1
|
In vitro studies of the protein-interaction network of cell-wall lytic transglycosylase RlpA of Pseudomonas aeruginosa. Commun Biol 2022; 5:1314. [PMID: 36451021 PMCID: PMC9712689 DOI: 10.1038/s42003-022-04230-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
The protein networks of cell-wall-biosynthesis assemblies are largely unknown. A key class of enzymes in these assemblies is the lytic transglycosylases (LTs), of which eleven exist in P. aeruginosa. We have undertaken a pulldown strategy in conjunction with mass-spectrometry-based proteomics to identify the putative binding partners for the eleven LTs of P. aeruginosa. A total of 71 putative binding partners were identified for the eleven LTs. A systematic assessment of the binding partners of the rare lipoprotein A (RlpA), one of the pseudomonal LTs, was made. This 37-kDa lipoprotein is involved in bacterial daughter-cell separation by an unknown process. RlpA participates in both the multi-protein and multi-enzyme divisome and elongasome assemblies. We reveal an extensive protein-interaction network for RlpA involving at least 19 proteins. Their kinetic parameters for interaction with RlpA were assessed by microscale thermophoresis, surface-plasmon resonance, and isothermal-titration calorimetry. Notable RlpA binding partners include PBP1b, PBP4, and SltB1. Elucidation of the protein-interaction networks for each of the LTs, and specifically for RlpA, opens opportunities for the study of their roles in the complex protein assemblies intimately involved with the cell wall as a structural edifice critical for bacterial survival.
Collapse
|
2
|
Tol-Pal System and Rgs Proteins Interact to Promote Unipolar Growth and Cell Division in Sinorhizobium meliloti. mBio 2020; 11:mBio.00306-20. [PMID: 32605980 PMCID: PMC7327166 DOI: 10.1128/mbio.00306-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacterial cell proliferation involves cell growth and septum formation followed by cell division. For cell growth, bacteria have evolved different complex mechanisms. The most prevalent growth mode of rod-shaped bacteria is cell elongation by incorporating new peptidoglycans in a dispersed manner along the sidewall. A small share of rod-shaped bacteria, including the alphaproteobacterial Rhizobiales, grow unipolarly. Here, we identified and initially characterized a set of Rgs (rhizobial growth and septation) proteins, which are involved in cell division and unipolar growth of Sinorhizobium meliloti and highly conserved in Rhizobiales. Our data expand the knowledge of components of the polarly localized machinery driving cell wall growth and suggest a complex of Rgs proteins with components of the divisome, differing in composition between the polar cell elongation zone and the septum. Sinorhizobium meliloti is an alphaproteobacterium belonging to the Rhizobiales. Bacteria from this order elongate their cell wall at the new cell pole, generated by cell division. Screening for protein interaction partners of the previously characterized polar growth factors RgsP and RgsM, we identified the inner membrane components of the Tol-Pal system (TolQ and TolR) and novel Rgs (rhizobial growth and septation) proteins with unknown functions. TolQ, Pal, and all Rgs proteins, except for RgsE, were indispensable for S. meliloti cell growth. Six of the Rgs proteins, TolQ, and Pal localized to the growing cell pole in the cell elongation phase and to the septum in predivisional cells, and three Rgs proteins localized to the growing cell pole only. The putative FtsN-like protein RgsS contains a conserved SPOR domain and is indispensable at the early stages of cell division. The components of the Tol-Pal system were required at the late stages of cell division. RgsE, a homolog of the Agrobacterium tumefaciens growth pole ring protein GPR, has an important role in maintaining the normal growth rate and rod cell shape. RgsD is a periplasmic protein with the ability to bind peptidoglycan. Analysis of the phylogenetic distribution of the Rgs proteins showed that they are conserved in Rhizobiales and mostly absent from other alphaproteobacterial orders, suggesting a conserved role of these proteins in polar growth.
Collapse
|
3
|
Adaptive Responses of Shewanella decolorationis to Toxic Organic Extracellular Electron Acceptor Azo Dyes in Anaerobic Respiration. Appl Environ Microbiol 2019; 85:AEM.00550-19. [PMID: 31175185 DOI: 10.1128/aem.00550-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial anaerobic respiration using an extracellular electron acceptor plays a predominant role in global biogeochemical cycles. However, the mechanisms of bacterial adaptation to the toxic organic pollutant as the extracellular electron acceptor during anaerobic respiration are not clear, which limits our ability to optimize the strategies for the bioremediation of a contaminated environment. Here, we report the physiological characteristics and the global gene expression of an ecologically successful bacterium, Shewanella decolorationis S12, when using a typical toxic organic pollutant, amaranth, as the extracellular electron acceptor. Our results revealed that filamentous shift (the cells stretched to fiber-like shapes as long as 18 μm) occurred under amaranth stress. Persistent stress led to a higher filamentous cell rate and decolorization ability in subcultural cells compared to parental strains. In addition, the expression of genes involved in cell division, the chemotaxis system, energy conservation, damage repair, and material transport in filamentous cells was significantly stimulated. The detailed roles of some genes with significantly elevated expressions in filamentous cells, such as the outer membrane porin genes ompA and ompW, the cytochrome c genes arpC and arpD, the global regulatory factor gene rpoS, and the methyl-accepting chemotaxis proteins genes SHD_2793 and SHD_0015, were identified by site-directed mutagenesis. Finally, a conceptual model was proposed to help deepen our insights into both the bacterial survival strategy when toxic organics were present and the mechanisms by which these toxic organics were biodegraded as the extracellular electron acceptors.IMPORTANCE Keeping toxic organic pollutants (TOPs) in tolerable levels is a huge challenge for bacteria in extremely unfavorable environments since TOPs could serve as energy substitutes but also as survival stresses when they are beyond some thresholds. This study focused on the underlying adaptive mechanisms of ecologically successful bacterium Shewanella decolorationis S12 when exposed to amaranth, a typical toxic organic pollutant, as the extracellular electron acceptor. Our results suggest that filamentous shift is a flexible and valid way to solve the dilemma between the energy resource and toxic stress. Filamentous cells regulate gene expression to enhance their degradation and detoxification capabilities, resulting in a strong viability. These novel adaptive responses to TOPs are believed to be an evolutionary achievement to succeed in harsh habitats and thus have great potential to be applied to environment engineering or synthetic biology if we could picture every unknown node in this pathway.
Collapse
|
4
|
Jorgenson MA, Young KD. YtfB, an OapA Domain-Containing Protein, Is a New Cell Division Protein in Escherichia coli. J Bacteriol 2018; 200:e00046-18. [PMID: 29686141 PMCID: PMC5996693 DOI: 10.1128/jb.00046-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
While screening the Pfam database for novel peptidoglycan (PG) binding modules, we identified the OapA domain, which is annotated as a LysM-like domain. LysM domains bind PG and mediate localization to the septal ring. In the Gram-negative bacterium Escherichia coli, an OapA domain is present in YtfB, an inner membrane protein of unknown function but whose overproduction causes cells to filament. Together, these observations suggested that YtfB directly affects cell division, most likely through its OapA domain. Here, we show that YtfB accumulates at the septal ring and that its action requires the division-initiating protein FtsZ and, to a lesser extent, ZipA, an early recruit to the septalsome. While the loss of YtfB had no discernible impact, a mutant lacking both YtfB and DedD (a known cell division protein) grew as filamentous cells. The YtfB OapA domain by itself also localized to sites of division, and this localization was enhanced by the presence of denuded PGs. Finally, the OapA domain bound PG, though binding did not depend on the formation of denuded glycans. Collectively, our findings demonstrate that YtfB is a cell division protein whose function is related to cell wall hydrolases.IMPORTANCE All living cells must divide in order to thrive. In bacteria, this involves the coordinated activities of a large number of proteins that work in concert to constrict the cell. Knowing which proteins contribute to this process and how they function is fundamental. Here, we identify a new member of the cell division apparatus in the Gram-negative bacterium Escherichia coli whose function is related to the generation of a transient cell wall structure. These findings deepen our understanding of bacterial cell division.
