ppGpp concentration, known to affect growth adaptation and ribosome biogenesis. CONCLUSIONS The analysis demonstrated that the effect of 6S RNA on transcription is not strictly confined to sigma(70)-dependent promoters. Moreover, the results indicate that 6S RNA is embedded in stationary phase adaptation, which is governed by the capacity of the translational machinery.
Collapse
Affiliation(s)
- Thomas Neusser
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr 1, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
38
|
Abstract
A recent meeting on 'Regulatory RNAs in prokaryotes' reflected the growing interest in this research topic. Almost 200 scientists met to discuss the identification, structure, function and mechanistic details of regulatory RNAs in bacteria and archaea. The topics included small regulatory RNAs, riboswitches, RNA thermosensors and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) elements.
Collapse
|