Collapse
Affiliation(s)
- Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D Young
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
5
|
Conti J, Viola MG, Camberg JL. FtsA reshapes membrane architecture and remodels the Z-ring in Escherichia coli. Mol Microbiol 2018; 107:558-576. [PMID: 29280220 DOI: 10.1111/mmi.13902] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 12/20/2022]
Abstract
Cell division in prokaryotes initiates with assembly of the Z-ring at midcell, which, in Escherichia coli, is tethered to the inner leaflet of the cytoplasmic membrane through a direct interaction with FtsA, a widely conserved actin homolog. The Z-ring is comprised of polymers of tubulin-like FtsZ and has been suggested to provide the force for constriction. Here, we demonstrate that FtsA exerts force on membranes causing redistribution of membrane architecture, robustly hydrolyzes ATP and directly engages FtsZ polymers in a reconstituted system. Phospholipid reorganization by FtsA occurs rapidly and is mediated by insertion of a C-terminal membrane targeting sequence (MTS) into the bilayer and further promoted by a nucleotide-dependent conformational change relayed to the MTS. FtsA also recruits FtsZ to phospholipid vesicles via a direct interaction with the FtsZ C-terminus and regulates FtsZ assembly kinetics. These results implicate the actin homolog FtsA in establishment of a Z-ring scaffold, while directly remodeling the membrane and provide mechanistic insight into localized cell wall remodeling, invagination and constriction at the onset of division.
Collapse
Affiliation(s)
| | | | - Jodi L Camberg
- Departments of Cell and Molecular Biology.,Nutrition and Food Sciences, The University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
6
|
Zou Y, Li Y, Dillon JAR. The distinctive cell division interactome of Neisseria gonorrhoeae. BMC Microbiol 2017; 17:232. [PMID: 29233095 PMCID: PMC5727935 DOI: 10.1186/s12866-017-1140-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial cell division is an essential process driven by the formation of a Z-ring structure, as a cytoskeletal scaffold at the mid-cell, followed by the recruitment of various proteins which form the divisome. The cell division interactome reflects the complement of different interactions between all divisome proteins. To date, only two cell division interactomes have been characterized, in Escherichia coli and in Streptococcus pneumoniae. The cell divison proteins encoded by Neisseria gonorrhoeae include FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsI, FtsW, and FtsN. The purpose of the present study was to characterize the cell division interactome of N. gonorrhoeae using several different methods to identify protein-protein interactions. We also characterized the specific subdomains of FtsA implicated in interactions with FtsZ, FtsQ, FtsN and FtsW. RESULTS Using a combination of bacterial two-hybrid (B2H), glutathione S-transferase (GST) pull-down assays, and surface plasmon resonance (SPR), nine interactions were observed among the eight gonococcal cell division proteins tested. ZipA did not interact with any other cell division proteins. Comparisons of the N. gonorrhoeae cell division interactome with the published interactomes from E. coli and S. pneumoniae indicated that FtsA-FtsZ and FtsZ-FtsK interactions were common to all three species. FtsA-FtsW and FtsK-FtsN interactions were only present in N. gonorrhoeae. The 2A and 2B subdomains of FtsANg were involved in interactions with FtsQ, FtsZ, and FtsN, and the 2A subdomain was involved in interaction with FtsW. CONCLUSIONS Results from this research indicate that N. gonorrhoeae has a distinctive cell division interactome as compared with other microorganisms.
Collapse
Affiliation(s)
- Yinan Zou
- Department of Microbiology and Immunology, College of Medicine, Saskatoon, SK, S7N 5E5, Canada.,Vaccine and Infectious Disease Organization, International Vaccine Centre, Saskatoon, SK, S7N 5E3, Canada
| | - Yan Li
- Vaccine and Infectious Disease Organization, International Vaccine Centre, Saskatoon, SK, S7N 5E3, Canada.,Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, S7N 5A5, Canada
| | - Jo-Anne R Dillon
- Department of Microbiology and Immunology, College of Medicine, Saskatoon, SK, S7N 5E5, Canada. .,Vaccine and Infectious Disease Organization, International Vaccine Centre, Saskatoon, SK, S7N 5E3, Canada. .,Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, S7N 5A5, Canada.
| |
Collapse
|
7
|
Skagia A, Zografou C, Venieraki A, Fasseas C, Katinakis P, Dimou M. Functional analysis of the cyclophilin PpiB role in bacterial cell division. Genes Cells 2017; 22:810-824. [DOI: 10.1111/gtc.12514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/20/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Chrysoula Zografou
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Anastasia Venieraki
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Costas Fasseas
- Laboratory of Electron Microscopy; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Maria Dimou
- Laboratory of General and Agricultural Microbiology; Faculty of Crop Science; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| |
Collapse
|
8
|
Krupka M, Rowlett VW, Morado D, Vitrac H, Schoenemann K, Liu J, Margolin W. Escherichia coli FtsA forms lipid-bound minirings that antagonize lateral interactions between FtsZ protofilaments. Nat Commun 2017; 8:15957. [PMID: 28695917 PMCID: PMC5508204 DOI: 10.1038/ncomms15957] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/15/2017] [Indexed: 01/19/2023] Open
Abstract
Most bacteria divide using a protein machine called the divisome that spans the cytoplasmic membrane. Key divisome proteins on the membrane’s cytoplasmic side include tubulin-like FtsZ, which forms GTP-dependent protofilaments, and actin-like FtsA, which tethers FtsZ to the membrane. Here we present genetic evidence that in Escherichia coli, FtsA antagonizes FtsZ protofilament bundling in vivo. We then show that purified FtsA does not form straight polymers on lipid monolayers as expected, but instead assembles into dodecameric minirings, often in hexameric arrays. When coassembled with FtsZ on lipid monolayers, these FtsA minirings appear to guide FtsZ to form long, often parallel, but unbundled protofilaments, whereas a mutant of FtsZ (FtsZ*) with stronger lateral interactions remains bundled. In contrast, a hypermorphic mutant of FtsA (FtsA*) forms mainly arcs instead of minirings and enhances lateral interactions between FtsZ protofilaments. Based on these results, we propose that FtsA antagonizes lateral interactions between FtsZ protofilaments, and that the oligomeric state of FtsA may influence FtsZ higher-order structure and divisome function. The actin-like protein FtsA and the tubulin-like protein FtsZ play crucial roles during cell division in most bacteria. Here, the authors show that FtsA forms minirings on lipid monolayers, and present evidence supporting that its oligomeric state modulates the bundling of FtsZ protofilaments.
Collapse
Affiliation(s)
- Marcin Krupka
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Veronica W Rowlett
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Dustin Morado
- Department of Pathology and Laboratory Medicine, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Heidi Vitrac
- Department of Biochemistry and Molecular Biology, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Kara Schoenemann
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Du S, Lutkenhaus J. The N-succinyl-l,l-diaminopimelic acid desuccinylase DapE acts through ZapB to promote septum formation in Escherichia coli. Mol Microbiol 2017; 105:326-345. [PMID: 28470834 DOI: 10.1111/mmi.13703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Spatial regulation of cell division in Escherichia coli occurs at the stage of Z ring formation. It consists of negative (the Min and NO systems) and positive (Ter signal mediated by MatP/ZapA/ZapB) regulators. Here, we find that N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) facilitates functional Z ring formation by strengthening the Ter signal via ZapB. DapE depends on ZapB to localize to the Z ring and its overproduction suppresses the division defect caused by loss of both the Min and NO systems. DapE shows a strong interaction with ZapB and requires the presence of ZapB to exert its function in division. Consistent with the idea that DapE strengthens the Ter signal, overproduction of DapE supports cell division with reduced FtsZ levels and provides some resistance to the FtsZ inhibitors MinCD and SulA, while deletion of dapE, like deletion of zapB, exacerbates the phenotypes of cells impaired in Z ring formation such as ftsZ84 or a min mutant. Taken together, our results report DapE as a new component of the divisome that promotes the integrity of the Z ring by acting through ZapB and raises the possibility of the existence of additional divisome proteins that also function in other cellular processes.
Collapse
Affiliation(s)
- Shishen Du
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
10
|
Zou Y, Li Y, Ekanayake SB, Dillon JAR. An Escherichia coli expression model reveals the species-specific function of FtsA from Neisseria gonorrhoeae in cell division. FEMS Microbiol Lett 2017; 364:3739240. [PMID: 28431102 DOI: 10.1093/femsle/fnx078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/17/2017] [Indexed: 11/14/2022] Open
Abstract
Escherichia coli (Ec) has been used to study the function of cell division proteins from different microorganisms, especially when genetic tools are limited for studying these proteins in their native hosts. The expression of ftsA from Neisseria gonorrhoeae (Ng) disrupted cell division in E. coli resulting in a significant increase in cell length. In some cells, FtsANg localised to the division site and the poles of E. coli cells, but the majority of cells showed no specifical localisation. FtsANg did not complement an E. coli ftsA mutant strain. Bacterial two-hybrid and GST pull-down assays indicated that FtsANg interacted with FtsNEc, but no other cell division proteins from E. coli. This interaction was mediated through the 2A and 2B subdomains of FtsANg. This evidence suggests that the function of FtsANg is species specific.
Collapse
Affiliation(s)
- Yinan Zou
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, SK S7N 5E5, Canada.,Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, SK S7N 5E5, Canada
| | - Yan Li
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, SK S7N 5E5, Canada.,Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Sanjaya B Ekanayake
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, SK S7N 5E5, Canada
| | - Jo-Anne R Dillon
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, SK S7N 5E5, Canada.,Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, SK S7N 5E5, Canada.,Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
11
|
A New Essential Cell Division Protein in Caulobacter crescentus. J Bacteriol 2017; 199:JB.00811-16. [PMID: 28167520 DOI: 10.1128/jb.00811-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/31/2017] [Indexed: 11/20/2022] Open
Abstract
Bacterial cell division is a complex process that relies on a multiprotein complex composed of a core of widely conserved and generally essential proteins and on accessory proteins that vary in number and identity in different bacteria. The assembly of this complex and, particularly, the initiation of constriction are regulated processes that have come under intensive study. In this work, we characterize the function of DipI, a protein conserved in Alphaproteobacteria and Betaproteobacteria that is essential in Caulobacter crescentus Our results show that DipI is a periplasmic protein that is recruited late to the division site and that it is required for the initiation of constriction. The recruitment of the conserved cell division proteins is not affected by the absence of DipI, but localization of DipI to the division site occurs only after a mature divisome has formed. Yeast two-hybrid analysis showed that DipI strongly interacts with the FtsQLB complex, which has been recently implicated in regulating constriction initiation. A possible role of DipI in this process is discussed.IMPORTANCE Bacterial cell division is a complex process for which most bacterial cells assemble a multiprotein complex that consists of conserved proteins and of accessory proteins that differ among bacterial groups. In this work, we describe a new cell division protein (DipI) present only in a group of bacteria but essential in Caulobacter crescentus Cells devoid of DipI cannot constrict. Although a mature divisome is required for DipI recruitment, DipI is not needed for recruiting other division proteins. These results, together with the interaction of DipI with a protein complex that has been suggested to regulate cell wall synthesis during division, suggest that DipI may be part of the regulatory mechanism that controls constriction initiation.
Collapse
|
12
|
Gamba P, Hamoen LW, Daniel RA. Cooperative Recruitment of FtsW to the Division Site of Bacillus subtilis. Front Microbiol 2016; 7:1808. [PMID: 27895631 PMCID: PMC5108771 DOI: 10.3389/fmicb.2016.01808] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/27/2016] [Indexed: 12/01/2022] Open
Abstract
Five essential proteins are known to assemble at the division site of Bacillus subtilis. However, the recruitment of the FtsW homolog is still unclear. Here, we take advantage of spore germination to facilitate the depletion of essential proteins and to study the divisome assembly in the absence of previous division events. We show that, unlike what has been shown for the Escherichia coli divisome, the assembly of FtsW is interdependent with the localization of PBP 2B and FtsL, which are key components of the membrane bound division complex. Interestingly, the Z-ring appeared to disassemble upon prolonged depletion of late division proteins. Nevertheless, we could restore Z-ring formation and constriction by re-inducing FtsW, which suggests that the stability of the Z-ring is stimulated by the assembly of a functional division complex.
Collapse
Affiliation(s)
- Pamela Gamba
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| | - Leendert W Hamoen
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| | - Richard A Daniel
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Abstract
When deprived of FtsZ, Escherichia coli cells (VIP205) grown in liquid form long nonseptated filaments due to their inability to assemble an FtsZ ring and their failure to recruit subsequent divisome components. These filaments fail to produce colonies on solid medium, in which synthesis of FtsZ is induced, upon being diluted by a factor greater than 4. However, once the initial FtsZ levels are recovered in liquid culture, they resume division, and their plating efficiency returns to normal. The potential septation sites generated in the FtsZ-deprived filaments are not annihilated, and once sufficient FtsZ is accumulated, they all become active and divide to produce cells of normal length. FtsZ-deprived cells accumulate defects in their physiology, including an abnormally high number of unsegregated nucleoids that may result from the misplacement of FtsK. Their membrane integrity becomes compromised and the amount of membrane proteins, such as FtsK and ZipA, increases. FtsZ-deprived cells also show an altered expression pattern, namely, transcription of several genes responding to DNA damage increases, whereas transcription of some ribosomal or global transcriptional regulators decreases. We propose that the changes caused by the depletion of FtsZ, besides stopping division, weaken the cell, diminishing its resiliency to minor challenges, such as dilution stress. Our results suggest a role for FtsZ, in addition to its already known effect in the constriction of E. coli, in protecting the nondividing cells against minor stress. This protection can even be exerted when an inactive FtsZ is produced, but it is lost when the protein is altogether absent. These results have implications in fields like synthetic biology or antimicrobial discovery. The construction of synthetic divisomes in the test tube may need to preserve unsuspected roles, such as this newly found FtsZ property, to guarantee the stability of artificial containers. Whereas the effects on viability caused by inhibiting the activity of FtsZ may be partly overcome by filamentation, the absence of FtsZ is not tolerated by E. coli, an observation that may help in the design of effective antimicrobial compounds.
Collapse
|
14
|
Porter T, Frederick D, Johnson E, Jones PG. A requirement for cell elongation protein RodZ and cell division proteins FtsN and DedD to maintain the small rod morphology of Escherichia coli at growth temperatures near 8°C. J GEN APPL MICROBIOL 2016; 62:189-98. [PMID: 27477251 DOI: 10.2323/jgam.2016.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As similarly observed in nutrient-poor media at 37°C, Escherichia coli forms small rods in nutrient-rich media at temperatures near 8°C, the minimum temperature of growth. A study was initiated to identify proteins required to facilitate the small rod morphology at low temperature. E. coli contains three nonessential SPOR domain proteins (DamX, RlpA, and DedD) that have been demonstrated to bind to the septal ring. In contrast to the normal growth and small rod morphology of damX and rlpA null mutants at 10°C, the dedD null mutant exhibited reduced growth and formed filamentous cells. The presence of plasmid-encoded DedD restored growth and small rods. Plasmid-encoded FtsN, an essential SPOR domain protein that functions to stabilize the septal ring and to initiate septation, in the dedD null mutant resulted in increased growth and the formation of shorter chained cells. However, plasmid-encoded DedD failed to restore growth and cell division of cells lacking FtsN at 10°C. In contrast to cell division protein DedD, RodZ is a cell elongation protein particularly required for growth at 30°C. However, the rodZ null mutant grew similarly as the wild type strain and produced cocci in LB broth at 10°C. Moreover at 10°C, the concerted deletion of dedD and rodZ resulted in severe inhibition of growth accompanied with the formation of swollen prolate ellipsoids due to a block in septal ring assembly and cell elongation. The data indicate the cellular requirement of both FtsN and DedD for septation as well as RodZ for cell elongation to maintain the small rod morphology at temperatures near 8°C. In comparison to the growth and small rods of the wild type in M9-glucose minimal media at 37°C, the dedD null mutant grew at the same rate and produced elongated cells while the rodZ null mutant grew at a slightly slower rate and produced cocci. The data indicate that DedD and RodZ are also required to maintain the small rod morphology in nutrient-poor media, but there is a higher cellular requirement of DedD for growth and cell division in nutrient-rich media at low temperature.
Collapse
Affiliation(s)
- T Porter
- Department of Biological Sciences, Winston-Salem State University
| | | | | | | |
Collapse
|
15
|
Söderström B, Mirzadeh K, Toddo S, von Heijne G, Skoglund U, Daley DO. Coordinated disassembly of the divisome complex in Escherichia coli. Mol Microbiol 2016; 101:425-38. [PMID: 27096604 DOI: 10.1111/mmi.13400] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/25/2022]
Abstract
The divisome is the macromolecular complex that carries out cell division in Escherichia coli. Every generation it must be assembled, and then disassembled so that the sequestered proteins can be recycled. Whilst the assembly process has been well studied, virtually nothing is known about the disassembly process. In this study, we have used super-resolution SIM imaging to monitor pairs of fluorescently tagged divisome proteins as they depart from the division septum. These simple binary comparisons indicated that disassembly occurs in a coordinated process that consists of at least five steps: [FtsZ, ZapA] ⇒ [ZipA, FtsA] ⇒ [FtsL, FtsQ] ⇒ [FtsI, FtsN] ⇒ [FtsN]. This sequence of events is remarkably similar to the assembly process, indicating that disassembly follows a first-in, first-out principle. A secondary observation from these binary comparisons was that FtsZ and FtsN formed division rings that were spatially separated throughout the division process. Thus the data indicate that the divisome structure can be visualized as two concentric rings; a proto-ring containing FtsZ and an FtsN-ring.
Collapse
Affiliation(s)
- Bill Söderström
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Kiavash Mirzadeh
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Stephen Toddo
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.,Science for Life Laboratory, SE-171 21, Stockholm, Sweden
| | - Ulf Skoglund
- Structural Cellular Biology Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Daniel O Daley
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
16
|
Huang KH, Mychack A, Tchorzewski L, Janakiraman A. Characterization of the FtsZ C-Terminal Variable (CTV) Region in Z-Ring Assembly and Interaction with the Z-Ring Stabilizer ZapD in E. coli Cytokinesis. PLoS One 2016; 11:e0153337. [PMID: 27088231 PMCID: PMC4835091 DOI: 10.1371/journal.pone.0153337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/28/2016] [Indexed: 12/19/2022] Open
Abstract
Polymerization of a ring-like cytoskeletal structure, the Z-ring, at midcell is a highly conserved feature in virtually all bacteria. The Z-ring is composed of short protofilaments of the tubulin homolog FtsZ, randomly arranged and held together through lateral interactions. In vitro, lateral associations between FtsZ protofilaments are stabilized by crowding agents, high concentrations of divalent cations, or in some cases, low pH. In vivo, the last 4–10 amino acid residues at the C-terminus of FtsZ (the C-terminal variable region, CTV) have been implicated in mediating lateral associations between FtsZ protofilaments through charge shielding. Multiple Z-ring associated proteins (Zaps), also promote lateral interactions between FtsZ protofilaments to stabilize the FtsZ ring in vivo. Here we characterize the complementary role/s of the CTV of E. coli FtsZ and the FtsZ-ring stabilizing protein ZapD, in FtsZ assembly. We show that the net charge of the FtsZ CTV not only affects FtsZ protofilament bundling, confirming earlier observations, but likely also the length of the FtsZ protofilaments in vitro. The CTV residues also have important consequences for Z-ring assembly and interaction with ZapD in the cell. ZapD requires the FtsZ CTV region for interaction with FtsZ in vitro and for localization to midcell in vivo. Our data suggest a mechanism in which the CTV residues, particularly K380, facilitate a conformation for the conserved carboxy-terminal residues in FtsZ, that lie immediately N-terminal to the CTV, to enable optimal contact with ZapD. Further, phylogenetic analyses suggest a correlation between the nature of FtsZ CTV residues and the presence of ZapD in the β- γ-proteobacterial species.
Collapse
Affiliation(s)
- Kuo-Hsiang Huang
- Department of Biology, City College of CUNY, 160 Convent Avenue, MR 526, New York, NY, United States of America
- The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY, United States of America
| | - Aaron Mychack
- Department of Biology, City College of CUNY, 160 Convent Avenue, MR 526, New York, NY, United States of America
- The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY, United States of America
| | - Lukasz Tchorzewski
- Department of Biology, City College of CUNY, 160 Convent Avenue, MR 526, New York, NY, United States of America
| | - Anuradha Janakiraman
- Department of Biology, City College of CUNY, 160 Convent Avenue, MR 526, New York, NY, United States of America
- The Graduate Center of CUNY, 365 Fifth Avenue, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
17
|
Martos A, Raso A, Jiménez M, Petrášek Z, Rivas G, Schwille P. FtsZ Polymers Tethered to the Membrane by ZipA Are Susceptible to Spatial Regulation by Min Waves. Biophys J 2016; 108:2371-83. [PMID: 25954894 DOI: 10.1016/j.bpj.2015.03.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 11/29/2022] Open
Abstract
Bacterial cell division is driven by an FtsZ ring in which the FtsZ protein localizes at mid-cell and recruits other proteins, forming a divisome. In Escherichia coli, the first molecular assembly of the divisome, the proto-ring, is formed by the association of FtsZ polymers to the cytoplasmic membrane through the membrane-tethering FtsA and ZipA proteins. The MinCDE system plays a major role in the site selection of the division ring because these proteins oscillate from pole to pole in such a way that the concentration of the FtsZ-ring inhibitor, MinC, is minimal at the cell center, thus favoring FtsZ assembly in this region. We show that MinCDE drives the formation of waves of FtsZ polymers associated to bilayers by ZipA, which propagate as antiphase patterns with respect to those of Min as revealed by confocal fluorescence microscopy. The emergence of these FtsZ waves results from the displacement of FtsZ polymers from the vicinity of the membrane by MinCD, which efficiently competes with ZipA for the C-terminal region of FtsZ, a central hub for multiple interactions that are essential for division. The coupling between FtsZ polymers and Min is enhanced at higher surface densities of ZipA or in the presence of crowding agents that favor the accumulation of FtsZ polymers near the membrane. The association of FtsZ polymers to the membrane modifies the response of FtsZ to Min, and comigrating Min-FtsZ waves are observed when FtsZ is free in solution and not attached to the membrane by ZipA. Taken together, our findings show that the dynamic Min patterns modulate the spatial distribution of FtsZ polymers in controlled minimal membranes. We propose that ZipA plays an important role in mid-cell recruitment of FtsZ orchestrated by MinCDE.
Collapse
Affiliation(s)
- Ariadna Martos
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ana Raso
- Max Planck Institute of Biochemistry, Martinsried, Germany; Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | - Zdeněk Petrášek
- Max Planck Institute of Biochemistry, Martinsried, Germany; Institut für Biotechnologie und Bioprozesstechnik, Graz, Austria
| | - Germán Rivas
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
18
|
A 1 MDa protein complex containing critical components of the Escherichia coli divisome. Sci Rep 2015; 5:18190. [PMID: 26643979 PMCID: PMC4672292 DOI: 10.1038/srep18190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/13/2015] [Indexed: 11/09/2022] Open
Abstract
Cell division in bacteria is an essential process that is carried out at mid-cell by a group of cell division proteins referred to as the divisome. In Escherichia coli, over two dozen cell division proteins have been identified of which ten are essential. These division proteins localize sequentially and interdependently to the division site, after which constriction eventually produces two daughter cells. Various genetic and biochemical techniques have identified many interactions amongst cell division proteins, however the existence of the divisome as a large multi-protein complex has never been shown. Here, we identify a 1 MDa protein complex by native page that contains seven essential cell division proteins (FtsZ, ZipA, FtsK, FtsQ, FtsB, FtsL, and FtsN). The 1 MDa complex is present in rapidly dividing cells, but absent when cultures enter the stationary growth phase. Slight overexpression of the ftsQ D237N mutation that blocks cell division prevents formation of this 1 MDa complex. In cells depleted of FtsN, the 1 MDa complex is not assembled. Combined, our findings indicate that a large protein complex containing many different cell division proteins indeed exists. We note that this complex is very fragile and sensitive to the expression of tagged versions of FtsQ.
Collapse
|
19
|
Egan AJF, Vollmer W. The stoichiometric divisome: a hypothesis. Front Microbiol 2015; 6:455. [PMID: 26029191 PMCID: PMC4428075 DOI: 10.3389/fmicb.2015.00455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/27/2015] [Indexed: 11/16/2022] Open
Abstract
Dividing Escherichia coli cells simultaneously constrict the inner membrane, peptidoglycan layer, and outer membrane to synthesize the new poles of the daughter cells. For this, more than 30 proteins localize to mid-cell where they form a large, ring-like assembly, the divisome, facilitating division. Although the precise function of most divisome proteins is unknown, it became apparent in recent years that dynamic protein–protein interactions are essential for divisome assembly and function. However, little is known about the nature of the interactions involved and the stoichiometry of the proteins within the divisome. A recent study (Li et al., 2014) used ribosome profiling to measure the absolute protein synthesis rates in E. coli. Interestingly, they observed that most proteins which participate in known multiprotein complexes are synthesized proportional to their stoichiometry. Based on this principle we present a hypothesis for the stoichiometry of the core of the divisome, taking into account known protein–protein interactions. From this hypothesis we infer a possible mechanism for peptidoglycan synthesis during division.
Collapse
Affiliation(s)
- Alexander J F Egan
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, UK
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University , Newcastle upon Tyne, UK
| |
Collapse
|
20
|
Liu B, Persons L, Lee L, de Boer PAJ. Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Mol Microbiol 2015; 95:945-70. [PMID: 25496160 DOI: 10.1111/mmi.12906] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 12/18/2022]
Abstract
Escherichia coli FtsN is a bitopic membrane protein that is essential for triggering active cell constriction. A small periplasmic subdomain ((E) FtsN) is required and sufficient for function, but its mechanism of action is unclear. We isolated extragenic (E) FtsN*-suppressing mutations that restore division in cells producing otherwise non-functional variants of FtsN. These mapped to the IC domain of FtsA in the cytoplasm and to small subdomains of the FtsB and FtsL proteins in the periplasm. All FtsB and FtsL variants allowed survival without (E) FtsN, but many then imposed a new requirement for interaction between the cytoplasmic domain of FtsN ((N) FtsN) and FtsA. Alternatively, variants of FtsA, FtsB or FtsL acted synergistically to allow cell division in the complete absence of FtsN. Strikingly, moreover, substitution of a single residue in FtsB (E56) proved sufficient to rescue ΔftsN cells as well. In FtsN(+) cells, (E) FtsN*-suppressing mutations promoted cell fission at an abnormally small cell size, and caused cell shape and integrity defects under certain conditions. This and additional evidence support a model in which FtsN acts on either side of the membrane to induce a conformational switch in both FtsA and the FtsBLQ subcomplex to de-repress septal peptidoglycan synthesis and membrane invagination.
Collapse
Affiliation(s)
- Bing Liu
- Department of Molecular Biology & Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4960, USA
| | | | | | | |
Collapse
|
21
|
A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus. PLoS Biol 2014; 12:e1001977. [PMID: 25350732 PMCID: PMC4211646 DOI: 10.1371/journal.pbio.1001977] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/17/2014] [Indexed: 01/26/2023] Open
Abstract
A study of the bacterium Caulobacter crescentus reveals an SOS-independent DNA damage response pathway that acts via a novel cell division inhibitor, DidA, to suppress septum synthesis. Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage. Cells have evolved sophisticated mechanisms for repairing their DNA and maintaining genome integrity. A critical aspect of the repair process is an arrest of cell cycle progression, thereby ensuring that cell division is not attempted before the genome has been repaired and fully duplicated. Our paper explores the molecular mechanisms that underlie the inhibition of cell division following DNA damage in the bacterium Caulobacter crescentus. For most bacteria, the primary, and only mechanism previously described involves the SOS response, in which DNA damage induces cleavage of the transcriptional repressor LexA, driving induction of a battery of genes that includes an inhibitor of cell division (sulA in E. coli and sidA in Caulobacter). Here, we report that Caulobacter cells have a second, SOS-independent damage response pathway that induces another division inhibitor, didA, which works together with sidA to block cell division following DNA damage. We also identify the damage-sensitive transcription factor responsible for inducing DidA. Finally, our study demonstrates that DidA and SidA inhibit cell division in an atypical manner. Many division inhibitors in bacteria appear to inhibit the protein FtsZ, which forms a ring at the site of cell division. DidA and SidA, however, target a trio of proteins, FtsW/I/N, that help synthesize the new cell wall that will separate the daughter cells (the septum). In sum, our work expands our understanding of how bacterial cells respond to DNA damage and the mechanisms by which they regulate cell division.
Collapse
|
22
|
Hill EH, Pappas HC, Evans DG, Whitten DG. Cationic oligo-p-phenylene ethynylenes form complexes with surfactants for long-term light-activated biocidal applications. Photochem Photobiol Sci 2014; 13:247-53. [PMID: 24149833 DOI: 10.1039/c3pp50277e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cationic oligo-p-phenylene ethynylenes are highly effective light-activated biocides that deal broad-spectrum damage to a variety of pathogens, including bacteria. A potential problem arising in the long-term usage of these compounds is photochemical breakdown, which nullifies their biocidal activity. Recent work has shown that these molecules complex with oppositely-charged surfactants, and that the resulting complexes are protected from photodegradation. In this manuscript, we determine the biocidal activity of an oligomer and a complex formed between it and sodium dodecyl sulfate. The complexes are able to withstand prolonged periods of irradiation, continuing to effectively kill both Gram-negative and Gram-positive bacteria, while the oligomer by itself loses its biocidal effectiveness quickly in the presence of light. In addition, damage and stress responses induced by these biocides in both E. coli and S. aureus are discussed. This work shows that complexation with surfactants is a viable method for long-term light-activated biocidal applications.
Collapse
Affiliation(s)
- Eric H Hill
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131-1341, USA.
| | | | | | | |
Collapse
|
23
|
Busiek KK, Margolin W. A role for FtsA in SPOR-independent localization of the essential Escherichia coli cell division protein FtsN. Mol Microbiol 2014; 92:1212-26. [PMID: 24750258 DOI: 10.1111/mmi.12623] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2014] [Indexed: 11/30/2022]
Abstract
FtsN is a bitopic membrane protein and the last essential component to localize to the Escherichia coli cell division machinery, or divisome. The periplasmic SPOR domain of FtsN was previously shown to localize to the divisome in a self-enhancing manner, relying on the essential activity of FtsN and the peptidoglycan synthesis and degradation activities of FtsI and amidases respectively. Because FtsN has a known role in recruiting amidases and is predicted to stimulate the activity of FtsI, it follows that FtsN initially localizes to division sites in a SPOR-independent manner. Here, we show that the cytoplasmic and transmembrane domains of FtsN (FtsN(Cyto - TM)) facilitated localization of FtsN independently of its SPOR domain but dependent on the early cell division protein FtsA. In addition, SPOR-independent localization preceded SPOR-dependent localization, providing a mechanism for the initial localization of FtsN. In support of the role of FtsNCyto - TM in FtsN function, a variant of FtsN lacking the cytoplasmic domain localized to the divisome but failed to complement an ftsN deletion unless it was overproduced. Simultaneous removal of the cytoplasmic and SPOR domains abolished localization and complementation. These data support a model in which FtsA-FtsN interaction recruits FtsN to the divisome, where it can then stimulate the peptidoglycan remodelling activities required for SPOR-dependent localization.
Collapse
Affiliation(s)
- Kimberly K Busiek
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX, USA
| | | |
Collapse
|
24
|
Vicente M. Analysis and synthesis of the bacterial divisome. Environ Microbiol 2013. [DOI: 10.1111/1462-2920.12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miguel Vicente
- Centro Nacional de Biotecnología (CNB-CSIC); C/ Darwin n°3 E-28049 Madrid Spain
| |
Collapse
|
25
|
|
26
|
Natale P, Pazos M, Vicente M. TheEscherichia colidivisome: born to divide. Environ Microbiol 2013; 15:3169-82. [DOI: 10.1111/1462-2920.12227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Paolo Natale
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| | - Manuel Pazos
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| | - Miguel Vicente
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| |
Collapse
|
27
|
Jiménez M, Martos A, Cabré EJ, Raso A, Rivas G. Giant vesicles: a powerful tool to reconstruct bacterial division assemblies in cell-like compartments. Environ Microbiol 2013; 15:3158-68. [DOI: 10.1111/1462-2920.12214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Mercedes Jiménez
- Centro de Investigaciones Biológicas; CSIC; c/Ramiro de Maeztu 9 28040 Madrid Spain
| | - Ariadna Martos
- Max Planck Institute of Biochemistry; Am Klopferspitz 18 D-82152 Martinsried Germany
| | - Elisa J. Cabré
- Centro de Investigaciones Biológicas; CSIC; c/Ramiro de Maeztu 9 28040 Madrid Spain
| | - Ana Raso
- Centro de Investigaciones Biológicas; CSIC; c/Ramiro de Maeztu 9 28040 Madrid Spain
- Max Planck Institute of Biochemistry; Am Klopferspitz 18 D-82152 Martinsried Germany
| | - Germán Rivas
- Centro de Investigaciones Biológicas; CSIC; c/Ramiro de Maeztu 9 28040 Madrid Spain
| |
Collapse
|
28
|
Cabré EJ, Sánchez-Gorostiaga A, Carrara P, Ropero N, Casanova M, Palacios P, Stano P, Jiménez M, Rivas G, Vicente M. Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination. J Biol Chem 2013; 288:26625-34. [PMID: 23921390 DOI: 10.1074/jbc.m113.491688] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Permeable vesicles containing the proto-ring anchoring ZipA protein shrink when FtsZ, the main cell division protein, polymerizes in the presence of GTP. Shrinkage, resembling the constriction of the cytoplasmic membrane, occurs at ZipA densities higher than those found in the cell and is modulated by the dynamics of the FtsZ polymer. In vivo, an excess of ZipA generates multilayered membrane inclusions within the cytoplasm and causes the loss of the membrane function as a permeability barrier. Overproduction of ZipA at levels that block septation is accompanied by the displacement of FtsZ and two additional division proteins, FtsA and FtsN, from potential septation sites to clusters that colocalize with ZipA near the membrane. The results show that elementary constriction events mediated by defined elements involved in cell division can be evidenced both in bacteria and in vesicles.
Collapse
Affiliation(s)
- Elisa J Cabré
- From the Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Massidda O, Nováková L, Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 2013; 15:3133-57. [PMID: 23848140 DOI: 10.1111/1462-2920.12189] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae is an oval-shaped Gram-positive coccus that lives in intimate association with its human host, both as a commensal and pathogen. The seriousness of pneumococcal infections and the spread of multi-drug resistant strains call for new lines of intervention. Bacterial cell division is an attractive target to develop antimicrobial drugs. This review discusses the recent advances in understanding S. pneumoniae growth and division, in comparison with the best studied rod-shaped models, Escherichia coli and Bacillus subtilis. To maintain their shape, these bacteria propagate by peripheral and septal peptidoglycan synthesis, involving proteins that assemble into distinct complexes called the elongasome and the divisome, respectively. Many of these proteins are conserved in S. pneumoniae, supporting the notion that the ovococcal shape is also achieved by rounds of elongation and division. Importantly, S. pneumoniae and close relatives with similar morphology differ in several aspects from the model rods. Overall, the data support a model in which a single large machinery, containing both the peripheral and septal peptidoglycan synthesis complexes, assembles at midcell and governs growth and division. The mechanisms generating the ovococcal or coccal shape in lactic-acid bacteria have likely evolved by gene reduction from a rod-shaped ancestor of the same group.
Collapse
Affiliation(s)
- Orietta Massidda
- Department of Surgical Sciences, University of Cagliari, Via Porcell, 4, 09100, Cagliari, Italy
| | | | | |
Collapse
|
30
|
Teleha MA, Miller AC, Larsen RA. Overexpression of the Escherichia coli TolQ protein leads to a null-FtsN-like division phenotype. Microbiologyopen 2013; 2:618-32. [PMID: 23818486 PMCID: PMC3831626 DOI: 10.1002/mbo3.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/27/2013] [Accepted: 06/03/2013] [Indexed: 11/25/2022] Open
Abstract
Mutations involving the Tol-Pal complex of Escherichia coli result in a subtle phenotype in which cells chain when grown under low-salt conditions. Here, the nonpolar deletion of individual genes encoding the cytoplasmic membrane-associated components of the complex (TolQ, TolR, TolA) produced a similar phenotype. Surprisingly, the overexpression of one of these proteins, TolQ, resulted in a much more overt phenotype in which cells occurred as elongated rods coupled in long chains when grown under normal salt conditions. Neither TolR nor TolA overexpression produced a phenotype, nor was the presence of either protein required for the TolQ-dependent phenotype. Consistent with their native membrane topology, the amino-terminal domain of TolQ specifically associated in vivo with the periplasmic domain of FtsN in a cytoplasm-based two-hybrid analysis. Further, the concomitant overexpression of FtsN rescued the TolQ-dependent phenotype, suggesting a model wherein the overexpression of TolQ sequesters FtsN, depleting this essential protein from the divisome during Gram-negative cell division. The role of the Tol-Pal system in division is discussed. Over-expression of the cytoplasmic membrane protein TolQ resulted in a division phenotype similar to that seen in cells depleted for FtsN. Two hybrid analysis suggested that TolQ and FtsN physically interact through domains that localize in the periplasmic space; while the concurrent over-expression of FtsN alleviated the TolQ over-expression phenotype. Together these results suggest a model wherein over-expressed TolQ sequesters FtsN, disrupting normal cell division.
Collapse
Affiliation(s)
- Mary A Teleha
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, 43403; Division of Science and Math, Lorain County Community College, Elyria, Ohio, 44035
| | | | | |
Collapse
|
31
|
Grenga L, Rizzo A, Paolozzi L, Ghelardini P. Essential and non-essential interactions in interactome networks: the Escherichia coli division proteins FtsQ-FtsN interaction. Environ Microbiol 2013; 15:3210-7. [PMID: 23782448 DOI: 10.1111/1462-2920.12157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/08/2013] [Indexed: 11/29/2022]
Abstract
The Escherichia coli division protein FtsQ, which plays a central role in the septosome assembly, interacts with several protein partners of the division machinery. Its interaction with FtsB and FtsL allows the formation of the trimeric complex connecting the early cytoplasmic cell division proteins with the late, essentially periplasmic, ones. Little is known about the interactions that FtsQ contracts with other divisome components, besides the fact that all are localized in its periplasmic domain. In this domain, two independent subdomains, both involved in FtsQ, FtsI and FtsN interactions, were also identified. The study of FtsQ interaction-defective mutants constituted a basis to investigate the biological significance of its interactions. However, in the case of interactions where two independent sites are involved, mutation(s) in one domain can be suppressed by the presence of the still-functional second interaction region. To ascertain the biological role of these interactions, it is therefore necessary to select double mutants, where both sites are impaired. This paper describes the behaviour of FtsQ double mutants that have lost the ability to interact with FtsN, which is the last component in the hierarchy of divisome assembly, and is necessary to guarantee its stability and function.
Collapse
Affiliation(s)
- L Grenga
- General Microbiology Laboratory, Department of Biology, 'Tor Vergata' University, Rome, Italy
| | | | | | | |
Collapse
|
32
|
Rico AI, Krupka M, Vicente M. In the beginning, Escherichia coli assembled the proto-ring: an initial phase of division. J Biol Chem 2013; 288:20830-20836. [PMID: 23740256 DOI: 10.1074/jbc.r113.479519] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell division in Escherichia coli begins by assembling three proteins, FtsZ, FtsA, and ZipA, to form a proto-ring at midcell. These proteins nucleate an assembly of at least 35 components, the divisome. The structuring of FtsZ to form a ring and the processes that effect constriction have been explained by alternative but not mutually exclusive mechanisms. We discuss how FtsA and ZipA provide anchoring of the cytoplasmic FtsZ to the membrane and how a temporal sequence of alternative protein interactions may operate in the maturation and stability of the proto-ring. How the force needed for constriction is generated and how the proto-ring proteins relate to peptidoglycan synthesis remain as the main challenges for future research.
Collapse
Affiliation(s)
- Ana Isabel Rico
- From the Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Marcin Krupka
- From the Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Miguel Vicente
- From the Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain.
| |
Collapse
|
33
|
A putative transmembrane leucine zipper of agrobacterium VirB10 is essential for t-pilus biogenesis but not type IV secretion. J Bacteriol 2013; 195:3022-34. [PMID: 23625845 DOI: 10.1128/jb.00287-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Agrobacterium tumefaciens VirB/VirD4 type IV secretion system is composed of a translocation channel and an extracellular T pilus. Bitopic VirB10, the VirB7 lipoprotein, and VirB9 interact to form a cell envelope-spanning structural scaffold termed the "core complex" that is required for the assembly of both structures. The related pKM101-encoded core complex is composed of 14 copies each of these VirB homologs, and the transmembrane (TM) α helices of VirB10-like TraF form a 55-Å-diameter ring at the inner membrane. Here, we report that the VirB10 TM helix possesses two types of putative dimerization motifs, a GxxxA (GA4) motif and two leucine (Leu1, Leu2) zippers. Mutations in the Leu1 motif disrupted T-pilus biogenesis, but these or other mutations in the GA4 or Leu2 motif did not abolish substrate transfer. Replacement of the VirB10 TM domain with a nondimerizing poly-Leu/Ala TM domain sequence also blocked pilus production but not substrate transfer or formation of immunoprecipitable complexes with the core subunits VirB7 and VirB9 and the substrate receptor VirD4. The VirB10 TM helix formed weak homodimers in Escherichia coli, as determined with the TOXCAT assay, whereas replacement of the VirB10 TM helix with the strongly dimerizing TM helix from glycophorin A blocked T-pilus biogenesis in A. tumefaciens. Our findings support a model in which VirB10's TM helix contributes to the assembly or activity of the translocation channel as a weakly self-interacting membrane anchor but establishes a heteromeric TM-TM helix interaction via its Leu1 motif that is critical for T-pilus biogenesis.
Collapse
|
34
|
Abstract
Bacterial cell division is facilitated by the divisome, a dynamic multiprotein assembly localizing at mid-cell to synthesize the stress-bearing peptidoglycan and to constrict all cell envelope layers. Divisome assembly occurs in two steps and involves multiple interactions between more than 20 essential and accessory cell division proteins. Well before constriction and while the cell is still elongating, the tubulin-like FtsZ and early cell division proteins form a ring-like structure at mid-cell. Cell division starts once certain peptidoglycan enzymes and their activators have moved to the FtsZ-ring. Gram-negative bacteria like Escherichia coli simultaneously synthesize and cleave the septum peptidoglycan during division leading to a constriction. The outer membrane constricts together with the peptidoglycan layer with the help of the transenvelope spanning Tol-Pal system.
Collapse
Affiliation(s)
- Alexander J F Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
35
|
Martos A, Jiménez M, Rivas G, Schwille P. Towards a bottom-up reconstitution of bacterial cell division. Trends Cell Biol 2012; 22:634-43. [DOI: 10.1016/j.tcb.2012.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
|
36
|
The β-lactam resistance protein Blr, a small membrane polypeptide, is a component of the Escherichia coli cell division machinery. J Bacteriol 2012; 194:5576-88. [PMID: 22885295 DOI: 10.1128/jb.00774-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In Escherichia coli, cell division is performed by a multimolecular machinery called the divisome, made of 10 essential proteins and more than 20 accessory proteins. Through a bacterial two-hybrid library screen, we identified the E. coli β-lactam resistance protein Blr, a short membrane polypeptide of 41 residues, as an interacting partner of the essential cell division protein FtsL. In addition to FtsL, Blr was found to associate with several other divisomal proteins, including FtsI, FtsK, FtsN, FtsQ, FtsW, and YmgF. Using fluorescently tagged Blr, we showed that this peptide localizes to the division septum and that its colocalization requires the presence of the late division protein FtsN. Although Blr is not essential, previous studies have shown that the inactivation of the blr gene increased the sensitivity of bacteria to β-lactam antibiotics or their resistance to cell envelope stress. Here, we found that Blr, when overproduced, restores the viability of E. coli ftsQ1(Ts) cells, carrying a thermosensitive allele of the ftsQ gene, during growth under low-osmotic-strength conditions (e.g., in synthetic media or in Luria-Bertani broth without NaCl). In contrast, the inactivation of blr increases the osmosensitivity of ftsQ1(Ts) cells, and blr ftsQ1 double mutants exhibit filamentous growth in LB broth even at a moderate salt concentration (0.5% NaCl) compared to parental ftsQ1(Ts) cells. Altogether, our results suggest that the small membrane polypeptide Blr is a novel component of the E. coli cell division apparatus involved in the stabilization of the divisome under certain stress conditions.
Collapse
|
37
|
Hernández-Rocamora VM, Reija B, García C, Natale P, Alfonso C, Minton AP, Zorrilla S, Rivas G, Vicente M. Dynamic interaction of the Escherichia coli cell division ZipA and FtsZ proteins evidenced in nanodiscs. J Biol Chem 2012; 287:30097-104. [PMID: 22787144 DOI: 10.1074/jbc.m112.388959] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The full-length ZipA protein from Escherichia coli, one of the essential components of the division proto-ring that provides membrane tethering to the septation FtsZ protein, has been incorporated in single copy into nanodiscs formed by a membrane scaffold protein encircling an E. coli phospholipid mixture. This is an acellular system that reproduces the assembly of part of the cell division components. ZipA contained in nanodiscs (Nd-ZipA) retains the ability to interact with FtsZ oligomers and with FtsZ polymers. Interactions with FtsZ occur at similar strengths as those involved in the binding of the soluble form of ZipA, lacking the transmembrane region, suggesting that the transmembrane region of ZipA has little influence on the formation of the ZipA·FtsZ complex. Peptides containing partial sequences of the C terminus of FtsZ compete with FtsZ polymers for binding to Nd-ZipA. The affinity of Nd-ZipA for the FtsZ polymer formed with GTP or GMPCPP (a slowly hydrolyzable analog of GTP) is moderate (micromolar range) and of similar magnitude as for FtsZ-GDP oligomers. Polymerization does not stabilize the binding of FtsZ to ZipA. This supports the role of ZipA as a passive anchoring device for the proto-ring with little implication, if any, in the regulation of its assembly. Furthermore, it indicates that the tethering of FtsZ to the membrane shows sufficient plasticity to allow for its release from noncentral regions of the cytoplasmic membrane and its subsequent relocation to midcell when demanded by the assembly of a division ring.
Collapse
Affiliation(s)
- Víctor M Hernández-Rocamora
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), 28006 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The early divisome protein FtsA interacts directly through its 1c subdomain with the cytoplasmic domain of the late divisome protein FtsN. J Bacteriol 2012; 194:1989-2000. [PMID: 22328664 DOI: 10.1128/jb.06683-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Escherichia coli, FtsN localizes late to the cell division machinery, only after a number of additional essential proteins are recruited to the early FtsZ-FtsA-ZipA complex. FtsN has a short, positively charged cytoplasmic domain (FtsN(Cyto)), a single transmembrane domain (FtsN(TM)), and a periplasmic domain that is essential for FtsN function. Here we show that FtsA and FtsN interact directly in vitro. FtsN(Cyto) is sufficient to bind to FtsA, but only when it is tethered to FtsN(TM) or to a leucine zipper. Mutation of a conserved patch of positive charges in FtsN(Cyto) to negative charges abolishes the interaction with FtsA. We also show that subdomain 1c of FtsA is sufficient to mediate this interaction with FtsN. Finally, although FtsN(Cyto-TM) is not essential for FtsN function, its overproduction causes a modest dominant-negative effect on cell division. These results suggest that basic residues within a dimerized FtsN(Cyto) protein interact directly with residues in subdomain 1c of FtsA. Since FtsA binds directly to FtsZ and FtsN interacts with enzymes involved in septum synthesis and splitting, this interaction between early and late divisome proteins may be one of several feedback controls for Z ring constriction.
Collapse
|
39
|
From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 2011; 10:123-36. [PMID: 22203377 DOI: 10.1038/nrmicro2677] [Citation(s) in RCA: 905] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
How bacteria grow and divide while retaining a defined shape is a fundamental question in microbiology, but technological advances are now driving a new understanding of how the shape-maintaining bacterial peptidoglycan sacculus grows. In this Review, we highlight the relationship between peptidoglycan synthesis complexes and cytoskeletal elements, as well as recent evidence that peptidoglycan growth is regulated from outside the sacculus in Gram-negative bacteria. We also discuss how growth of the sacculus is sensitive to mechanical force and nutritional status, and describe the roles of peptidoglycan hydrolases in generating cell shape and of D-amino acids in sacculus remodelling.
Collapse
|
40
|
Pichoff S, Shen B, Sullivan B, Lutkenhaus J. FtsA mutants impaired for self-interaction bypass ZipA suggesting a model in which FtsA's self-interaction competes with its ability to recruit downstream division proteins. Mol Microbiol 2011; 83:151-67. [PMID: 22111832 DOI: 10.1111/j.1365-2958.2011.07923.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Z-ring assembly requires polymers of the tubulin homologue FtsZ to be tethered to the membrane. Although either ZipA or FtsA is sufficient to do this, both of these are required for recruitment of downstream proteins to form a functional cytokinetic ring. Gain of function mutations in ftsA, such as ftsA* (ftsA-R286W), bypass the requirement for ZipA suggesting that this atypical, well-conserved, actin homologue has a more critical role in Z-ring function. FtsA forms multimers both in vitro and in vivo, but little is known about the role of FtsA polymerization. In this study we identify FtsA mutants impaired for self-interaction. Such mutants are able to support Z-ring assembly and are also able to bypass the requirement for ZipA. These mutants, including FtsA*, have reduced ability to self-interact but interact normally with FtsZ and are less toxic if overexpressed. These results do not support a model in which FtsA monomers antagonize FtsZ polymers. Instead, we propose a new model in which FtsA self-interaction competes with its ability to recruit downstream proteins. In this model FtsA self-interaction at the Z ring is antagonized by ZipA, allowing unpolymerized FtsA to recruit downstream proteins such as FtsN.
Collapse
Affiliation(s)
- Sebastien Pichoff
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | |
Collapse
|
41
|
Modell JW, Hopkins AC, Laub MT. A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW. Genes Dev 2011; 25:1328-43. [PMID: 21685367 DOI: 10.1101/gad.2038911] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Following DNA damage, cells typically delay cell cycle progression and inhibit cell division until their chromosomes have been repaired. The bacterial checkpoint systems responsible for these DNA damage responses are incompletely understood. Here, we show that Caulobacter crescentus responds to DNA damage by coordinately inducing an SOS regulon and inhibiting the master regulator CtrA. Included in the SOS regulon is sidA (SOS-induced inhibitor of cell division A), a membrane protein of only 29 amino acids that helps to delay cell division following DNA damage, but is dispensable in undamaged cells. SidA is sufficient, when overproduced, to block cell division. However, unlike many other regulators of bacterial cell division, SidA does not directly disrupt the assembly or stability of the cytokinetic ring protein FtsZ, nor does it affect the recruitment of other components of the cell division machinery. Instead, we provide evidence that SidA inhibits division by binding directly to FtsW to prevent the final constriction of the cytokinetic ring.
Collapse
Affiliation(s)
- Joshua W Modell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, USA
| | | | | |
Collapse
|
42
|
Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration. PLoS One 2011; 6:e16105. [PMID: 21267455 PMCID: PMC3022656 DOI: 10.1371/journal.pone.0016105] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/07/2010] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2−) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process.
Collapse
|
43
|
Mingorance J, Rivas G, Vélez M, Gómez-Puertas P, Vicente M. Strong FtsZ is with the force: mechanisms to constrict bacteria. Trends Microbiol 2010; 18:348-56. [PMID: 20598544 DOI: 10.1016/j.tim.2010.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/10/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
FtsZ, the best-known prokaryotic division protein, assembles at midcell with other proteins forming a ring during septation. Widely conserved in bacteria, FtsZ represents the ancestor of tubulin. In the presence of GTP it forms polymers able to associate into multi-stranded flexible structures. FtsZ research is aimed at determining the role of the Z-ring in division, describing the polymerization and potential force-generating mechanisms and evaluating the roles of nucleotide exchange and hydrolysis. Systems to reconstruct the FtsZ ring in vitro have been described and some of its mechanical properties have been reproduced using in silico modeling. We discuss current research in FtsZ, some of the controversies, and finally propose further research needed to complete a model of FtsZ action that reconciles its in vitro properties with its role in division.
Collapse
Affiliation(s)
- Jesús Mingorance
- Unidad de Investigación y Servicio de Microbiología, Hospital Universitario La Paz (IdiPAZ), Paseo de La Castellana, 261, 28046 Madrid, Spain.
| | | | | | | | | |
Collapse
|
44
|
Alexeeva S, Gadella TWJ, Verheul J, Verhoeven GS, Den Blaauwen T. Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET. Mol Microbiol 2010; 77:384-98. [DOI: 10.1111/j.1365-2958.2010.07211.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|